This manual provides a reference for all notation that can be produced with LilyPond version 2.25.10. It assumes that the reader is familiar with the material in the Section “Learning Manual” in Learning Manual.

For more information about how this manual fits with the other documentation, or to read this manual in other formats, see Section “Manuals” in General Information.

If you are missing any manuals, the complete documentation can be found at https://lilypond.org/.

Copyright © 1998–2023 by the authors.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections. A copy of the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.25.10
Table of Contents

1 Musical notation .. 1

1.1 Pitches ... 1

1.1.1 Writing pitches ... 1
 Absolute octave entry ... 1
 Relative octave entry .. 2
 Accidentals ... 6
 Note names in other languages 8

1.1.2 Changing multiple pitches ... 10
 Octave checks .. 10
 Transpose .. 11
 Inversion .. 14
 Retrograde .. 14
 Modal transformations .. 15

1.1.3 Displaying pitches ... 17
 Clef ... 17
 Key signature .. 21
 Ottava brackets .. 24
 Instrument transpositions ... 27
 Automatic accidentals .. 29
 Alternate accidental glyphs ... 36
 Ambitus .. 37

1.1.4 Note heads .. 40
 Special note heads ... 41
 Easy notation note heads ... 42
 Shape note heads ... 44
 Improvisation .. 47

1.2 Rhythms ... 48

1.2.1 Writing rhythms .. 49
 Durations ... 49
 Tuplets ... 51
 Scaling durations .. 57
 Ties ... 58

1.2.2 Writing rests .. 62
 rests .. 62
 Invisible rests ... 64
 Full measure rests ... 66
 Caesuras .. 70

1.2.3 Displaying rhythms .. 72
 Time signature .. 72
 Metronome marks ... 77
 Upbeats ... 81
 Unmetered music .. 82
 Polymetric notation ... 84
 Automatic note splitting ... 88
 Showing melody rhythms ... 89

1.2.4 Beams ... 92
 Automatic beams ... 92
 Setting automatic beam behavior 95
1.6 Staff notation ... 212
 Writing music in parallel .. 217
1.6.1 Displaying staves ... 220
1.6.2 Modifying single staves ... 220
 Instantiating new staves .. 220
 Grouping staves ... 221
 Nested staff groups .. 226
 Separating systems .. 227
1.6.3 Writing parts .. 228
 Staff symbol ... 228
 Ossia staves .. 232
 Hiding staves ... 235
1.7 Editorial annotations ... 254
1.7.1 Inside the staff ... 254
 Selecting notation font size ... 254
 Fingering instructions ... 258
 Gliding fingers .. 260
 Hidden notes .. 263
 Coloring objects .. 264
 Staff highlights .. 266
 Parentheses .. 269
 Stems ... 271
1.7.2 Outside the staff .. 272
 Note names .. 272
 Balloon help .. 274
 Grid lines ... 275
 Analysis brackets .. 277
1.8 Text ... 281
1.8.1 Writing text .. 281
 Text objects overview ... 281
 Text scripts .. 283
 Text spanners .. 284
 Section labels ... 287
 Text marks ... 287
 Separate text ... 291
1.8.2 Formatting text .. 293
 Text markup introduction ... 293
 Selecting font and font size .. 297
 Text alignment .. 300
 Graphic notation inside markup 304
 Music notation inside markup 307
1.8.3 Fonts ... 309
 Finding fonts ... 309
 Font families .. 310
 Font features .. 311
 Changing fonts .. 312
2 Specialist notation .. 314
 2.1 Vocal music ... 314
 2.1.1 Common notation for vocal music 314
 References for vocal music 314
 Entering lyrics ... 315
 Aligning lyrics to a melody 316
 Automatic syllable durations 318
 Manual syllable durations 320
 Multiple syllables to one note 322
 Multiple notes to one syllable 322
 Extenders and hyphens 326
 Gradual changes of vowel 326
 2.1.2 Techniques specific to lyrics 327
 Working with lyrics and variables 327
 Placing lyrics vertically 328
 Placing syllables horizontally 334
 Lyric and repeats 336
 Divisi lyrics ... 344
 Polyphony with shared lyrics 346
 2.1.3 Stanzas ... 347
 Adding stanza numbers 348
 Adding dynamics marks to stanzas 349
 Adding singers’ names to stanzas 349
 Stanzas with different rhythms 350
 Printing stanzas at the end 352
 Printing stanzas at the end in multiple columns 354
 2.1.4 Songs ... 355
 References for songs 355
 Lead sheets ... 356
 2.1.5 Choral ... 356
 References for choral 356
 Score layouts for choral 357
 2.1.6 Opera and stage musicals 359
 References for opera and stage musicals 360
 Character names .. 360
 Musical cues .. 362
 Spoken music .. 366
 Dialogue over music 366
 2.1.7 Chants psalms and hymns 367
 References for chants and psalms 367
 Setting a chant ... 367
 Pointing a psalm 373
 Phrase bar lines in hymn tunes 376
 Partial measures in hymn tunes 377
 2.1.8 Ancient vocal music 379
 2.2 Keyboard and other multi-staff instruments 380
 2.2.1 Common notation for keyboards 380
 References for keyboards 380
 Changing staff manually 381
 Changing staff automatically 383
 Staff-change lines 385
Common chords .. 470
Extended and altered chords .. 471
Chord inversions and specific voicings 474
2.7.2 Displaying chords .. 474
Printing chord names .. 474
Customizing chord names .. 477
Chord grids .. 482
2.7.3 Figured bass .. 485
Introduction to figured bass ... 485
Entering figured bass .. 486
Displaying figured bass .. 489
2.8 Contemporary music ... 492
2.8.1 Pitch and harmony in contemporary music 493
References for pitch and harmony in contemporary music ... 493
Microtonal notation .. 493
Contemporary key signatures and harmony 493
2.8.2 Contemporary approaches to rhythm 493
References for contemporary approaches to rhythm 493
Tuplets in contemporary music 493
Contemporary time signatures 493
Extended polymetric notation 493
Beams in contemporary music 493
Bar lines in contemporary music 493
2.8.3 Graphical notation .. 493
2.8.4 Contemporary scoring techniques 494
2.8.5 New instrumental techniques 494
2.8.6 Further reading and scores of interest 494
Books and articles on contemporary musical notation 494
Scores and musical examples 494
2.9 Ancient notation ... 495
2.9.1 Overview of the supported styles 496
2.9.2 Ancient notation – common features 496
Predefined contexts ... 497
Ligatures ... 497
Custodes ... 498
2.9.3 Typesetting mensural music 499
Mensural contexts ... 499
Mensural clefs .. 499
Mensural time signatures ... 500
Mensural note heads ... 501
Mensural flags .. 502
Mensural rests .. 503
Mensural accidentals and key signatures 503
Annotational accidentals (musica ficta) 504
White mensural ligatures ... 504
2.9.4 Typesetting Gregorian chant 507
Gregorian chant contexts .. 507
Gregorian clefs .. 508
Gregorian accidentals and key signatures 508
Divisiones ... 509
Gregorian articulation signs ... 509
Augmentum dots (morae) .. 510
3 General input and output ... 537

3.1 Input modes .. 537

3.2 Input structure .. 538
 3.2.1 Structure of a score 538
 3.2.2 Multiple scores in a book 539
 3.2.3 Multiple output files from one input file 541
 3.2.4 Output file names ... 541
 3.2.5 File structure .. 542

3.3 Titles and headers ... 544
 3.3.1 Creating titles headers and footers 544
 Titles explained ... 544
 Default layout of bookpart and score titles 547
 Default layout of headers and footers 551
 3.3.2 Custom titles headers and footers 552
 Custom text formatting for titles 552
 Custom layout for titles 552
 Custom layout for headers and footers 555

2.9.5 Typesetting Kievan square notation 516
 Kievan contexts ... 516
 Kievan clefs .. 517
 Kievan notes ... 517
 Kievan accidentals .. 518
 Kievan bar lines .. 518
 Kievan melismata ... 518

2.9.6 Working with ancient music – scenarios and solutions 519
 Incipits .. 519
 Mensurstriche layout ... 520
 Transcribing Gregorian chant 521
 Ancient and modern from one source 524

2.10 World music ... 525
 2.10.1 Common notation for non-Western music 525
 Extending notation and tuning systems 526
 2.10.2 Arabic music ... 526
 References for Arabic music 526
 Arabic note names .. 527
 Arabic key signatures ... 528
 Arabic time signatures .. 530
 Arabic music example ... 531
 Further reading for Arabic music 532
 2.10.3 Turkish classical music 532
 References for Turkish classical music 532
 Turkish note names ... 532
 Turkish key signatures .. 532
 Further reading for Turkish music 533
 2.10.4 Persian classical music 534
 Persian music notation .. 534
 Persian tunings .. 534
 Persian key signatures .. 535
 Further reading on Persian music 535

Gregorian square neume ligatures 510
3.3.3 Creating output file metadata 557
3.3.4 Creating footnotes ... 557
 Footnotes in music expressions 557
 Footnotes in stand-alone text 563
3.3.5 Creating in-notes .. 566
3.3.6 Reference to page numbers 567
3.3.7 Table of contents .. 568
3.4 Working with input files 570
 3.4.1 Including LilyPond files 570
 3.4.2 Different editions from one source 572
 Using variables .. 572
 Using tags ... 573
 Using global settings .. 578
 3.4.3 Using music functions 578
 Substitution function syntax 578
 Substitution function examples 579
 How to prevent sharing of music expressions 581
 Substitution functions and relative octave entry 582
 3.4.4 Special characters .. 583
 Text encoding .. 583
 Unicode .. 584
 ASCII aliases .. 585
3.5 Controlling output ... 586
 3.5.1 Extracting fragments of music 586
 3.5.2 Skipping corrected music 586
 3.5.3 Alternative output formats 587
 SVG Output ... 587
 3.5.4 Embedding files in PDF output 588
 3.5.5 Replacing the notation font 588
3.6 Creating MIDI output ... 590
 3.6.1 Supported notation for MIDI 590
 3.6.2 Unsupported notation for MIDI 591
 3.6.3 The MIDI block ... 591
 3.6.4 Controlling MIDI dynamics 592
 Dynamic marks in MIDI .. 592
 Setting MIDI volume .. 593
 Setting MIDI block properties 595
 3.6.5 Using MIDI instruments 596
 3.6.6 Using repeats with MIDI 597
 3.6.7 MIDI channel mapping 597
 3.6.8 Context properties for MIDI effects 600
 3.6.9 Enhancing MIDI output 601
 The articulate script ... 601
 The swing script ... 601
3.7 Extracting musical information 602
 3.7.1 Displaying LilyPond notation 603
 3.7.2 Displaying scheme music expressions 603
 3.7.3 Saving music events to a file 603
4 Spacing issues ... 605

4.1 Page layout .. 605
 4.1.1 The \paper block ... 605
 4.1.2 Paper size and automatic scaling 606
 Setting the paper size ... 606
 Automatic scaling to paper size 607
 4.1.3 Fixed vertical spacing \paper variables 608
 4.1.4 Flexible vertical spacing \paper variables 608
 Structure of flexible vertical spacing alists 608
 List of flexible vertical spacing \paper variables 609
 4.1.5 Horizontal spacing \paper variables 610
 \paper variables for widths and margins 610
 \paper variables for two-sided mode 612
 \paper variables for shifts and indents 612
 4.1.6 Other \paper variables 613
 \paper variables for line breaking 613
 \paper variables for page breaking 613
 \paper variables for page numbering 614
 \paper variables concerning headers and markups 615
 \paper variables for debugging 616

4.2 Score layout ... 616
 4.2.1 The \layout block ... 616
 4.2.2 Setting the staff size 618

4.3 Breaks .. 621
 4.3.1 Line breaking ... 621
 4.3.2 Page breaking .. 625
 Manual page breaking .. 625
 Optimal page breaking .. 626
 Minimal page breaking 626
 One-page page breaking 627
 One-line page breaking 627
 One-line-auto-height page breaking 627
 Optimal page turning ... 627

4.4 Vertical spacing .. 628
 4.4.1 Flexible vertical spacing within systems 628
 Within-system spacing properties 629
 Spacing of ungrouped staves 631
 Spacing of grouped staves 633
 Spacing of non-staff lines 634
 4.4.2 Explicit staff and system positioning 635
 4.4.3 Vertical collision avoidance 643

4.5 Horizontal spacing ... 644
 4.5.1 Horizontal spacing overview 644
 4.5.2 New spacing section 646
 4.5.3 Changing horizontal spacing globally 647
 Uniform stretching of tuplets 648
 Strict note spacing ... 648
 4.5.4 Adjusting horizontal spacing for specific layout objects 648
 Overview of object-specific horizontal spacing tweaks 649
 Spacing between adjacent non-musical items 649
 Spacing between adjacent columns 650
5 Changing defaults .. 663

5.1 Interpretation contexts .. 663
 5.1.1 Contexts explained ... 663
 Output definitions – blueprints for contexts 663
 Score – the master of all contexts 664
 Top-level contexts – staff containers 664
 Intermediate-level contexts – staves 664
 Bottom-level contexts – voices 665

5.1.2 Creating and referencing contexts 665

5.1.3 Keeping contexts alive ... 668

5.1.4 Modifying context plug-ins ... 671

5.1.5 Changing context default settings 672
 Changing all contexts of the same type 672
 Changing just one specific context 675
 Order of precedence .. 677

5.1.6 Defining new contexts .. 677

5.1.7 Context layout order .. 680

5.2 Explaining the Internals Reference 682
 5.2.1 Navigating the program reference 682
 5.2.2 Layout interfaces ... 683
 5.2.3 Determining the grob property 684

5.3 Modifying properties ... 685
 5.3.1 Overview of modifying properties 685
 5.3.2 \set and \unset ... 685
 5.3.3 \override and \revert ... 686
 5.3.4 The \once command ... 688
 5.3.5 \set versus \override .. 688
 5.3.6 \tweak and \single ... 689
 5.3.7 The \offset command ... 691
 5.3.8 Modifying alists .. 695

5.4 Useful concepts and properties 697
 5.4.1 Direction and placement .. 698
 Articulation direction indicators 698
 The direction property ... 698
 5.4.2 Distances and measurements 699
 5.4.3 Dimensions .. 700
 5.4.4 Spanners ... 700
 Modifying broken spanners ... 700
 Setting minimum lengths for spanners 702
 Controlling spanner end points 705
 5.4.5 Line styles .. 705
 5.4.6 Line spanners .. 706
 5.4.7 Visibility of objects .. 708
 Removing the stencil ... 708
 Making objects transparent 709
Appendix A Notation manual tables .. 726
A.1 Chord name chart .. 726
A.2 Common chord modifiers ... 726
A.3 Predefined string tunings .. 729
A.4 Predefined fretboard diagrams 730
Diagrams for Guitar .. 730
Diagrams for Ukulele .. 732
Diagrams for Mandolin ... 734
A.5 Predefined paper sizes ... 735
A.6 MIDI instruments .. 737
A.7 List of colors .. 738
A.8 The Emmentaler font ... 743
Clef glyphs ... 743
Time Signature glyphs ... 744
Number glyphs ... 744
Figured bass symbol glyphs ... 745
Accidental glyphs .. 745
Default note head glyphs .. 746
Special note head glyphs ... 746
Note head glyphs for shape notes 746
Rest glyphs .. 748
Flag glyphs ... 749
Dot glyphs .. 749
Dynamic glyphs ... 750
Script glyphs .. 750
Arrowhead glyphs .. 751
Bracket-tip glyphs ... 751
Pedal glyphs ... 752
Accordion glyphs .. 752
Tie glyphs .. 752
Vaticana glyphs ... 752
Medicea glyphs ... 753
Hufnagel glyphs ... 753
Mensural glyphs ... 753
Neomensural glyphs .. 755
Petrucci glyphs ... 756
Appendix B Cheat sheet ... 875
Appendix C GNU Free Documentation License 878
Appendix D LilyPond command index 885
Appendix E LilyPond index ... 896
1 Musical notation

This chapter explains how to create musical notation.

1.1 Pitches

This section discusses how to specify the pitch of notes. There are three steps to this process: input, modification, and output.

1.1.1 Writing pitches

This section discusses how to input pitches. There are two different ways to place notes in octaves: absolute and relative mode. In most cases, relative mode will be more convenient.

Absolute octave entry

A pitch name is specified using lowercase letters a through g. The note names c to b are engraved in the octave below middle C.

{\clef bass
c4 d e f
g4 a b c
d4 e f g}

Other octaves may be specified with a single quote (’) or comma (,) character. Each ’ raises the pitch by one octave; each , lowers the pitch by an octave.

{\clef treble}
Chapter 1: Musical notation

Common octave marks can be entered just once on a reference pitch after \fixed placed before the music. Pitches inside \fixed only need ' or , marks when they are above or below the octave of the reference pitch.

Pitches in the music expression following \fixed are unaffected by any enclosing \relative, discussed next.

See also

Snippets: Section “Pitches” in Snippets.

Relative octave entry

Absolute octave entry requires specifying the octave for every single note. Relative octave entry, in contrast, specifies each octave in relation to the last note: changing one note’s octave will affect all of the following notes.

Relative note mode has to be entered explicitly using the \relative command:

\relative startpitch musicexpr

In relative mode, each note is assumed to be as close to the previous note as possible. This means that the octave of each pitch inside musicexpr is calculated as follows:

- If no octave changing mark is used on a pitch, its octave is calculated so that the interval with the previous note is less than a fifth. This interval is determined without considering accidentals.
• An octave changing mark ' or , can be added to respectively raise or lower a pitch by an extra octave, relative to the pitch calculated without an octave mark.
• Multiple octave changing marks can be used. For example, ' and ,, will alter the pitch by two octaves.
• The pitch of the first note is relative to startpitch. startpitch is specified in absolute octave mode. Which choices are meaningful?

an octave of c

Identifying middle C with c' is quite basic, so finding octaves of c tends to be straightforward. If your music starts with gis above c''', you’d write something like \relative c''' { gis' ... }

an octave of the first note inside

Writing \relative gis''' { gis ... } makes it easy to determine the absolute pitch of the first note inside.

no explicit starting pitch

The form \relative { gis''' ... } serves as a compact version of the previous option: the first note inside is written in absolute pitch itself. (This happens to be equivalent to choosing f as the reference pitch.)

The documentation will usually employ the last option.

Here is the relative mode shown in action:
\relative {
\clef bass
c d e f
g a b c
d e f g
}

Octave changing marks are used for intervals greater than a fourth:
\relative {
c'' g c f,
c' a, e'' c
}

A note sequence without a single octave mark can nevertheless span large intervals:
\relative {
c f b e
a d g c
}
When `\relative` blocks are nested, the innermost `\relative` block starts with its own reference pitch independently of the outer `\relative`.

\begin{verbatim}
\relative {
 c' d e f
 \relative {
 c'' d e f
 }
}
\end{verbatim}

To use absolute mode inside of `\relative`, put the absolute music inside `\fixed c { ... }` and the absolute pitches will not affect the octaves of the relative music:

\begin{verbatim}
\relative {
 c'4 \fixed c { f'' g'' } c |
 c4 \fixed c' { f g } c
}
\end{verbatim}

`\relative` has no effect on `\chordmode` blocks.

\begin{verbatim}
\new Staff {
 \relative c'' {
 \chordmode { c1 }
 }
 \chordmode { c1 }
}
\end{verbatim}

`\relative` is not allowed inside of `\chordmode` blocks.

Music inside a `\transpose` block is absolute unless a `\relative` is included.

\begin{verbatim}
\relative {
 d' e
 \transpose f g {
 d e
 \relative {
 d' e
 }
 }
}
\end{verbatim}
If the preceding item is a chord, the first note of the chord is used as the reference point for the octave placement of a following note or chord. Inside chords, the next note is always relative to the preceding one. Examine the next example carefully, paying attention to the c notes.

\relative {
 c'
 <c e g>
 <c' e g'>
 <c, e, g''>
}

As explained above, the octave of pitches is calculated only with the note names, regardless of any alterations. Therefore, an E-double-sharp following a B will be placed higher, while an F-double-flat will be placed lower. In other words, a double-augmented fourth is considered a smaller interval than a double-diminished fifth, regardless of the number of semitones that each interval contains.

\relative {
 c''2 fis
 c2 ges
 b2 eisis
 b2 feses
}

In complex situations, it is sometimes useful to get back to a certain pitch regardless of what happened before. This can be done using \resetRelativeOctave:

\relative {
 <<
 { c''2 d }
 \
 { e,,2 f }
 >>
 \resetRelativeOctave c''
 c2
}

See also

Chapter 1: Musical notation

Notation Reference: [Octave checks], page 10.
Snippets: Section “Pitches” in Snippets.
Internals Reference: Section “RelativeOctaveMusic” in Internals Reference.

Accidentals

Note: New users are sometimes confused about accidentals and key signatures. In LilyPond, note names specify pitches; key signatures and clefs determine how these pitches are displayed. An unaltered note like c means ‘C natural’, regardless of the key signature or clef. For more information, see Section “Pitches and key signatures” in Learning Manual.

A **sharp** pitch is made by adding # to the note name, and a **flat** pitch by adding b. As you might expect, a **double sharp** or **double flat** is made by adding ## or ###. This syntax is derived from Dutch note naming conventions. To use other names for accidentals, see [Note names in other languages], page 8.

```
\relative c'' { ais1 aes aisis aeses }
```

A natural pitch is entered as a simple note name; no suffix is required. A natural sign will be printed when needed to cancel the effect of an earlier accidental or key signature.

```
\relative c'' { a4 aes a2 }
```

Quarter tones may be added; the following is a series of Cs with increasing pitches:

```
\relative c'' { ceseh1 ces ceh c cih cis cisih }
```

Normally accidentals are printed automatically, but you may also print them manually. A reminder accidental can be forced by adding an exclamation mark ! after the pitch. A cautionary accidental (i.e., an accidental within parentheses) can be obtained by adding the question mark ? after the pitch.

```
\relative c'' { cis cis cis! cis? c c c! c? }
```

Accidentals on tied notes are only printed at the beginning of a new system:

```
\relative c'' {
  cis1- 1-
  \break
}
Chapter 1: Musical notation

Selected Snippets

**Hiding accidentals on tied notes at the start of a new system**

This shows how to hide accidentals on tied notes at the start of a new system.

```
\relative c'' {
 \override Accidental.hide-tied-accidental-after-break = ##t
 cis1- cis-
 \break
 cis
}
```

**Preventing extra naturals from being automatically added**

In accordance with traditional typesetting rules, a natural sign is printed before a sharp or flat if a previous double sharp or flat on the same note is canceled. To change this behavior to contemporary practice, set the `extraNatural` property to `f` in the Staff context.

```
\relative c'' {
 a\es\es\es\es a \es a \es a
 \set Staff.extraNatural = ##f
 a\es\es\es\es a
}
```

See also

- Notation Reference: [Automatic accidentals], page 29, [Annotational accidentals (*musica ficta*)], page 504, [Note names in other languages], page 8.
- Snippets: Section “Pitches” in *Snippets*. 
Chapter 1: Musical notation


Known issues and warnings

There are no generally accepted standards for denoting quarter tone accidentals, so LilyPond’s symbols do not conform to any standard.

Note names in other languages

There are predefined sets of note and accidental names for various other languages. Selecting the note name language is usually done at the beginning of the file; the following example is written using Italian note names:

\language "italiano"

\relative {
  do' re mi sib
}

\n\n\n
The available languages and the note names they define are:

<table>
<thead>
<tr>
<th>Language</th>
<th>Note Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>nederlands</td>
<td>c d e f g a bes b</td>
</tr>
<tr>
<td>català or</td>
<td>do re mi fa sol la sib si</td>
</tr>
<tr>
<td>catalan</td>
<td></td>
</tr>
<tr>
<td>deutsch</td>
<td>c d e f g a b h</td>
</tr>
<tr>
<td>english</td>
<td>c d e f g a bf/b-flat b</td>
</tr>
<tr>
<td>espanol or</td>
<td>do re mi fa sol la sib si</td>
</tr>
<tr>
<td>espanol</td>
<td></td>
</tr>
<tr>
<td>fran¸ais</td>
<td>do re mi fa sol la sib si</td>
</tr>
<tr>
<td>italiano</td>
<td>do re mi fa sol la sib si</td>
</tr>
<tr>
<td>norsk</td>
<td>c d e f g a b h</td>
</tr>
<tr>
<td>português or</td>
<td>do re mi fa sol la sib si</td>
</tr>
<tr>
<td>portugues</td>
<td></td>
</tr>
<tr>
<td>suomi</td>
<td>c d e f g a b h</td>
</tr>
<tr>
<td>svenska</td>
<td>c d e f g a b h</td>
</tr>
<tr>
<td>vlaams</td>
<td>do re mi fa sol la sib si</td>
</tr>
</tbody>
</table>

In addition to note names, accidental suffixes may also vary depending on the language:

<table>
<thead>
<tr>
<th>Language</th>
<th>sharp</th>
<th>flat</th>
<th>double sharp</th>
<th>double flat</th>
</tr>
</thead>
<tbody>
<tr>
<td>nederlands</td>
<td>is</td>
<td>es</td>
<td>isis</td>
<td>eses</td>
</tr>
<tr>
<td>català or</td>
<td>d/s</td>
<td>b</td>
<td>dd/ss</td>
<td>bb</td>
</tr>
<tr>
<td>catalan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>deutsch</td>
<td>is</td>
<td>es</td>
<td>isis</td>
<td>eses</td>
</tr>
<tr>
<td>english</td>
<td>s/-sharp</td>
<td>f/-flat</td>
<td>ss/x/-sharpsharp</td>
<td>ff/-flatflat</td>
</tr>
<tr>
<td>espanol or</td>
<td>s</td>
<td>b</td>
<td>ss/x</td>
<td>bb</td>
</tr>
<tr>
<td>espanol</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>fran¸ais</td>
<td>d</td>
<td>b</td>
<td>dd/x</td>
<td>bb</td>
</tr>
<tr>
<td>italiano</td>
<td>d</td>
<td>b</td>
<td>dd</td>
<td>bb</td>
</tr>
<tr>
<td>norsk</td>
<td>iss/is</td>
<td>ess/es</td>
<td>ississ/isis</td>
<td>essess/eses</td>
</tr>
</tbody>
</table>
In Dutch, German, Norwegian, and Finnish, aes is contracted to as; in Dutch and Norwegian, however, both forms are accepted by LilyPond. Exactly the same holds for es and ees, aeses and ases, and finally eeses and eses.

In German and Finnish, LilyPond additionally provides the more frequent form asas for ases.

```
\relative c' { a2 as e es a ases e eses }
```

Some music uses microtones whose alterations are fractions of a ‘normal’ sharp or flat. The following table lists note name suffixes for quarter tone accidentals; here the prefixes semi- and sesqui- respectively mean ‘half’ and ‘one and a half’.

<table>
<thead>
<tr>
<th>Language</th>
<th>semi-sharp</th>
<th>semi-flat</th>
<th>sesqui-sharp</th>
<th>sesqui-flat</th>
</tr>
</thead>
<tbody>
<tr>
<td>nederlands</td>
<td>ih</td>
<td>eh</td>
<td>isih</td>
<td>eseh</td>
</tr>
<tr>
<td>catalán or catalan</td>
<td>qd/qs</td>
<td>qb</td>
<td>tqa/tsq</td>
<td>tqa/tqb</td>
</tr>
<tr>
<td>deutsch</td>
<td>ih</td>
<td>eh</td>
<td>isih</td>
<td>eseh</td>
</tr>
<tr>
<td>english</td>
<td>qs</td>
<td>qf</td>
<td>tqa/tqs</td>
<td>tqa/tqb</td>
</tr>
<tr>
<td>espanol or espanol</td>
<td>cs</td>
<td>cb</td>
<td>tcs</td>
<td>tcb</td>
</tr>
<tr>
<td>français</td>
<td>sd</td>
<td>sb</td>
<td>dsd</td>
<td>bsb</td>
</tr>
<tr>
<td>italiano</td>
<td>sd</td>
<td>sb</td>
<td>dsd</td>
<td>bsb</td>
</tr>
<tr>
<td>norsk</td>
<td>ih</td>
<td>eh</td>
<td>issih/issih</td>
<td>eseh/eseh</td>
</tr>
<tr>
<td>português or português</td>
<td>sqt</td>
<td>bqt</td>
<td>stqt</td>
<td>btqt</td>
</tr>
<tr>
<td>suomi</td>
<td>ih</td>
<td>eh</td>
<td>isih</td>
<td>eseh</td>
</tr>
<tr>
<td>svenska</td>
<td>ih</td>
<td>eh</td>
<td>issih</td>
<td>eseh</td>
</tr>
<tr>
<td>vlaams</td>
<td>hk</td>
<td>hb</td>
<td>kkk</td>
<td>bbb</td>
</tr>
</tbody>
</table>

In German, there are similar name contractions for microtones as with normal pitches described above.

```
\language "deutsch"
```

```
\relative c' { asah2 eh aih eisih }
```

Most languages presented here are commonly associated with Western classical music, also referred to as Common Practice Period. However, alternate pitches and tuning systems are also supported: see Section 2.10.1 [Common notation for non-Western music], page 525.
1.1.2 Changing multiple pitches

This section discusses how to modify pitches.

Octave checks

In relative mode, it is easy to forget an octave changing mark. Octave checks make such errors easier to find by displaying a warning and correcting the octave if a note is found in an unexpected octave.

To check the octave of a note, specify the absolute octave after the $=$ symbol. This example will generate a warning (and change the pitch) because the second note is the absolute octave $d''$ instead of $d'$ as indicated by the octave correction.

```
\relative {
 c''2 d='
e2 f
}
```

The octave of notes may also be checked with the \octaveCheck controlpitch command. controlpitch is specified in absolute mode. This checks that the interval between the previous note and the controlpitch is within a fourth (i.e., the normal calculation of relative mode). If this check fails, a warning is printed. While the previous note itself is not changed, future notes are relative to the corrected value.

```
\relative {
 c''2 d
 \octaveCheck c'
e2 f
}
```

Compare the two bars below. The first and third \octaveCheck checks fail, but the second one does not fail.

```
\relative {
 c''4 f g f
 c4
 \octaveCheck c'
f
 \octaveCheck c'
g
}
```
\octaveCheck c' 
f 
}\ 
\[ \begin{array}{cccc} 
\text{g} & \text{f} & \text{e} & \text{d} \\
\text{c} & \text{b} & \text{a} & \text{g} \\
\text{f} & \text{e} & \text{d} & \text{c} \\
\text{g} & \text{f} & \text{e} & \text{d} \\
\end{array} \]

See also
Snippets: Section “Pitches” in Snippets.
Internals Reference: Section “RelativeOctaveCheck” in Internals Reference.

Transpose
A music expression can be transposed with \transpose. The syntax is
\transpose frompitch topitch musicexpr
This means that musicexpr is transposed by the interval between the pitches frompitch and
\topitch: any note with pitch frompitch is changed to \topitch and any other note is transposed
by the same interval. Both pitches are entered in absolute mode.

Note: Music inside a \transpose block is absolute unless a \relative is included in the block.

Consider a piece written in the key of D-major. It can be transposed up to E-major; note
that the key signature is automatically transposed as well.
\transpose d e \{ 
\relative \{ 
\key d \major 
d'4 fis a d 
\} 
\} 
\[ \begin{array}{cccc} 
\text{g} & \text{f} & \text{e} & \text{d} \\
\text{c} & \text{b} & \text{a} & \text{g} \\
\text{f} & \text{e} & \text{d} & \text{c} \\
\text{g} & \text{f} & \text{e} & \text{d} \\
\end{array} \]

If a part written in C (normal concert pitch) is to be played on the A clarinet (for which an
A is notated as a C and thus sounds a minor third lower than notated), the appropriate part
will be produced with:
\transpose a c' \{ 
\relative \{ 
\key c \major 
c'4 d e g 
\} 
\} 
\[ \begin{array}{cccc} 
\text{g} & \text{f} & \text{e} & \text{d} \\
\text{c} & \text{b} & \text{a} & \text{g} \\
\text{f} & \text{e} & \text{d} & \text{c} \\
\text{g} & \text{f} & \text{e} & \text{d} \\
\end{array} \]

Note that we specify \key c \major explicitly. If we do not specify a key signature, the notes
will be transposed but no key signature will be printed.
\transpose distinguishes between enharmonic pitches: both \transpose c cis or \transpose c des will transpose up a semitone. The first version will print sharps and the notes will remain on the same scale step, the second version will print flats on the scale step above.

\begin{verbatim}
\definemusic { \relative { c' d e f } \\
new Staff { \\
  \transpose c cis { \music }
  \transpose c des { \music }
}
\end{verbatim}

\transpose may also be used in a different way, to input written notes for a transposing instrument. The previous examples show how to enter pitches in C (or concert pitch) and typeset them for a transposing instrument, but the opposite is also possible if you for example have a set of instrumental parts and want to print a conductor’s score. For example, when entering music for a B-flat trumpet that begins on a notated E (concert D), one would write:

\musicInBflat = { e4 ... } \\
\transpose f c' { \transpose c bes, \musicInBflat }

To print this music in F (e.g., rearranging to a French horn) you could wrap the existing music with another \transpose:

\musicInBflat = { e4 ... } \\
\transpose f c' { \transpose c bes, \musicInBflat }

For more information about transposing instruments, see [Instrument transpositions], page 27.

Selected Snippets

**Transposing pitches with minimum accidentals ("Smart" transpose)**

This example uses some Scheme code to enforce enharmonic modifications for notes in order to have the minimum number of accidentals. In this case, the following rules apply:

- Double accidentals should be removed
- B sharp -> C
- E sharp -> F
- C flat -> B
- F flat -> E

In this manner, the most natural enharmonic notes are chosen.

```scheme
#(define (naturalize-pitch p)
 (let ((\ly:pitch-octave p)\)
 (\ly:pitch-alteration p)\)
 ;; alteration, a, in quarter tone steps,\)
 ;; for historical reasons\)
 (\ly:pitch-notename p))\)
 (cond\)
 ((and (> a 1) (or (eqv? n 6) (eqv? n 2)))\)
 (set! a (- a 2))\)
 (set! n (+ n 1))\)
 ((and (< a -1) (or (eqv? n 0) (eqv? n 3))))\)
```

(set! a (+ a 2))
(set! n (- n 1)))

(cond
  ((> a 2) (set! a (- a 4)) (set! n (+ n 1)))
  ((< a -2) (set! a (+ a 4)) (set! n (- n 1)))
  (if (< n 0) (begin (set! o (- o 1)) (set! n (+ n 7))))
  (if (> n 6) (begin (set! o (+ o 1)) (set! n (- n 7))))
  (ly:make-pitch o n (/ a 4)))

#:define (naturalize music)
(let ((es (ly:music-property music 'elements))
      (e (ly:music-property music 'element))
      (p (ly:music-property music 'pitch)))
  (if (pair? es)
      (ly:music-set-property! music 'elements
           (map naturalize es)))
  (if (ly:music? e)
      (ly:music-set-property! music 'element
           (naturalize e)))
  (if (ly:pitch? p)
      (begin
           (set! p (naturalize-pitch p))
           (ly:music-set-property! music 'pitch p)))

music = \relative c' \{ c4 d e g \}

\score {
\new Staff {
\transpose c ais { \music }
\naturalizeMusic \transpose c ais { \music }
\transpose c deses { \music }
\naturalizeMusic \transpose c deses { \music }
} 
\layout { }
}

See also
Notation Reference: [Instrument transpositions], page 27, [Inversion], page 14, [Modal transformations], page 15, [Relative octave entry], page 2, [Retrograde], page 14.

Snippets: Section “Pitches” in Snippets.

Known issues and warnings
The relative conversion will not affect \transpose, \chordmode or \relative sections in its argument. To use relative mode within transposed music, an additional \relative must be placed inside \transpose.

Triple accidentals will not be printed if using \transpose. An ‘enharmonically equivalent’ pitch will be used instead (e.g., d-flat rather than e-triple-flat).

Inversion
A music expression can be inverted and transposed in a single operation with:

\inversion around-pitch to-pitch musicexpr

The musicexpr is inverted interval by interval around around-pitch, and then transposed so that around-pitch is mapped to to-pitch.

\begin{verbatim}
\relative { c' d e f }
\new Staff {\music \inversion d' d' \music \inversion d' ees' \music}
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{inversion.png}
\caption{Inversion example}
\end{figure}

\begin{note}
Motifs to be inverted should be expressed in absolute form or be first converted to absolute form by enclosing them in a \relative block.
\end{note}

See also
Notation Reference: [Modal transformations], page 15, [Retrograde], page 14, [Transpose], page 11.

Retrograde
A music expression can be reversed to produce its retrograde:

\begin{verbatim}
\relative { c'8. ees16( fis8. a16 b8.) gis16 f8. d16 }
\new Staff {\music \retrograde \music}
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{retrograde.png}
\caption{Retrograde example}
\end{figure}

\begin{note}
\retrograde is a rather simple tool. Since many events are ‘mirrored’ rather than exchanged, tweaks and directional modifiers for opening spanners need to be added at the matching closing.
\end{note}
spanners: ~( needs to be ended by ~), every \< or \cresc needs to be ended by \! or \endcr, every \> or \decr needs to be ended by \enddecr. Property-changing commands/overrides with a lasting effect will likely cause surprises.

**See also**
Notation Reference: [Inversion], page 14, [Modal transformations], page 15, [Transpose], page 11.

**Modal transformations**
In a musical composition that is based on a scale, a motif is frequently transformed in various ways. It may be transposed to start at different places in the scale or it may be inverted around a pivot point in the scale. It may also be reversed to produce its retrograde, see [Retrograde], page 14.

**Note:** Any note that does not lie within the given scale will be left untransformed.

**Modal transposition**
A motif can be transposed within a given scale with:

```
\modalTranspose from-pitch to-pitch scale motif
```

The notes of motif are shifted within the scale by the number of scale degrees given by the interval between to-pitch and from-pitch:

\[
diabeticScale = \relative \{ c' d e f g a b \}
\]

\[
\text{motif} = \relative \{ c'8 d e f g a b c \}
\]

```
\new Staff {
 \motif
 \modalTranspose c f \diabeticScale \motif
 \modalTranspose c b, \diabeticScale \motif
}
```

![Image of modal transposition]

An ascending scale of any length and with any intervals may be specified:

\[
pentatonicScale = \relative \{ ges aes bes des ees \}
\]

\[
\text{motif} = \relative \{ ees'8 des,4 <ges' bes,> \langle ges bes,> \}
\]

```
\new Staff {
 \motif
 \modalTranspose ges ees' \pentatonicScale \motif
}
```

![Image of pentatonic scale]

When used with a chromatic scale \modalTranspose has a similar effect to \transpose, but with the ability to specify the names of the notes to be used:

\[
\text{chromaticScale} = \relative \{ c' cis d dis e f fis g gis a ais b \}
\]

motif = \relative { c'8 d e f g a b c } \\
\new Staff { 
\motif \\
\transpose c f \motif \\
\modalTranspose c f \chromaticScale \motif 
}

Modal inversion

A motif can be inverted within a given scale around a given pivot note and transposed in a single operation with:

\modalInversion around-pitch to-pitch scale motif

The notes of motif are placed the same number of scale degrees from the around-pitch note within the scale, but in the opposite direction, and the result is then shifted within the scale by the number of scale degrees given by the interval between to-pitch and around-pitch.

So to simply invert around a note in the scale use the same value for around-pitch and to-pitch:

octatonicScale = \relative { ees' f fis gis a b c d } 
motif = \relative { c'8. ees16 fis8. a16 b8. gis16 f8. d16 } \\
\new Staff { 
\motif \\
\modalInversion fis' fis' \octatonicScale \motif 
}

To invert around a pivot between two notes in the scale, invert around one of the notes and then transpose by one scale degree. The two notes specified can be interpreted as bracketing the pivot point:

scale = \relative { c' g' } 
motive = \relative { c' c g' c, } \\
\new Staff { 
\motive \\
\modalInversion c' g' \scale \motive 
}

The combined operation of inversion and retrograde produce the retrograde inversion:

octatonicScale = \relative { ees' f fis gis a b c d } 
motif = \relative { c'8. ees16 fis8. a16 b8. gis16 f8. d16 }
\new Staff {
\motif
\retrograde \modalInversion c’ c’ \octatonicScale \motif
}

See also
Notation Reference: [Inversion], page 14, [Retrograde], page 14, [Transpose], page 11.

1.1.3 Displaying pitches
This section discusses how to alter the output of pitches.

Clef
Without any explicit command, the default clef for LilyPond is the treble (or G) clef.
\[ \text{c’2 c’} \]

However, the clef can be changed by using the \clef command and an appropriate clef name. Middle C is shown in each of the following examples.

\[ \text{\clef treble c’2 c’} \]
\[ \text{\clef alto c’2 c’} \]
\[ \text{\clef tenor c’2 c’} \]
\[ \text{\clef bass c’2 c’} \]

For the full range of possible clef names see Section A.11 [Clef styles], page 759.

Specialized clefs, such as those used in Ancient music, are described in [Mensural clefs], page 499, and [Gregorian clefs], page 508. Music that requires tablature clefs is discussed in [Default tablatures], page 397, and [Custom tablatures], page 415.

For mixing clefs when using cue notes, see the \cueClef and \cueDuringWithClef commands in [Formatting cue notes], page 247.

By adding \_8 or \^8 to the clef name, the clef is transposed one octave down or up respectively, and \_15 and \^15 transpose by two octaves. Other integers can be used if required. Clef names containing non-alphabetic characters must be enclosed in quotes

\[ \text{\clef treble c’2 c’} \]
\[ \text{\clef "treble_8"} \]
Optional octavation can be obtained by enclosing the numeric argument in parentheses or brackets:
\clef "treble_{8}"
c'\sharp\sharp c'\shortdownarrow
\clef "bass^[15]"
c'\flat c'\shortdownarrow

The pitches are displayed as if the numeric argument were given without parentheses/brackets.

By default, a clef change taking place at a line break causes the new clef symbol to be printed at the end of the previous line, as a ‘warning clef’, as well as at the beginning of the next. This warning clef can be suppressed.
\clef treble c'\flat c' \break
\clef bass c'\flat c' \break
\set Staff.explicitClefVisibility = #end-of-line-invisible
\clef alto c'\sharp c' \break
\unset Staff.explicitClefVisibility
\clef bass c'\flat c'

\clef treble c'\flat c' \break
\clef bass c'\flat c' \break
\set Staff.explicitClefVisibility = #end-of-line-invisible
\clef alto c'\sharp c' \break
\unset Staff.explicitClefVisibility
\clef bass c'\flat c'

\clef treble c'\flat c' \break
\clef bass c'\flat c' \break
\set Staff.explicitClefVisibility = #end-of-line-invisible
\clef alto c'\sharp c' \break
\unset Staff.explicitClefVisibility
\clef bass c'\flat c'

\clef treble c'\flat c' \break
\clef bass c'\flat c' \break
\set Staff.explicitClefVisibility = #end-of-line-invisible
\clef alto c'\sharp c' \break
\unset Staff.explicitClefVisibility
\clef bass c'\flat c'

\clef treble c'\flat c' \break
\clef bass c'\flat c' \break
\set Staff.explicitClefVisibility = #end-of-line-invisible
\clef alto c'\sharp c' \break
\unset Staff.explicitClefVisibility
\clef bass c'\flat c'

\clef treble c'\flat c' \break
\clef bass c'\flat c' \break
\set Staff.explicitClefVisibility = #end-of-line-invisible
\clef alto c'\sharp c' \break
\unset Staff.explicitClefVisibility
\clef bass c'\flat c'
By default, a clef that has previously been printed will not be reprinted if the same \clef command is issued again and will be ignored. The command \set Staff.forceClef = ##t changes this behavior.

```
\clef treble
c'1
\clef treble
c'1
\set Staff.forceClef = ##t
c'1
\clef treble
c'1
```

To be more precise, it is not the \clef command itself that prints a clef. Instead, it sets or changes a property of the Clef_engraver, which then decides by its own whether to display a clef or not in the current staff. The forceClef property overrides this decision locally to reprint a clef once.

When there is a manual clef change, the glyph of the changed clef will be smaller than normal. This behavior can be overridden.

```
\clef "treble"
c'1
\clef "bass"
c'1
\clef "treble"
c'1
\override Staff.Clef.full-size-change = ##t
\clef "bass"
c'1
\clef "treble"
c'1
\revert Staff.Clef.full-size-change
\clef "bass"
c'1
\clef "treble"
c'1
```

**Selected Snippets**

**Tweaking clef properties**

Changing the clef glyph, its position, or the ottavation does not change the position of subsequent notes on the staff. To get key signatures on their correct staff lines, middleCClefPosition must also be specified, with positive or negative values moving middle C up or down respectively, relative to the staff’s center line.

For example, \clef "treble_8" is equivalent to setting the clefGlyph, clefPosition (the vertical position of the clef itself on the staff), middleCPosition, and clefTransposition. Note
that when any of these properties (except middleCPosition) are changed a new clef symbol is printed.

The following examples show the possibilities when setting these properties manually. On the first line, the manual changes preserve the standard relative positioning of clefs and notes, whereas on the second line, they do not.

\begin{verbatim}
{ % The default treble clef
  \key f \major
c'1
  % The standard bass clef
  \set Staff.clefGlyph = "clefs.F"
  \set Staff.clefPosition = #2
  \set Staff.middleCPosition = #6
  \set Staff.middleCClefPosition = #6
  \key g \major
  c'1
  % The baritone clef
  \set Staff.clefGlyph = "clefs.C"
  \set Staff.clefPosition = #4
  \set Staff.middleCPosition = #4
  \set Staff.middleCClefPosition = #4
  \key f \major
  c'1
  % The standard choral tenor clef
  \set Staff.clefGlyph = "clefs.G"
  \set Staff.clefPosition = #-2
  \set Staff.clefTransposition = #-7
  \set Staff.middleCPosition = #1
  \set Staff.middleCClefPosition = #1
  \key f \major
  c'1
  % A non-standard clef
  \set Staff.clefPosition = #0
  \set Staff.clefTransposition = #0
  \set Staff.middleCPosition = #-4
  \set Staff.middleCClefPosition = #-4
  \key g \major
  c'1
  \break

  % The following clef changes do not preserve
  % the normal relationship between notes, key signatures
  % and clefs:

  \set Staff.clefGlyph = "clefs.F"
  \set Staff.clefPosition = #2
  c'1
  \set Staff.clefGlyph = "clefs.G"
  c'1
  \set Staff.clefGlyph = "clefs.C"
  c'1
  \set Staff.clefTransposition = #7
} 
\end{verbatim}
c'1
\set Staff.clefTransposition = #0
\set Staff.clefPosition = #0
c'
%

Return to the normal clef:
\set Staff.middleCPosition = #0
\set Staff.clefPosition = #0
c'

\paper { tagline = ##f }

\new Staff \with { 
\override Clef.color = #(universal-color 'blue)
\override ClefModifier.color = #(universal-color 'vermilion)
}
\clef "treble_8" c'4

See also
Notation Reference: [Mensural clefs], page 499, [Gregorian clefs], page 508, [Default tablatures], page 397, [Custom tablatures], page 415, [Formatting cue notes], page 247.

Installed Files: scm/parser-clef.sc.

Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “Clef_engraver” in Internals Reference, Section “Clef” in Internals Reference, Section “ClefModifier” in Internals Reference, Section “clef-interface” in Internals Reference.

Known issues and warnings
Ottavation numbers attached to clefs are treated as separate grobs. So any \override done to the Clef will also need to be applied, as a separate \override, to the ClefModifier grob.

\new Staff \with { 
\override Clef.color = #(universal-color 'blue)
\override ClefModifier.color = #(universal-color 'vermilion)
}
\clef "treble_8" c'4

Key signature
Note: New users are sometimes confused about accidentals and key signatures. In LilyPond, note names are the raw input; key signatures and clefs determine how this raw input is displayed. An unaltered note like c means ‘C natural’, regardless of the key signature or clef. For more information, see Section “Pitches and key signatures” in Learning Manual.

The key signature indicates the tonality in which a piece is played. It is denoted by a set of alterations (flats or sharps) at the start of the staff. The key signature may be altered:

\key pitch mode

Here, mode should be \major or \minor to get a key signature of pitch-major or pitch-minor, respectively. You may also use the standard mode names, also called church modes: \ionian, \dorian, \phrygian, \lydian, \mixolydian, \aeolian, and \locrian.

\relative {  
\key g \major  
 fis'1  
 f  
 fis  
}

\relative {  
\key c \freygish c'4 des e f  
\bar "||" \key d \freygish d es fis g  
}

Additional modes can be defined, by listing the alterations for each scale step when the mode starts on C.

\relative {  
\key c \freygish  
 c'4 des e f  
\bar "||" \key d \freygish d es fis g  
}

Accidentals in the key signature may be printed in octaves other than their traditional positions, or in multiple octaves, by using the flat-positions and sharp-positions properties of KeySignature. Entries in these properties specify the range of staff positions where accidentals will be printed. If a single position is specified in an entry, the accidentals are placed within the octave ending at that staff position.

\override Staff.KeySignature.flat-positions = #'((-5 . 5))  
\override Staff.KeyCancellation.flat-positions = #'((-5 . 5))  
\clef bass \key es \major es g bes d'  
\clef treble \bar "||" \key es \major es' g' bes' d''

\override Staff.KeySignature.sharp-positions = #'(2)  
\bar "||" \key b \major b' fis' b'2
Selected Snippets

**Preventing natural signs from being printed when the key signature changes**

When the key signature changes, natural signs are automatically printed to cancel any accidentals from previous key signatures. This may be prevented by setting to \texttt{f} the \texttt{printKeyCancellation} property in the \texttt{Staff} context.

```latex
\relative c' {
 \key d \major
 a4 b cis d
 \key g \minor
 a4 bes c d
 \set Staff.printKeyCancellation = ##f
 \key d \major
 a4 b cis d
 \key g \minor
 a4 bes c d
}
```

**Non-traditional key signatures**

The commonly used \texttt{\key} command sets the \texttt{keyAlterations} property, in the \texttt{Staff} context. To create non-standard key signatures, set this property directly. The format of this command is a list:

```latex
\set Staff.keyAlterations = #`(((octave . step) . alter) ((octave . step) . alter) ...)
```

where, for each element in the list, octave specifies the octave (0 being the octave from middle C to the B above), step specifies the note within the octave (0 means C and 6 means B), and alter is ,\texttt{SHARP}, ,\texttt{FLAT}, ,\texttt{DOUBLE-SHARP} etc.

Alternatively, using the more concise format for each item in the list (\texttt{step} ,\texttt{alter}) specifies the same alteration holds in all octaves.

For microtonal scales where a “sharp” is not 100 cents, alter refers to the alteration as a proportion of a 200-cent whole tone.

```latex
\include "arabic.ly"
\relative do' {
 \set Staff.keyAlterations = #`((0 ,SEMI-FLAT)
 (1 ,SEMI-FLAT)
 (2 ,FLAT)
 (5 ,FLAT)
 (6 ,SEMI-FLAT))
\set Staff.extraNatural = ##f
 re reb \dwn reb read
 dod dob dosd \dwn dob |
```
Ottava brackets

Ottava brackets introduce an extra transposition of an octave for the staff:

\relative c' {  
a2 b  
\ottava #-2  
a2 b  
\ottava #-1  
a2 b  
\ottava #0  
a2 b  
\ottava #1  
a2 b  
\ottava #2  
a2 b  
}

By default, only a number is printed at the start of the bracket. That setting may be changed to include an abbreviated ordinal, either in superscript or in normal letters (the latter was formerly used by default); the default bold font weight of these characters may also be altered, as explained in [Selecting font and font size], page 297.

The following example demonstrates various options, as well as how to go back to the current default behavior:

\relative c' {  
\ottava #1  
a'2 b  
\ottava #2  
a'2 b  
}

See also


Snippets: Section “Pitches” in Snippets.

Internals Reference: Section “KeyChangeEvent” in Internals Reference, Section “Key_engraver” in Internals Reference, Section “Key_performer” in Internals Reference, Section “KeyCancellation” in Internals Reference, Section “KeySignature” in Internals Reference, Section “key-signature-interface” in Internals Reference.
\bar "||"
\set Staff.ottavationMarkups = #ottavation-ordinals
\ottava #1
a,2 b
\ottava #2
a'2 b
\bar "||"
\override Staff.OttavaBracket.font-series = #'normal
\set Staff.ottavationMarkups = #ottavation-simple-ordinals
\ottava #1
a,2 b
\ottava #2
a'2 b
\bar "||"
\revert Staff.OttavaBracket.font-series
\set Staff.ottavationMarkups = #ottavation-numbers
\ottava #1
a,2 b
\ottava #2
a'2 b
\}

\begin{music}
\begin{ StaffStaff }
\ottava #1\ottava #2
\end{StaffStaff}
\end{music}

Selected Snippets

Changing ottava text

Internally, \ottava sets the properties ottavation (for example, to 8va or 8vb) and middleCPosition. To override the text of the bracket, set ottavation after invoking \ottava.

Short text is especially useful when a brief ottava is used.

\begin{music}
\begin{ StaffStaff }
\ottava #1\ottava #0\ottava #1
\end{StaffStaff}
\end{music}

Adding an ottava marking to a single voice

If you have more than one voice on the staff, setting octavation in one voice transposes the position of notes in all voices for the duration of the ottava bracket. If the octavation is only
intended to apply to one voice, the Ottava_spanner_engraver should be moved to Voice context.

\layout {
  \context {
    \Staff
    \remove Ottava_spanner_engraver
  }
  \context {
    \Voice
    \consists Ottava_spanner_engraver
  }
}

{\clef bass
  \<< {<g d'>1- q2 <c' e'>} \\$
    \{ r2.
      \ottava -1
      <b,,, b,,,>4 - |
      q2
      \ottava 0
      <c e>2
    }
  >>
}

\relative c' {
  \override Staff.OttavaBracket.stencil = \#ly:line-spanner::print
  \override Staff.OttavaBracket.bound-details = \#`((left . ((Y . 0)
      (attach-dir . ,LEFT)
      (padding . 0)
      (stencil-align-dir-y . ,CENTER))))
    (right . ((Y . 5.0) ; Change the number here
      (padding . 0)
      (attach-dir . ,RIGHT)
      (text . ,(make-draw-dashed-line-markup
        (cons 0 -1.2)))))
  \override Staff.OttavaBracket.left-bound-info = \#ly:horizontal-line-spanner::calc-left-bound-info-and-text
  \override Staff.OttavaBracket.right-bound-info =

\textbf{Modifying the Ottava spanner slope}

It is possible to change the slope of the Ottava spanner.
Instrument transpositions

When typesetting scores that involve transposing instruments, some parts can be typeset in a different pitch than the concert pitch. In these cases, the key of the transposing instrument should be specified; otherwise the MIDI output and cues in other parts will produce incorrect pitches. For more information about quotations, see [Quoting other voices], page 243.

\transposition pitch

The pitch to use for \transposition should correspond to the real sound heard when a c' written on the staff is played by the transposing instrument. This pitch is entered in absolute mode, so an instrument that produces a real sound which is one tone higher than the printed music should use \transposition d'. \transposition should only be used if the pitches are not being entered in concert pitch.

Here are a few notes for violin and B-flat clarinet where the parts have been entered using the notes and key as they appear in each part of the conductor’s score. The two instruments are playing in unison.

\new GrandStaff <<
\new Staff = "violin" \with {
  instrumentName = "Vln"
  midiInstrument = "violin"
}
\relative c' { % not strictly necessary, but a good reminder
  \transposition c'
  \key c \major
  g4( c8) r c r c4
}
\new Staff = "clarinet" \with {
  instrumentName = \markup { Cl (B\flat) }
  midiInstrument = "clarinet"
}
\relative c' {
The `\transposition` may be changed during a piece. For example, a clarinetist may be required to switch from an A clarinet to a B-flat clarinet.

```
flute = \relative c' {
 \key f \major
 \cueDuring "clarinet" #DOWN {
 R1 ^\markup\tiny \"clarinet\"
 c4 f e d
 R1 ^\markup\tiny \"clarinet\"
 }
}
clarinet = \relative c' {
 \key aes \major
 \transposition a
 aes4 bes c des
 R1\^\markup \{ muta in B\flat \}
 \key g \major
 \transposition bes
 d2 g,
}
\addQuote "clarinet" \clarinet
```

See also


Notation Reference: [Quoting other voices], page 243, [Transpose], page 11.

Snippets: Section “Pitches” in Snippets.
Chapter 1: Musical notation

Automatic accidentals

There are many different conventions on how to typeset accidentals. LilyPond provides a function to specify which accidental style to use. This function is called as follows:

\new Staff <<
    \accidentalStyle voice
    {...}
>>

The accidental style normally applies to the current Staff (with the exception of the styles choral, piano and piano-cautionary, which are explained below). Optionally, the function can take a second argument that determines in which scope the style should be changed. For example, to use the same style in all staves of the current StaffGroup, use:

\accidentalStyle StaffGroup.voice

The following accidental styles are supported. To demonstrate each style, we use the following example:

musicA = {
<<
    \relative {
        cis'8 fis, bes4 <a cis>8 f bis4 |
        cis2. <c, g'>4 |
    }
    \relative {
        ais'2 cis, |
        fis8 b a4 cis2 |
    }
>>
}

musicB = {
    \clef bass
    \new Voice {
        \voiceTwo \relative {
            <fis a cis>8[ <fis a cis>
            \change Staff = up
            cis' cis
            \change Staff = down
            <fis, a> <fis a>]
        }
    }
}

\new PianoStaff {
    <<
        \new Staff = "up" {
            \accidentalStyle default
        }
}
\musicA
}
\new Staff = "down" {
  \accidentalStyle default
  \musicB
}
}

\begin{center}
\includegraphics[width=\textwidth]{example.png}
\end{center}

Note that the last lines of this example can be replaced by the following, as long as the same accidental style should be used in both staves.

\new PianoStaff {
  <<
    \new Staff = "up" {
      \%\% change the next line as desired:
      \accidentalStyle Score.default
      \musicA
    }
    \new Staff = "down" {
      \musicB
    }
  >>
}

\new PianoStaff {
  <<
    \new Staff = "up" {
      \%\% change the next line as desired:
      \accidentalStyle Score.default
      \musicA
    }
    \new Staff = "down" {
      \musicB
    }
  >>
}

\begin{center}
\includegraphics[width=\textwidth]{example.png}
\end{center}

This is the default typesetting behavior. It corresponds to eighteenth-century common practice: accidentals are remembered to the end of the measure in which they occur and only in their own octave. Thus, in the example below, no natural signs are printed before the $b$ in the second measure or the last $c$:

\begin{center}
\includegraphics[width=\textwidth]{example.png}
\end{center}

\begin{center}
\includegraphics[width=\textwidth]{example.png}
\end{center}

The normal behavior is to remember the accidentals at Staff-level. In this style, however, accidentals are typeset individually for each voice. Apart from that, the rule is similar to default.

As a result, accidentals from one voice do not get canceled in other voices, which is often an unwanted result: in the following example, it is hard to determine whether the second $a$ should be played natural or sharp. The \texttt{voice} option should therefore be used only if the voices are to be read solely by individual musicians. If the staff
is to be used by one musician (e.g., a conductor or in a piano score) then modern or modern-cautionary should be used instead.

This rule corresponds to the common practice in the twentieth century. It omits some extra natural signs, which were traditionally prefixed to a sharp following a double sharp, or a flat following a double flat. The modern rule prints the same accidentals as default, with two additions that serve to avoid ambiguity: after temporary accidentals, cancellation marks are printed also in the following measure (for notes in the same octave) and, in the same measure, for notes in other octaves. Hence the naturals before the \( b \) and the \( c \) in the second measure of the upper staff:

This rule is similar to modern, but the ‘extra’ accidentals are printed as cautionary accidentals (with parentheses). They can also be printed at a different size by overriding AccidentalCautionary’s font-size property.

This rule is used for multi-voice accidentals to be read both by musicians playing one voice and musicians playing all voices. Accidentals are typeset for each voice, but they are canceled across voices in the same Staff. Hence, the \( a \) in the last measure is canceled because the previous cancellation was in a different voice, and the \( d \) in the lower staff is canceled because of the accidental in a different voice in the previous measure:
modern-voice-cautionary
This rule is the same as modern-voice, but with the extra accidentals (the ones not typeset by voice) typeset as cautionaries. Even though all accidentals typeset by default are typeset with this rule, some of them are typeset as cautionaries.

```
piano
```
This rule reflects twentieth-century practice for piano notation. Its behavior is very similar to modern style, but here accidentals also get canceled across the staves in the same GrandStaff or PianoStaff, hence all the cancellations of the final notes. This accidental style applies to the current GrandStaff or PianoStaff unless qualified with a second argument.

```
piano-cautionary
```
This is the same as piano but with the extra accidentals typeset as cautionaries.

```
choral
```
This rule is a combination of the modern-voice and the piano style. It shows all accidentals required for singers that only follow their own voice, as well as additional accidentals for readers that follow all voices of an entire ChoirStaff simultaneously. This accidental style applies to the current ChoirStaff unless qualified with a second argument.

```
choral-cautionary
```
This is the same as choral but with the extra accidentals typeset as cautionaries.
This rule reproduces a common practice in contemporary music: accidentals are printed like with modern, but they are printed again if the same note appears later in the same measure – except if the note is immediately repeated.

This rule is similar to neo-modern, but the ‘extra’ accidentals are printed as cautionary accidentals (with parentheses). They can also be printed at a different size by overriding AccidentalCautionary’s font-size property.

This rule is used for multi-voice accidentals to be read both by musicians playing one voice and musicians playing all voices. Accidentals are typeset for each voice as with neo-modern, but they are canceled across voices in the same Staff.

This rule is similar to neo-modern-voice, but the extra accidentals are printed as cautionary accidentals.
dodecaphonic

This rule reflects a practice introduced by composers at the beginning of the 20th century, in an attempt to abolish the hierarchy between natural and non-natural notes. With this style, every note gets an accidental sign, including natural signs.

![Example of dodecaphonic notation]

dodecaphonic-no-repeat

Like with the dodecaphonic accidental style every note gets an accidental sign by default, but accidentals are suppressed for pitches immediately repeated within the same staff.

![Example of dodecaphonic-no-repeat notation]

dodecaphonic-first

Similar to the dodecaphonic accidental style every pitch gets an accidental sign, but only the first time it is encountered in a measure. Accidentals are only remembered for the actual octave but throughout voices.

![Example of dodecaphonic-first notation]

teaching

This rule is intended for students, and makes it easy to create scale sheets with automatically created cautionary accidentals. Accidentals are printed like with modern, but cautionary accidentals are added for all sharp or flat tones specified by the key signature, except if the note is immediately repeated.

![Example of teaching notation]

no-reset

This is the same as default but with accidentals lasting ‘forever’ and not only within the same measure:

![Example of no-reset notation]
This is the opposite of no-reset: Accidentals are not remembered at all – and hence all accidentals are typeset relative to the key signature, regardless of what came before in the music.

See also
Snippets: Section “Pitches” in Snippets.
Internals Reference: Section “Accidental” in Internals Reference, Section “Accidental_engraver” in Internals Reference, Section “GrandStaff” in Internals Reference, Section “PianoStaff” in Internals Reference, Section “Staff” in Internals Reference, Section “AccidentalSuggestion” in Internals Reference, Section “AccidentalPlacement” in Internals Reference, Section “accidental-suggestion-interface” in Internals Reference.

Known issues and warnings
Simultaneous notes are not considered in the automatic determination of accidentals; only previous notes and the key signature are taken into account. Forcing accidentals with ‘!’ or ‘?’ may be required when the same note name occurs simultaneously with different alterations, as in <f! fis!>.

\relative c' <<
{ fis8 g } \\n{ f! f }
>>

A more sophisticated solution is given in LSR snippet 1172 (https://lsr.di.unimi.it/LSR/Item?id=1172).

In alternative endings, cautionary cancellation should be based on the previous played measure, but it is based on the previous printed measure. In the following example, the natural c in the second alternative does not need a natural sign:
The following workaround can be used: define a function that locally changes the accidental style to forget:

```lilypond
forget = #(define-music-function (music) (ly:music?) #{
 \accidentalStyle forget
 \accidentalStyle modern
} { \accidentalStyle modern
 \time 2/4
 \repeat volta 2 {
 c'2
 }
 \alternative {
 \volta 1 { cis' }
 \volta 2 { \forget c' }
 }
}
```

Alternate accidental glyphs

Non-Western and ancient notation systems have their own accidentals. The glyphs are controlled through the `alterationGlyphs` property of the `Staff` context and similar context types. The predefined values for this property are listed in Section A.10 [Accidental glyph sets], page 758.

```lilypond
layout {
 context {
 Staff
 alterationGlyphs = #alteration-vaticana-glyph-name-alist
 }
}
```

The property may also be set to a custom associative list mapping alterations to glyph names. Alterations are given as fractions in tones. Glyphs are listed at [Accidental glyphs], page 745.

```lilypond
layout {
 context {
 Staff
 alterationGlyphs =
 #'((-1/2 . "accidentals.flat.arrowdown")
 (0 . "accidentals.natural.arrowup")
 (1/2 . "accidentals.sharp.arrowup")
)
 }
}```
The padding-pairs property of KeySignature and KeyCancellation objects is an associative list mapping pairs of glyphs to the padding that should be added between these glyphs in key signatures.

```
layout {
context {
  Staff
  alterationGlyphs =
    #'((-1/2 . "accidentals.flat.arrowdown")
       (0 . "accidentals.natural.arrowup")
       (1/2 . "accidentals.sharp.arrowup"))

override KeySignature.padding-pairs =
  #'(("accidentals.sharp.arrowup" . "accidentals.sharp.arrowup")
     . 0.25)
  (("accidentals.flat.arrowdown" . "accidentals.flat.arrowdown")
     . 0.3))

override KeyCancellation.padding-pairs =
  #'(("accidentals.natural.arrowup" . "accidentals.natural.arrowup")
     . 0.7))
}
}

{ 
  \key cis \major
ces' c' 
  \key ces \major
cis'
}
```

See also

Notation Reference: Section A.10 [Accidental glyph sets], page 758, [Accidental glyphs], page 745.

Ambitus

The term *ambitus* (pl. ambitus) denotes a range of pitches for a given voice in a part of music. It may also denote the pitch range that a musical instrument is capable of playing. Ambitus are printed on vocal parts so that performers can easily determine if it matches their capabilities.
Ambitus are denoted at the beginning of a piece near the initial clef. The range is graphically specified by two note heads that represent the lowest and highest pitches. Accidentals are only printed if they are not part of the key signature.

\layout {
 \context {
 \Voice
 \consists Ambitus_engraver
 }
}

\relative {
 aes' c e2
 cis,1
}

Selected Snippets

Adding ambitus per voice

Ambitus can be added per voice. In this case, the ambitus must be moved manually to prevent collisions.

\new Staff <<
\new Voice \with {
 \consists "Ambitus_engraver"
} \relative c' {
 \override Ambitus.X-offset = #2.0
 \voiceOne
 c4 a d e
 f1
}
\new Voice \with {
 \consists "Ambitus_engraver"
} \relative c' {
 \voiceTwo
 es4 f g as
 b1
}
>>

Ambitus with multiple voices

Adding the Ambitus_engraver to the Staff context creates a single ambitus per staff, even in the case of staves with multiple voices.

\new Staff \with {
 \consists "Ambitus_engraver"
Changing the ambitus gap

It is possible to change the default gap between the ambitus noteheads and the line joining them.

\layout {
 \context {
 \Voice
 \consists "Ambitus_ engraver"
 }
}

\new Staff {
 \time 2/4
 \override AmbitusLine.gap = #0
 c''4 g''
}

\new Staff {
 \time 2/4
 \override AmbitusLine.gap = #1
 c''4 g''
}

\new Staff {
 \time 2/4
 \override AmbitusLine.gap = #1.5
 c''4 g''
}
Chapter 1: Musical notation

Ambitus after key signature

By default, ambitus are positioned at the left of the clef. The \ambitusAfter function allows for changing this placement. Syntax is \ambitusAfter grob-interface (see Graphical Object Interfaces (http://lilypond.org/doc/v2.22/Documentation/internals/graphical-object-interfaces) for a list of possible values for grob-interface.)

A common use case is printing the ambitus between key signature and time signature.

\new Staff \with {
 \consists Ambitus_engraver
} \relative {
 \ambitusAfter key-signature
 \key d \major
 es'8 g bes cis d2
}

See also

Snippets: Section “Pitches” in Snippets.

Known issues and warnings

There is no collision handling in the case of multiple per-voice ambitus.

1.1.4 Note heads

This section suggests ways of altering note heads.
Special note heads

The appearance of note heads may be altered:

\relative {c''4 b}
\override NoteHead.style = #'cross
c4 b
\revert NoteHead.style
a b
\override NoteHead.style = #'harmonic
a b
\revert NoteHead.style
c4 d e f

To see all note head styles, see Section A.9 [Note head styles], page 757.

The cross style is used to represent a variety of musical intentions. The following generic predefined commands modify the note head in both staff and tablature contexts and can be used to represent any musical meaning:

\relative {c''4 b}
\xNotesOn a b c4 b
\xNotesOff c4 d
c4 e f

The music function form of this predefined command may be used inside and outside chords to generate crossed note heads in both staff and tablature contexts:

\relative {c''4 b}
\xNote { e f }
c b < g \xNote c f > b

c4 d e f

As synonyms for \xNote, \xNotesOn and \xNotesOff, \deadNote, \deadNotesOn and \deadNotesOff can be used. The term dead note is commonly used by guitarists.

There is also a similar shorthand for diamond shapes:

\relative c'' {<c f\harmonic>2 <d a'\harmonic>4 <c g'\harmonic> f\harmonic}
Predefined commands
\harmonic, \xNotesOn, \xNotesOff, \xNote.

See also
Snippets: Section “Pitches” in Snippets.

Notation Reference: Section A.9 [Note head styles], page 757, [Chorded notes], page 195,
[Indicating harmonics and dampened notes], page 444.

Internals Reference: Section “note-event” in Internals Reference, Section
“Note_heads_engraver” in Internals Reference, Section “Ledger_line_engraver” in Internals
Reference, Section “NoteHead” in Internals Reference, Section “LedgerLineSpanner”
in Internals Reference, Section “note-head-interface” in Internals Reference, Section
“ledger-line-spanner-interface” in Internals Reference.

Easy notation note heads
The ‘easy play’ note head includes a note name inside the head. It is used in music for beginners.
To make the letters readable, it should be printed in a large font size. To print with a larger
font, see Section 4.2.2 [Setting the staff size], page 618.

\relative c' {
 \easyHeadsOn
 c2 e4 f
 g1
 \easyHeadsOff
 c,1
}
Chapter 1: Musical notation

See also
Notation Reference: Section 4.2.2 [Setting the staff size], page 618.
Snippets: Section “Pitches” in Snippets.
Shape note heads

In shape note head notation, the shape of the note head corresponds to the harmonic function of a note in the scale. This notation was popular in nineteenth-century American song books. Shape note heads can be produced in Sacred Harp, Southern Harmony, Funk (Harmonia Sacra), Walker, and Aiken (Christian Harmony) styles:

\relative c'' {
 \aikenHeads
c, d e f g₂ a₁ b₁ c \break
\aikenThinHeads
c,₄ d e f g₂ a₁ b₁ c \break
\southernHarmonyHeads
c,₄ d e f g₂ a₁ b₁ c \break
\funkHeads
c,₄ d e f g₂ a₁ b₁ c \break
\walkerHeads
c,₄ d e f g₂ a₁ b₁ c \break
}

Shapes are typeset according to the step in the scale, where the base of the scale is determined by the \key command. When writing in a minor key, the scale step can be determined from the relative major:

\relative c'' {
 \key a \minor
\aikenHeads
a b c d e2 f g1 a \break
\aikenHeadsMinor
a,4 b c d e2 f g1 a \break
\aikenThinHeadsMinor
a,4 b c d e2 f g1 a \break
\sacredHarpHeadsMinor
a,2 b c d \break
\southernHarmonyHeadsMinor
a2 b c d \break
\funkHeadsMinor
a2 b c d \break
\walkerHeadsMinor
a2 b c d \break

Predefined commands
\aikenHeads, \aikenHeadsMinor, \aikenThinHeads, \aikenThinHeadsMinor, \funkHeads, \funkHeadsMinor, \sacredHarpHeads, \sacredHarpHeadsMinor, \southernHarmonyHeads, \southernHarmonyHeadsMinor, \walkerHeads, \walkerHeadsMinor.

Selected Snippets
Aiken head thin variant noteheads

Aiken head white notes get harder to read at smaller staff sizes, especially with ledger lines. Losing interior white space makes them appear as quarter notes.

\score {
\{\aikenHeads
 c''2 a' c' a
%
% Switch to thin-variant noteheads
\set shapeNoteStyles = ##(doThin reThin miThin
 faThin sol laThin tiThin)
 c'' a' c' a
\}
}\noteheads.s1doThin
\noteheads.s1laThin
\noteheads.s1do
\noteheads.s1doThin
\noteheads.s1la
\clefs.G/timesig.C44
\noteheads.s1la
\clefs.F/timesig.C44
\noteheads.u1fa
\noteheads.d1fa

Direction of merged 'fa' shape note heads

Using property NoteCollision.fa-merge-direction, the direction of “fa” shape note heads (“fa”, “faThin”, etc.) can be controlled independently of the stem direction if two voices with the same pitch and different stem directions are merged. If this property is not set, the “down” glyph variant is used.

{\clef bass
 << {\aikenHeads
 f2
 \override Staff.NoteCollision.fa-merge-direction = #UP
 f2 }
 \ \ {\aikenHeads
 f2
 f2 }
 >>
}\noteheads.u1fa
\noteheads.d1fa
\clefs.F/timesig.C44
\noteheads.u1fa

Applying note head styles depending on the step of the scale

The shapeNoteStyles property can be used to define various note head styles for each step of the scale (as set by the key signature or the tonic property).

This property requires a set of symbols, which can be purely arbitrary (geometrical expressions such as triangle, cross, and xcircle are allowed) or based on old American engraving tradition (some latin note names are also allowed).

That said, to imitate old American song books, there are several predefined note head styles available through shortcut commands such as \aikenHeads or \sacredHarpHeads.

This example shows different ways to obtain shape note heads, and demonstrates the ability to transpose a melody without losing the correspondence between harmonic functions and note head styles.
fragment = {
 \key c \major
 c2 d
e2 f
g2 a
b2 c
}

\new Staff {
 \transpose c d
 \relative c' {
 \set shapeNoteStyles = ##(do re mi fa
 #f la ti)
 }
 \break
 \relative c' {
 \set shapeNoteStyles = ##(cross triangle fa #f
 mensural xcircle diamond)
 }
}

To see all note head styles, see Section A.9 [Note head styles], page 757.

See also
Snippets: Section “Pitches” in Snippets.
 Notation Reference: Section A.9 [Note head styles], page 757.
 Internals Reference: Section “note-event” in Internals Reference, Section
 “Note_heads_engraver” in Internals Reference, Section “NoteHead” in Internals Reference,
 Section “note-head-interface” in Internals Reference.

Improvisation
Improvisation is sometimes denoted with slashed note heads, where the performer may choose
any pitch but should play the specified rhythm. Such note heads can be created:
\new Voice \with {
 \consists Pitch_squash_engraver
} \relative {
 e'''8 e g a a16(bes) a8 g
 \improvisationOn
e8 ~
 2 - 8 f4 f8 ~
2
\improvisationOff
a16(bes) a8 g e
}\}

Predefined commands
\improvisationOn, \improvisationOff.

See also
Snippets: Section “Pitches” in Snippets.
Internals Reference: Section “Pitch_squash_ engraver” in Internals Reference, Section “Voice” in Internals Reference, Section “RhythmicStaff” in Internals Reference.

1.2 Rhythms
This section discusses rhythms, rests, durations, beaming and bars.

1.2.1 Writing rhythms

Durations

The durations of notes are entered using numbers and dots. The number entered is based on the reciprocal value of the length of the note. For example, a quarter note is designated using the numerical value of 4 as it is a 1/4 note, a half note using 2, an eighth using 8 and so on. Durations as short as 1024 notes can be entered but shorter values, while possible, can only be entered as beamed notes. Also see Section 1.2.4 [Beams], page 92.

For notes longer than a whole use the \longa – double breve – and \breve commands. A note with the duration of a quadruple breve is possible using the \maxima command but is only supported within ancient music notation. See Section 2.9 [Ancient notation], page 495.

\begin{verbatim}
\relative {
 \time 8/1
 c'' \longa c \breve 1 2 4 8 16 32 64 128 128
}
\end{verbatim}

Here are the same durations with automatic beaming turned off.

\begin{verbatim}
\relative {
 \time 8/1
 \autoBeamOff
 c'' \longa c \breve 1 2 4 8 16 32 64 128 128
}
\end{verbatim}

Isolated durations – durations without a pitch – that occur within a music sequence will take their pitch from the preceding note or chord.

\begin{verbatim}
\relative {
 \time 8/1
 c'' \longa \breve 1 2 4 8 16 32 64 128 128
}
\end{verbatim}

Isolated pitches – pitches without a duration – that occur within a music sequence will take their duration from the preceding note or chord. If there is no preceding duration, then default for the note is always 4, a quarter note.

\begin{verbatim}
\relative { a' a a2 a a4 a a1 a }
\end{verbatim}
Place a dot (.) after the duration to obtain ‘dotted’ note lengths. Double-dotted notes are specified by appending two dots, and so on.

\relative { a'4 b c4. b8 a4. b4.. c8. }

To avoid clashing with staff lines, dots on notes are normally moved up. In polyphonic situations however, they can be placed, manually, above or below the staff as required. See Section 5.4.1 [Direction and placement], page 698.

Some note durations cannot be represented using just numbers and dots but only by tying two or more notes together. See [Ties], page 58.

To specify durations that align the syllables of lyrics and notes together see Section 2.1 [Vocal music], page 314.

Notes can also be spaced proportionately to their duration, see Section 4.5.6 [Proportional notation], page 653.

Predefined commands
\autoBeamOn, \autoBeamOff, \dotsUp, \dotsDown, \dotsNeutral.

Selected Snippets

Alternative breve notes

Breve notes are also available with two vertical lines on each side of the notehead instead of one line and in baroque style.

\relative c' {
 \time 4/2
 c\breve |
 \override Staff.NoteHead.style = #'altdefault
 b\breve
 \override Staff.NoteHead.style = #'baroque
 b\breve
 \revert Staff.NoteHead.style
 a\breve
}

Changing the number of augmentation dots per note

The number of augmentation dots on a single note can be changed independently of the dots placed after the note.

\relative c' {
 c4.. a16 r2 |
 \override Dots.dot-count = #4
\override Dots.dot-count = #0
c4.. a16 r2 |
\revert Dots.dot-count
c4.. a16 r2 |

\relative { a'2 \tuplet 3/2 { b4 4 4 }
c4 c \tuplet 3/2 { b4 a g }
}

\relative { g'2 r8 \tuplet 3/2 8 { cis16 d e e f g g f e }
}

Known issues and warnings
While there is no fundamental limit to rest durations (longest or shortest), there is a limit to the number of glyphs possible so only rests between 1024 and \maxima may be printed.

Tuplets
Tuplets are made from a music expression with the \tuplet command, multiplying the speed of the music expression by a fraction:

\tuplet fraction { music }

The fraction’s numerator will be printed over or under the notes, optionally with a bracket. The most common tuplets are triplets (3 notes played within the duration normally allowed for 2).
Tuplet brackets may be manually placed above or below the staff:

\begin{verbatim}
relative {
 \tupletUp \tuplet 3/2 { c''4 d e }
 \tupletNeutral \tuplet 3/2 { c8 d e }
 \tupletDown \tuplet 3/2 { f,8 g a }
 \tupletNeutral \tuplet 3/2 { f8 g a }
}
\end{verbatim}

Tuplets may be nested:

\begin{verbatim}
relative {
 \autoBeamOff
 c''4 \tuplet 5/4 { f8 e f \tuplet 3/2 { e[f g] } } f4
}
\end{verbatim}

Modifying nested tuplets which begin at the same musical moment must be done with \tweak; see Section 5.3.6 [\tweak and \single], page 689.

Tuplet brackets may be replaced with slurs, as is preferred in many older editions:

\begin{verbatim}
relative {
 \tuplet 3/2 4 {
 \override TupletBracket.tuplet-slur = ##t
c'4 e8 d4 f8
 \override TupletBracket.bracket-visibility = ##t
e f g f e d
 } c1
}
\end{verbatim}

By default, a bracket is only printed if all of the notes it spans are not beamed together; in some cases (for example with slurs, as in the example above) it may be preferable to change that behavior, through the bracket-visibility property as detailed in one of the following snippets.

More generally, either or both the TupletBracket and TupletNumber objects may be hidden or shown as explained in Section 5.4.7 [Visibility of objects], page 708; however, a more flexible way of modifying the duration of notes without printing a tuplet bracket is also introduced in [Scaling durations], page 57.
Predefined commands
\tupletUp, \tupletDown, \tupletNeutral.

Selected Snippets

Entering several tuplets using only one \tuplet command

The property tupletSpannerDuration sets how long each of the tuplets contained within the brackets after \tuplet should last. Many consecutive tuplets can then be placed within a single \tuplet expression, thus saving typing.

There are several ways to set tupletSpannerDuration. The command \tupletSpan sets it to a given duration, and clears it when instead of a duration \default is specified. Another way is to use an optional argument with \tuplet.

```lilypond
\relative c' {
  \time 2/4
  \tupletSpan 4
  \tuplet 3/2 { c8"\tupletSpan 4" c c c c c }
  \tuplet 3/2 \default
  \tuplet 3/2 { c8"\tupletSpan \default" c c c c c }
  \tuplet 3/2 4 { c8"\tuplet 3/2 4 {...}" c c c c c }
}
```

Changing the tuplet number

By default, only the numerator of the tuplet number is printed over the tuplet bracket, i.e., the numerator of the argument to the \tuplet command.

Alternatively, num:den of the tuplet number may be printed, or the tuplet number may be suppressed altogether.

```lilypond
\relative c' {
  \tuplet 3/2 { c8 c c c }
  \tuplet 3/2 { c8 c c c }
  \override TupletNumber.text = #tuplet-number::calc-fraction-text
  \tuplet 3/2 { c8 c c c }
  \omit TupletNumber
  \tuplet 3/2 { c8 c c c }
}
```

Non-default tuplet numbers

LilyPond also provides formatting functions to print tuplet numbers different than the actual fraction, as well as to append a note value to the tuplet number or tuplet fraction.

```lilypond
\relative c' {
  \once \override TupletNumber.text =
```
Controlling tuplet bracket visibility

The default behavior of tuplet-bracket visibility is to print a bracket unless there is a beam of the same length as the tuplet.

To control the visibility of tuplet brackets, set the property 'bracket-visibility to either #t (always print a bracket), 'if-no-beam (only print a bracket if there is no beam) or #f (never print a bracket). The latter is in fact equivalent to omitting the TupletBracket object altogether from the printed output.

```plaintext
Music = \relative c' { 
    \tuplet 3/2 { c16 [ d e ] f8 }
    \tuplet 3/2 { c8 d e }
    \tuplet 3/2 { c4 d e }
}
```
Printing tuplet brackets on the note head side

Whichever option you choose for controlling the tuplet bracket visibility, it will show or hide the tuplet bracket irrespectively of tuplet bracket placement (stem side or note head side). However, when placing the tuplet bracket on the note head side some authors recommend always printing the tuplet bracket. The option visible-over-note-heads can be used to achieve this.

\begin{music}
\relative c' {
 \tupletNeutral \tuplet 3/2 { c16[d e } f8]
 \tupletUp \tuplet 3/2 { c8 d e }
}\end{music}

\new Voice {
 \relative c' {
 \time 2/4
 \tupletBracket.visible-over-note-heads = ##t
 \override Score.TextMark.non-musical = ##f
 \textMark \markup "default" \music
 }
}
Permitting line breaks within beamed tuplets

This artificial example shows how both manual and automatic line breaks may be permitted within a beamed tuplet. Note that such off-beat tuplets have to be beamed manually.

\layout {
 \context {
 \Voice
 \override TupletBracket.bracket-visibility = #'if-no-beam
 \textMark \markup \typewriter "'if-no-beam" \music
 }
}

\relative c'' {
\repeat unfold 5 { \tuplet 3/2 { c [b a] } }
% Insert a manual line break within a tuplet
\tuplet 3/2 { c [b \bar "" \break a] }
\repeat unfold 5 { \tuplet 3/2 { c [b a] } }
 c8
}

See also

Notation Reference: Section 5.4.1 [Direction and placement], page 698, Section 5.4.7 [Visibility of objects], page 708, [Time administration], page 139, [Scaling durations], page 57, Section 5.3.6 \[\tweak and \single\], page 689, [Polymetric notation], page 84.

Snippets: Section “Rhythms” in Snippets.

Scaling durations

The duration of single notes, rests or chords may be multiplied by a fraction \(\frac{N}{M} \) by appending \(*\frac{N}{M}\) (or \(*N\) if \(M\) is 1) to the duration. Factors may also be added by using Scheme expressions evaluating to a number or musical length like \(*\#(\text{ly:music-length } \text{music})\). This is convenient for scaling a duration of ‘1’ to let a note or multi-measure rest stretch to a length derived from a music variable.

Adding a factor will not affect the appearance of the notes or rests produced, but the altered duration will be used in calculating the position within the measure and setting the duration in the MIDI output. Multiplying factors may be combined like \(*L*\frac{M}{N}\). Factors are part of the duration: if a duration is not specified for subsequent notes, the default duration taken from the preceding note will include any scaling factor.

In the following example, the first three notes take up exactly two beats, but no triplet bracket is printed.

```latex
\relative { 
  \time 2/4 
  % Alter durations to triplets 
  a'4*2/3 gis a 
  % Normal durations 
  a4 a 
  % Double the duration of chord 
  <a d>4*2 
  % Duration of quarter, appears like sixteenth 
  b16*4 c4 
}
```

The duration of spacer rests may also be modified by a multiplier. This is useful for skipping many measures, e.g., s1*23.

Longer stretches of music may be compressed by a fraction in the same way, as if every note, chord or rest had the fraction as a multiplier. This leaves the appearance of the music unchanged but the internal duration of the notes will be multiplied by the given scale factor, usually \(\frac{\text{num}}{\text{den}}\). Here is an example showing how music can be compressed and expanded:

```latex
\relative { 
  \time 2/4 
  % Normal durations 
  <c'' a>4 c8 a 
  % Scale music by \(*\frac{2}{3}\) 
  \scaleDurations 2/3 { 
    <c a f>4. c8 a f 
  } 
  % Scale music by \(*2\) 
  \scaleDurations 2 { 
    <c' a>4 c8 b 
  } 
}
```
One application of this command is in polymetric notation, see [Polymetric notation], page 84.

See also
Notation Reference: [Tuplets], page 51, [Invisible rests], page 64, [Polymetric notation], page 84.

Snippets: Section “Rhythms” in Snippets.

Known issues and warnings
The calculation of the position within a measure must take into account all the scaling factors applied to the notes within that measure and any fractional carry-out from earlier measures. This calculation is carried out using rational numbers. If an intermediate numerator or denominator in that calculation exceeds 2^{30} the execution and typesetting will stop at that point without indicating an error.

Ties
A tie connects two adjacent note heads of the same pitch. The tie in effect extends the duration of a note.

Ties that connect notes to nothing are called laissez vibrer articulation; see [Ties], page 59, for the \laissezVibrer command. Ties that connect nothing to notes (as needed in seconda volta sections, for example), can be entered with the \repeatTie command; see [Ties], page 59.

Note: Ties should not be confused with slurs, which indicate articulation, or phrasing slurs, which indicate musical phrasing. A tie is just a way of extending a note duration, similar to the augmentation dot.

A tie is entered by appending a tilde symbol (~) to the first of each pair of notes being tied. This indicates that the note should be tied to the following note, which must be at the same pitch.

\begin{verbatim}
{ a'2- 4- 16 r r8 }
\end{verbatim}

A tie is entered by appending a tilde symbol (~) to the first of each pair of notes being tied. This indicates that the note should be tied to the following note, which must be at the same pitch.

Ties can make use of the ‘last explicit pitch’ interpretation of isolated durations:

\begin{verbatim}
{ a'2- 4- 16 r r8 }
\end{verbatim}

Ties are used either when the note crosses a bar line, or when dots cannot be used to denote the rhythm. Ties should also be used when note values cross larger subdivisions of the measure:

\begin{verbatim}
\relative {
 r8 c'4.- 4 r4 |
 r8"not" c2- 8 r4
}
\end{verbatim}
If you need to tie many notes across bar lines, it may be easier to use automatic note splitting, see [Automatic note splitting], page 88. This mechanism automatically splits long notes, and ties them across bar lines.

When a tie is applied to a chord, all note heads whose pitches match are connected. When no note heads match, no ties will be created. Chords may be partially tied by placing the ties inside the chord.

\relative c' {
 <c e g>2- 2 |
 <c e g>4- <c e g c>
 <c- e g- b> <c e g b> |
}

When a tie continues into alternative endings, you have to specify the repeated tie as follows:

\relative {
 \repeat volta 2 { c'' g <c e>2- }
 \alternative {
 % the following note is tied normally
 \volta 1 { <c e>2. r4 }
 % the following note has a repeated tie
 \volta 2 { <c e>2\repeatTie d4 c }
 }
}

L.v. ties (*laissez vibrer*) indicate that notes must not be damped at the end. It is used in notation for piano, harp and other string and percussion instruments. They can be entered as follows:

<\laissezVibrer

Ties may be made to curve up or down manually; see Section 5.4.1 [Direction and placement], page 698.

Ties may be made dashed, dotted, or a combination of solid and dashed.

\relative c' {
 \tieDotted
c2- 2
 \tieDashed
c2- 2
 \tieHalfDashed
c2- 2
 \tieHalfSolid
Custom dash patterns can be specified:

```
relative c' {
  tieDashPattern #0.3 #0.75
  c2- 2
  tieDashPattern #0.7 #1.5
  c2- 2
  tieSolid
  c2- 2
}
```

Dash pattern definitions for ties have the same structure as dash pattern definitions for slurs. For more information about complex dash patterns, see [Slurs], page 153.

Override whiteout and layer layout properties of objects that should cause a gap in ties.

```
relative {
  override Tie.layer = #-2
  override Staff.TimeSignature.layer = #-1
  override Staff.KeySignature.layer = #-1
  override Staff.TimeSignature.whiteout = ##t
  override Staff.KeySignature.whiteout = ##t
  b'2 b-
  time 3/4
  key a \major
  b r4
}
```

Predefined commands

\tieUp, \tieDown, \tieNeutral, \tieDotted, \tieDashed, \tieDashPattern,
\tieHalfDashed, \tieHalfSolid, \tieSolid.

Selected Snippets

Using ties with arpeggios

Ties are sometimes used to write out arpeggios. In this case, two tied notes need not be consecutive. This can be achieved by setting the tieWaitForNote property to #t. The same

```
c2- 2
\tieSolid
\tieDashPattern
\tieSolid
\tieDashPattern
\tieSolid
\tieDashPattern
\tieSolid
```

```
c2- 2
\tieDashPattern
\tieSolid
\tieDashPattern
\tieSolid
```
feature is also useful, for example, to tie a tremolo to a chord, but in principle, it can also be used for ordinary consecutive notes.

\relative {c' {\set tieWaitForNote = ##t \grace {c16[e g]} <c, e g>2 \repeat tremolo {c32[c']1 e8 ~ c a f <e' c a f>2 \tieUp c8 ~ a \tieDown \tieDotted g8 ~ c g2}}

\relative c' {
 \set tieWaitForNote = ##t
 \grace {c16[e g]} <c, e g>2
 \repeat tremolo {c32[c']1 e8 ~ c a f <e' c a f>2
 \tieUp c8 ~ a
 \tieDown \tieDotted g8 ~ c g2
}

Engraving ties manually

Ties may be engraved manually by changing the tie-configuration property of the TieColumn object. The first number indicates the distance from the center of the staff in half staff-spaces, and the second number indicates the direction (1 = up, -1 = down).

Note that LilyPond makes a distinction between exact and inexact values for the first number. If using an exact value (i.e., either an integer or a fraction like \(\frac{1}{4} 5\)), the value serves as a rough vertical position that gets further tuned by LilyPond to make the tie avoid staff lines. If using an inexact value like a floating point number, it is taken as the vertical position without further adjustments.

\relative c' {
 <c e g>2 <c e g>
 \override TieColumn.tie-configuration = #'((0.0 . 1) (-2.0 . 1) (-4.0 . 1))
 <c e g>2 <c e g>
 \override TieColumn.tie-configuration = #'((0 . 1) (-2 . 1) (-4 . 1))
 <c e g>2 <c e g>
}

See also

Notation Reference: [Slurs], page 153, [Automatic note splitting], page 88.

Snippets: Section “Expressive marks” in Snippets, Section “Rhythms” in Snippets.

Known issues and warnings

Switching staves when a tie is active will not produce a slanted tie.

Changing clefs or ottavations during a tie is not really well-defined. In these cases, a slur may be preferable.

1.2.2 Writing rests

Rests are entered as part of the music in music expressions.

Rests

Rests are entered like notes with the note name r. Durations longer than a whole rest use the following predefined commands:

\new Staff {
% These two lines are just to prettify this example
\time 16/1
\omit Staff.TimeSignature
% Print a maxima rest, equal to four breves
r\maxima
% Print a longa rest, equal to two breves
r\longa
% Print a breve rest
r\breve
r1 r2 r4 r8 r16 r32 r64 r128
}

Whole measure rests, centered in the middle of the measure, must be entered as multi-measure rests. They can be used for a single measure as well as many measures and are discussed in [Full measure rests], page 66.

To explicitly specify a rest’s vertical position, write a note followed by \rest. A rest of the duration of the note will be placed at the staff position where the note would appear. This allows for precise manual formatting of polyphonic music, since the automatic rest collision formatter will not move these rests.

\relative { a'4\rest d4\rest }

Selected Snippets

Rest styles

Rests may be used in various styles.

restsA = {
 r\maxima r\longa r\breve r1 r2 r4 r8 r16 s32
 s64 s128 s256 s512 s1024 s1024
}

restsB = {
 r\maxima r\longa r\breve r1 r2 r4 r8 r16 r32
See also

Notation Reference: [Full measure rests], page 66.
Known issues and warnings

There is no fundamental limit to rest durations (both in terms of longest and shortest), but the number of glyphs is limited: there are rests from 1024th to maxima (8 \times \text{whole}).

Invisible rests

There are two forms of invisible rests: the spacer rest named ‘s’, and the \skip command. The spacer rest is a note that does not produce output. Like any other note or rest, its duration sets the default duration of following notes.

```
relative c'' { 
c4 c s c |
s2 c |
}
```

Also like other notes and rests, it implicitly causes Staff and Voice contexts to be created if none exist.

```
{ s1 s s }
```

Spacer rests are available only in note mode and chord mode. In other situations, for example, when entering lyrics, the command \skip is used to skip a musical moment. The \skip command accepts either an explicit duration or a piece of music as an argument and skips the duration of the argument. The duration of the \skip is ignored if lyrics derive their durations from the notes in an associated melody through \addlyrics or \lyricsto.

```
<< 
{ a'2 \skip2 a'2 a'2 
}
\new Lyrics 
\lyricmode { 
foo2 \skip 1 bla2 
}
}
>>
```

When the argument to \skip is music, the default duration of the following note is implicitly set by the last note of the argument. However, to preserve backward compatibility with the
legacy implementation of \texttt{\textbackslash skip}, a numeric duration argument does not affect the duration of the subsequent note.

\texttt{
\begin{verbatim}
<<
{
\texttt{\textbackslash repeat unfold 12 \{ \texttt{a'4} \}}
}
{
\texttt{a'4 \textbackslash skip 2 a' |}
\texttt{ a'4 \textbackslash skip \{ a'8 a' a' a' \} a' a' |}
\texttt{ s2 a'}
}
>>
\end{verbatim}
}

The \texttt{\textbackslash skip} command preserves the effect of an enclosing \texttt{unfoldRepeats} command, unlike the \texttt{skip-of-length} Scheme function.

\texttt{MyCadenza = \texttt{\textbackslash fixed c' \{
\texttt{\textbackslash repeat volta 2 \{
\texttt{d8 e f g g4 f4}
\}}
\}}

\texttt{music = <<
\texttt{\new Staff \{
\texttt{MyCadenza}
\texttt{c'1}
\}}
\texttt{\new Staff \{
\#(skip-of-length MyCadenza)
\texttt{c'1}
\}}
\texttt{\new Staff \{
\texttt{\textbackslash skip MyCadenza}
\texttt{c'1}
\}}
>>

\texttt{unfoldRepeats music}
The \skip command simply skips musical time; it creates no output of any kind.

\% This is valid input, but does nothing
\{ \skip 1 \skip 1 \skip 1 \}

See also

Notation Reference: [Hidden notes], page 263, Section 5.4.7 [Visibility of objects], page 708.
Snippets: Section “Rhythms” in Snippets.
Internals Reference: Section “SkipMusic” in Internals Reference.

Known issues and warnings

Because duration and music arguments to the \skip command affect the duration of subsequent music differently, it is good practice to provide an explicit duration for the music immediately following the command.

Full measure rests

Rests for one or more full measures are entered like notes with the note name uppercase 'R'. Their duration is entered identically to the duration notation used for notes, including the ability to use duration multipliers, as explained in [Scaling durations], page 57:

\% Rest measures contracted to single measure
\compressMMRests \{
 R1*4
 R1*2\^4
 R1*4
 b'2"Tutti" b'4 a'4
\}

The example above also demonstrates how to compress multiple empty measures, as explained in [Compressing empty measures], page 252.

The duration of a multi-measure rest must always be equal to the length of one or several measures. Therefore, some time signatures require the use of augmentation dots or fractions:

\compressMMRests \{
 \time 2/4
 R1 | R2 |
 \time 3/4

A full-measure rest is printed as either a whole or breve rest, centered in the measure, depending on the time signature.

Markups can be added to multi-measure rests.

Note: Markups and articulations attached to multi-measure rests are MultiMeasureRestText and MultiMeasureRestScript types, not TextScript and Script. Overrides must be directed to the correct object, or they will be ignored. See the following example:

% This fails, as the wrong object name is specified
\override TextScript.padding = #5
\override Script.color = #blue
R1^"wrong"
R1\fermata
% This is the correct object name to be specified
\override MultiMeasureRestText.padding = #5
\override MultiMeasureRestScript.color = #blue
Chapter 1: Musical notation

When a multi-measure rest immediately follows a \partial setting, resulting bar-check warnings may not be displayed.

Predefined commands
\textLengthOn, \textLengthOff, \compressMMRests.

Selected Snippets

Multi-measure rest length control
Multi-measure rests have length according to their total duration which is under the control of MultiMeasureRest.space-increment. Note that the default value is 2.0.

\relative c' {
\compressEmptyMeasures
R1*2 R1*4 R1*64 R1*16
\override Staff.MultiMeasureRest.space-increment = 2.5
R1*2 R1*4 R1*64 R1*16
}

Positioning multi-measure rests
Unlike ordinary rests, there is no predefined command to change the staff position of a multi-measure rest symbol of either form by attaching it to a note. However, in polyphonic music multi-measure rests in odd-numbered and even-numbered voices are vertically separated.

The positioning of multi-measure rests can be controlled as follows:
\relative c' {
 % Multi-measure rests by default are set under the fourth line
 R1
 % They can be moved using an override
 \override MultiMeasureRest.staff-position = #-2
 R1
 \override MultiMeasureRest.staff-position = #0
 R1
 \override MultiMeasureRest.staff-position = #2
 R1
 \override MultiMeasureRest.staff-position = #3
 R1
\override MultiMeasureRest.staff-position = #6
R1
\revert MultiMeasureRest.staff-position
\break

% In two Voices, odd-numbered voices are under the top line
<< { R1 } \ \ { a1 } >>
% Even-numbered voices are under the bottom line
<< { a1 } \ \ { R1 } >>
% Multi-measure rests in both voices remain separate
<< { R1 } \ \ { R1 } >>

% Separating multi-measure rests in more than two voices
% requires an override
<< { R1 } \ \ { R1 } \ \
\once \override MultiMeasureRest.staff-position = #0
\ { R1 } \\
>>

% Using compressed bars in multiple voices requires another override
% in all voices to avoid multiple instances being printed
\compressMMRests
<<
\revert MultiMeasureRest.direction
\ { R1*3 }\
\ \
\revert MultiMeasureRest.direction
\ { R1*3 } \\
>>

\relative {c' { \compressMMRests \\ \textLengthOn <> ^\markup [MAJOR GENERAL] \R1*19 <> _\markup \italic { Cue: ... it is yours } }

Multi-measure rest markup

Markups attached to a multi-measure rest will be centered above or below it. Long markups attached to multi-measure rests do not cause the measure to expand. To expand a multi-measure rest to fit the markup, use an empty chord with an attached markup before the multi-measure rest. Text attached to a spacer rest in this way is left-aligned to the position where the note would be placed in the measure, but if the measure length is determined by the length of the text, the text will appear to be centered.
See also

Notation Reference: [Durations], page 49, [Scaling durations], page 57, [Compressing empty measures], page 252, Section 1.8 [Text], page 281, Section 1.8.2 [Formatting text], page 293, [Text scripts], page 283.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “MultiMeasureRest” in Internals Reference, Section “MultiMeasureRestNumber” in Internals Reference, Section “MultiMeasureRestScript” in Internals Reference, Section “MultiMeasureRestText” in Internals Reference.

Known issues and warnings

Fingerings over multi-measure rests (e.g., R1*10-4) may result in the fingering numeral colliding with the bar counter numeral.

There is no way to automatically condense multiple ordinary rests into a single multi-measure rest.

Multi-measure rests do not take part in rest collisions.

Caesuras

The \caesura command calls for unmetered silence: typically, a short break in sound that does not shorten the previous note.

\fixed c''' { c2. \caesura d4 }

In chants and hymns, \caesura can serve more generally as a phrase division; for more information, see the references at the end of this section. For a break in sound that shortens the previous note, see [Breath marks], page 159.

Articulations may follow \caesura to indicate the relative duration or significance of the break; these create CaesuraScript grobs.

\fixed c''' { c2. \caesura \fermata d4 }
By default, \caesura creates a BreathingSign grob. The breath element of the \caesuraType context property controls which of several predefined signs \caesura creates. See Section A.16 [List of breath marks], page 835.

\fixed c' {\c\set Score.caesuraType = #'((breath . curvedcaesura)) c2. \caesura d4}

\fixed c' {\c\set Score.caesuraType = #'((breath . spacer) (scripts . (outsidecomma))) \set Score.caesuraTypeTransform = #'((at-bar-line-substitute-caesura-type '((scripts . (fermata))))) c'2. \caesura d'4 b1 \caesura a1}

Predefined commands
\caesura.

Selected Snippets

Positioning opposing fermatas on a bar line

This snippet demonstrates a command that prints fermatas both above and below a bar line. If there would not otherwise be a bar line, it adds a double bar line. Semantically, the command codes a longer-than-normal caesura, which might be considered misuse depending on the situation.

twoWayFermata = {
 \once \set Staff.caesuraType = #'((underlying-bar-line . "||"))
 \once \set Staff.caesuraTypeTransform = ##f
 \caesura ^\fermata _\fermata
}
1.2.3 Displaying rhythms

Time signature

The time signature is set as follows:

\time 2/4 \breath
\time 3/4 \breath

Mid-measure time signature changes are covered in [Upbeats], page 81.

Time signatures are printed at the beginning of a piece and whenever the time signature changes. If a change takes place at the end of a line a warning time signature sign is printed there. This default behavior may be changed, see Section 5.4.7 [Visibility of objects], page 708.
The time signature symbol that is used in 2/2 and 4/4 time can be changed to a numeric style:

\relative c' \{
 % Default style
 \time 4/4 c1
 \time 2/2 c1
 % Change to numeric style
 \numericTimeSignature
 \time 4/4 c1
 \time 2/2 c1
 % Revert to default style
 \defaultTimeSignature
 \time 4/4 c1
 \time 2/2 c1
\}

Mensural time signatures are covered in [Mensural time signatures], page 500.

In addition to setting the printed time signature, the \time command also sets the values of the time-signature-based properties baseMoment, beatStructure, and beamExceptions. The predefined default values for these properties can be found in \begin{singlespace}\texttt{scm/time-signature-settings.scm}\end{singlespace}.

The default value of beatStructure can be overridden in the \time command itself by supplying it as the optional first argument:

\score {
 \new Staff {
 \relative {
 \time 2,2,3 7/8
 \repeat unfold 7 \\{ \\texttt{c'8} \} |
 \time 3,2,2 7/8
 \repeat unfold 7 \\{ \texttt{c8} \} |
 }
 }
}
Alternatively, the default values of all these time-signature-based variables, including \(\text{baseMoment} \) and \(\text{beamExceptions} \), can be set together. The values can be set independently for several different time signatures. The new values take effect when a subsequent \(\text{time} \) command with the same value of the time signature is executed:

\[
\text{score} \\
\text{\ new Staff \{} \\
\text{relative } c' \{} \\
\text{\ overrideTimeSignatureSettings \{} \\
\text{4/4 \ % timeSignatureFraction} \\
\text{1/4 \ % baseMomentFraction} \\
\text{3,1 \ % beatStructure} \\
\text{#'() \ % beamExceptions} \\
\text{\ time \ 4/4} \\
\text{\ repeat unfold 8 \{} \text{c8} \} \| \\
\text{\} \\
\text{\}} \\
\text{\}} \\
\\text{\ revertTimeSignatureSettings \{} \\
\text{4/4} \\
\text{\ time \ 4/4} \\
\text{\ repeat unfold 8 \{} \text{c8} \} \| \\
\text{\}} \]

\text{\overrideTimeSignatureSettings \ takes four arguments:}

1. \text{timeSignatureFraction}, a fraction describing the time signature to which these values apply.
2. \text{baseMomentFraction}, a fraction containing the numerator and denominator of the basic timing unit for the time signature.
3. \text{beatStructure}, a Scheme list indicating the structure of the beats in the measure, in units of the base moment.
4. \text{beamExceptions}, an alist containing any beaming rules for the time signature that go beyond ending at every beat, as described in \[\text{Setting automatic beam behavior}\], page 95.

Changed values of default time signature properties can be restored to the original values:

\[
\text{score} \\
\text{relative} \{} \\
\text{\ repeat unfold 8 \{} \text{c'8} \} \| \\
\text{\ overrideTimeSignatureSettings \{} \\
\text{4/4 \ % timeSignatureFraction} \\
\text{1/4 \ % baseMomentFraction} \\
\text{3,1 \ % beatStructure} \\
\text{#'() \ % beamExceptions} \\
\text{\ time \ 4/4} \\
\text{\ repeat unfold 8 \{} \text{c8} \} \| \\
\text{\ revertTimeSignatureSettings \{} \text{4/4} \\
\text{\ time \ 4/4} \\
\text{\ repeat unfold 8 \{} \text{c8} \} \| \\
\text{\}} \\
\text{\}}
Different values of default time signature properties can be established for different staves by enabling polymetric notation (see [Polymetric notation], page 84).

\score {
\new StaffGroup <<
\new Staff {
\override TimeSignatureSettings
4/4 \% timeSignatureFraction
1/4 \% baseMomentFraction
3,1 \% beatStructure
#'() \% beamExceptions
\time 4/4
\repeat unfold 8 {c''8}
}
\new Staff {
\override TimeSignatureSettings
4/4 \% timeSignatureFraction
1/4 \% baseMomentFraction
1,3 \% beatStructure
#'() \% beamExceptions
\time 4/4
\repeat unfold 8 {c''8}
}
>>
\layout {
\enablePolymeter
}
}

A further method of changing these time-signature-related variables, which avoids reprinting the time signature at the time of the change, is shown in [Setting automatic beam behavior], page 95.

Predefined commands
\numericTimeSignature, \defaultTimeSignature.

Selected Snippets

Time signature printing only the numerator as a number (instead of the fraction)

Sometimes, a time signature should not print the whole fraction (for example, 7/4), but only the numerator (digit 7 in this case). This can be easily done by using \override
Staff.TimeSignature.style = #'single-digit to change the style permanently. By using \revert Staff.TimeSignature.style, this setting can be reversed. To apply the single-digit style to only one time signature, use the \override command and prefix it with a \once.

```
\relative c' { 
  \time 3/4 
c4 c c 
% Change the style permanently
  \override Staff.TimeSignature.style = #'single-digit 
  \time 2/4 
c4 c 
  \time 3/4 
c4 c c 
% Revert to default style:
  \revert Staff.TimeSignature.style 
  \time 2/4 
c4 c 
% single-digit style only for the next time signature
  \once \override Staff.TimeSignature.style = #'single-digit 
  \time 5/4 
c4 c c c c 
  \time 2/4 
c4 c 
}
```

See also

Music Glossary: Section “time signature” in Music Glossary

Notation Reference: [Mensural time signatures], page 500, [Polymetric notation], page 84, [Setting automatic beam behavior], page 95, [Time administration], page 139.

Installed Files: scm/time-signature-settings.scm.

Snippets: Section “Rhythms” in Snippets.

Known issues and warnings

\numericTimeSignature and \defaultTimeSignature have no effect when used in a MensuralStaff. To use these modern time signatures in a MensuralStaff, either select them already when creating the context:

```
\new MensuralStaff \with { \numericTimeSignature } { 
  c'1 
}
```

or use an explicit \override:

```
\new MensuralStaff { 
```
If there is more than a single staff, and a time signature starts a prima volta but not the seconda volta, it is necessary to help LilyPond synchronize this situation by adding an explicit but invisible time signature in the seconda volta.

```lilypond
\music = {
  \repeat volta 2 {
    \time 2/4 c'2 |
    \alternative {
      \volta 1 {
        \time 3/8 d'4. |
        \time 2/4 c'2 |}
      \volta 2 {
        \once \omit Staff.TimeSignature
        \time 2/4 c'2 |}
    }
  }
  \time 3/8 c'4. |
}

<<
\new Staff \music
\new Staff \music
>>
```

Metronome marks
A basic metronome mark is simple to write:

```lilypond
\relative {
  \tempo 4 = 120
c'2 d
e4. d8 c2}
```
Metronome marks may also be printed as a range of two numbers:
\[\text{relative} \{\]
\[\text{tempo} 4 = 40 - 46\]
\[c'4. e8 a4 g\]
\[b,2 d4 r\]
\[
\text{Allegretto} (\text{\textcolor{red}{=}} 160)\]
\[\text{relative} \{\]
\[\text{tempo} "Allegro" 4 = 160\]
\[g'4 c d e\]
\[d4 b g2\]
\[
\text{Allegro} (\text{\textcolor{red}{=}} 160)\]
\[\text{relative} \{\]
\[\text{tempo} \text{\textcolor{red}{\textbackslash markup}} \{\text{\textcolor{red}{\textit{Faster}} } \text{\textcolor{red}{\textbackslash =}} 132\]
\[a'8\text{-} r8 b\text{-} r gis\text{-} r a\text{-} r\]
\[
\text{Faster} (\text{\textcolor{red}{=}} 132)\]

A particularly useful markup command is \texttt{\textbackslash rhythm}, which prints a rhythmic pattern. See Section A.12.4 [Markup for music and musical symbols], page 801.
\[\text{relative} \{\]
Swing
\hspace #0.4
\rhythm { 8 [8] } = \rhythm { \tuplet 3/2 { 4 8 } }

\relative {
\tempo "" 8 = 96
d''4 g e c
}

\compressMMRests {
\markLengthOn
\tempo "Molto vivace"
R1*12
\tempo "Meno mosso"
R1*16
\markLengthOff
\tempo "Tranquillo"
R1*20
}

Selected Snippets

Printing metronome and rehearsal marks below the staff

By default, metronome and rehearsal marks are printed above the staff. To place them below the staff simply set the direction property of \MetronomeMark or \RehearsalMark appropriately.
Changing the tempo without a metronome mark

To change the tempo in MIDI output without printing anything, make the metronome mark invisible.

```latex
\score { 
\new Staff \relative c' { 
  \tempo 4 = 160 
  c4 e g b 
  c4 b d c 
  \set Score.tempoHideNote = ##t 
  \tempo 4 = 96 
  d,4 fis a cis 
  d4 cis e d 
} 
\layout { } 
\midi { } 
}
```

Creating metronome marks in markup mode

New metronome marks can be created in markup mode, but they will not change the tempo in MIDI output.

```latex
\relative c' { 
  \tempo \markup { 
    \concat { 
      \smaller \general-align #Y \#DOWN \note {16.} #1 
      " = " 
      \smaller \general-align #Y \#DOWN \note {8} #1 
    } 
  } 
}
```
Upbeats

Partial or pickup measures, such as an anacrusis or an upbeat, are entered using the `\partial` command:

```
\partial \text{duration}
```

When `\partial` is used at the beginning of a score, `duration` is the length of the music preceding the first bar.

```
\relative {
    \time 3/4
    \partial 4.
    r4 e'8 \ c8 b \ c4 |
}
```

When `\partial` is used after the beginning of a score, `duration` is the remaining length of the current measure. It does not create a new numbered bar.

```
\relative {
    \set Score.barNumberVisibility = #all-bar-numbers-visible
    \override Score.BarNumber.break-visibility = #end-of-line-invisible
    \time 9/8
    d''4.- 4 d8 d(\ c) b \ c4.- 4. \bar ||
    \time 12/8
    \partial 4.
    c8(\ d) e \ f2.- 4 f8 a,(\ c) f |}
```
The \partial command is *required* when the time signature changes in mid measure, but it may also be used alone.

\begin{verbatim}
\relative {
 \set Score.barNumberVisibility = #all-bar-numbers-visible
 \override Score.BarNumber.break-visibility = #end-of-line-invisible

 \time 6/8
 \partial 8
 e'8 | a4 c8 b[c b] |
 \partial 4
 r8 e,8 | a4 \bar "||"
 \partial 4
 r8 e8 | a4 c8 b[c b] |
 }
\end{verbatim}

The \partial command sets the Timing.measurePosition property, which is a rational number that indicates how much of the measure has passed.

See also

- Notation Reference: [Grace notes], page 133.
- Snippets: Section “Rhythms” in *Snippets*.
- Internal Reference: Section “Timing_translator” in *Internals Reference*.

Unmetered music

In music such as cadenzas, it may be desirable to disable automatic measure demarcation and all that it entails: numbering bars, resetting accidentals, etc. Music between \cadenzaOn and \cadenzaOff does not count toward the length of a measure.

\begin{verbatim}
\relative c' {
 % Show all bar numbers
 \override Score.BarNumber.break-visibility = #all-visible
 c4 d e d
 \cadenzaOn
 c4 cis d8[d d] f4 g4.
 \cadenzaOff
 d4 e d c
 }
\end{verbatim}
To divide an unmetered passage into irregular measures, temporarily re-enable timing and use \partial to create a tiny measure. The \bar command alone does not start a new measure.

\begin{verbatim}
cadenzaMeasure = {
 \cadenzaOff
 \partial 1024 s1024
 \cadenzaOn
}
\end{verbatim}

\begin{verbatim}
\relative c'' {
 % Show all bar numbers
 \override Score.BarNumber.break-visibility = #all-visible
 c4 d e d
 \cadenzaOn
 c4 cis \bar "!" d8[d d] \cadenzaMeasure f4 g4.
 \cadenzaMeasure
 \cadenzaOff
 d4 e d c
}
\end{verbatim}

Automatic beaming is disabled by \cadenzaOn. Therefore, all beaming in cadenzas must be entered manually. See [Manual beams], page 103.

\begin{verbatim}
\relative {
 \repeat unfold 8 { c''8 }
 \cadenzaOn
 cis8 c c c c
 \bar"!"
 c8 c c
 \cadenzaOff
 \repeat unfold 8 { c8 }
}
\end{verbatim}

These predefined commands affect all staves in the score, even when placed in just one Voice context. To change this, move the Timing_translator from the Score context to the Staff context. See [Polymetric notation], page 84.

Within a cadenza section, automatic breaks are disabled: since there is no metric, it is not possible to determine automatically where they would be appropriate. Therefore, in a long cadenza passage, you must insert possible break points at appropriate places using the \allowBreak command or other solutions in Section 4.3.1 [Line breaking], page 621.

\begin{verbatim}
\relative {
 c'4 f g c, d f g c
 \cadenzaOn
 c4 cis8
 \allowBreak
 d[cis c cis]
}\end{verbatim}
Predefined commands
\cadenzaOn, \cadenzaOff.

See also

Notation Reference: Section 5.4.7 [Visibility of objects], page 708, [Polymetric notation], page 84, [Manual beams], page 103, [Accidentals], page 6.

Snippets: Section “Rhythms” in Snippets.

Polymetric notation
Polymetric notation is supported explicitly or by manually modifying the visible time signature symbol and/or scaling note durations.

Different time signatures with equal-length measures
Set a common time signature for each staff, and set the \timeSignatureFraction to the desired fraction. Then use the \scaleDurations function to scale the durations of the notes in each staff to the common time signature.

In the following example, music with the time signatures of 3/4, 9/8 and 10/8 are used in parallel. In the second staff, shown durations are multiplied by 2/3 (because 2/3 * 9/8 = 3/4) and in the third staff, the shown durations are multiplied by 3/5 (because 3/5 * 10/8 = 3/4). It may be necessary to insert beams manually, as the duration scaling will affect the auto-beaming rules.

\relative <<
\new Staff {
\time 3/4
\c'4 c c |
\c4 c c |
}
\new Staff {
\time 3/4
\set Staff.timeSignatureFraction = 9/8
\section*{Chapter 1: Musical notation}

\begin{verbatim}
\scaleDurations 2/3 {
 \repeat unfold 3 { c8[c c] }
 \repeat unfold 3 { c4 c8 }
}
\new Staff {
 \time 3/4
 \set Staff.timeSignatureFraction = 10/8
 \scaleDurations 3/5 {
 \repeat unfold 2 { c8[c c] }
 \repeat unfold 2 { c8[c] } |
 c4. c \tuplet 3/2 { c8[c c] } c4
 }
}
\end{verbatim}

\begin{center}
\begin{music}
\relative << {
 \new Staff {
 \time 3/4
 c'4 c c |
 c4 c c |
 }
 \new Staff {
 \time 2/4
 c4 c |
 c4 c |
 c4 c |
 }
 \new Staff {
 \time 3/8
 c4. |
 c8 c c |
 }
}
\end{music}
\end{center}

\subsection*{Different time signatures with unequal-length measures}

Each staff can be given its own independent time signature as soon as \enablePolymeter is placed in the \layout block.

\begin{verbatim}
\layout {
 \enablePolymeter
}
\end{verbatim}

% Now each staff has its own time signature.
To have just one polymetric score, include \enablePolymeter in a \layout block inside the \score block.

\score {
<<
 \new Staff { c''1 1 }
 \new Staff { c'2 d' g'2- 2 }
>>
}

\score {
 \layout {
 \enablePolymeter
 }
 <<
 \new Staff { \time 4/4 c''1 1 }
 \new Staff { \time 2/4 c'2 d' g'2- 2 }
 >>
}

When using polymeter, all staves should include a \time command if their meter is not the default 4/4. This is true even for special staves without actual staff lines, such as Dynamics contexts, since the placement of certain spanners like hairpins is synchronized with bar lines.
In order to use this feature with MIDI output, also include \enablePolymeter in a \midi block.

```latex
\layout {
  \enablePolymeter
}
\midi {
  \enablePolymeter
}
```

Compound time signatures

These are created using the \compoundMeter function. The syntax for this is:

```latex
\compoundMeter #'(list of lists)
```

The simplest construction is a single list, where the last number indicates the bottom number of the time signature and those that come before it, the top numbers.

```latex
\relative {
  \compoundMeter #'((2 2 2 8))
  \repeat unfold 6 c'8 \repeat unfold 12 c16
}
```

More complex meters can be constructed using additional lists. Also, automatic beaming settings will be adjusted depending on the values.

```latex
\relative {
  \compoundMeter #'((1 4) (3 8))
  \repeat unfold 5 c'8 \repeat unfold 10 c16
}
```

```latex
\relative {
  \compoundMeter #'((1 2 3 8) (3 4))
  \repeat unfold 12 c'8
}
```
See also

Notation Reference: [Automatic beams], page 92, [Manual beams], page 103, [Time signature], page 72, [Scaling durations], page 57.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “TimeSignature” in Internals Reference, Section “Timing_translation” in Internals Reference, Section “Staff” in Internals Reference.

Known issues and warnings

Although notes that occur at the same moment in each of the different staves will be placed at the same horizontal location, bar lines (in each staff) may cause inconsistent spacing within each of the different time signatures.

Automatic note splitting

Long notes which overrun bar lines can be converted automatically to tied notes. This is done by replacing the \Note_heads_engraver with the Completion_heads_engraver. Similarly, long rests which overrun bar lines are split automatically by replacing the Rest_engraver with the Completion_rest_engraver. In the following example, notes and rests crossing the bar lines are split, notes are also tied.

\music\new Voice \with{\remove \Note_heads_engraver \consists Completion_heads_engraver \remove \Rest_engraver \consists Completion_rest_engraver}
\relative {c'2. c8 d4 e f g a b8 c2 b4 a g16 f4 e d c8. c2 r1*2}

These engravers split all running notes and rests at the bar line, and inserts ties for notes. One of its uses is to debug complex scores: if the measures are not entirely filled, then the ties show exactly how much each measure is off.

The property completionUnit sets a preferred duration for the split notes.

\music\new Voice \with{\remove \Note_heads_engraver \consists Completion_heads_engraver} \relative {\time 9/8 g\breve. d''4. \bar "|||"}
These engravers split notes with scaled duration, such as those in tuplets, into notes with the same scale factor as in the input note.

\new Voice \with {
 \remove Note_heads_engraver
 \consists Completion_heads_engraver
} \relative {
 \time 2/4 r4
 \tuplet 3/2 {g'4 a b}
 \scaleDurations 2/3 {g a b}
 g4*2/3 a b
 \tuplet 3/2 {g4 a b}
 r4
}

See also

Music Glossary: Section “tie” in Music Glossary
Snippets: Section “Rhythms” in Snippets.
Internals Reference: Section “Note_heads_engraver” in Internals Reference, Section “Completion_heads_engraver” in Internals Reference, Section “Completion_rest_engraver” in Internals Reference, Section “Completion_rest_engraver” in Internals Reference, Section “_completion_rest_engraver” in Internals Reference.

Known issues and warnings

For consistency with previous behavior, notes and rests with duration longer than a measure, such as c1*2, are split into notes without any scale factor, \{ c1 c1 \}. The property completionFactor controls this behavior, and setting it to \#f cause split notes and rests to have the scale factor of the input durations.

Showing melody rhythms

Sometimes you might want to show only the rhythm of a melody. This can be done with the rhythmic staff. All pitches of notes on such a staff are squashed, and the staff itself has a single line.

\new RhythmicStaff {
 \new Voice = "myRhythm" \relative {
 \time 4/4
}
Chapter 1: Musical notation

```
c'4 e8 f g2
r4 g g f
{ g1
}

\new Lyrics {
\lyricsto "myRhythm" {
This is my song
I like to sing
}
}

This is my song I like to sing

Guitar chord charts often show the strumming rhythms. This can be done with the Pitch_squash_engraver and \improvisationOn.

```
\new ChordNames {
\chordmode {
 c1 f g c
}
}

\new Voice \with {
\consists Pitch_squash_engraver
} \relative c'' {
 \improvisationOn
 c4 c8 c c4 c8 c
 f4 f8 f f4 f8 f
 g4 g8 g g4 g8 g
 c4 c8 c c4 c8 c
}

Music containing chords can also be used as input to RhythmicStaff and for use with the Pitch_squash_engraver if the chords are first reduced to single notes with the \reduceChords music function:

```
\new RhythmicStaff {
\time 4/4
\reduceChords {
   <c>2
   <e>2
   <c e g>2
   <c e g>4
   <c e g>4
}
```
Predefined commands
\improvisationOn, \improvisationOff, \reduceChords.

Selected Snippets

Guitar strum rhythms

For guitar music, it is possible to show strum rhythms, along with melody notes, chord names and fret diagrams.

```latex
\include "predefined-guitar-fretboards.ly"
<<
\new ChordNames {
  \chordmode {
    c1 | f | g | c
  }
}
\new FretBoards {
  \chordmode {
    c1 | f | g | c
  }
}
\new Voice \with {
  \consists "Pitch_squash_engraver"
} {
  \relative c' {
    \improvisationOn
    c4 c8 c c4 c8 c
    f4 f8 f f4 f8 f
    g4 g8 g g4 g8 g
    c4 c8 c c4 c8 c
  }
}
\new Voice = "melody" {
  \relative c' {
    c2 e4 e4
    f2. r4
    g2. a4
    e4 c2.
  }
}
\new Lyrics {
  \lyricsto "melody" {
    This is my song.
    I like to sing.
  }
}
>>
```
This is my song. I like to sing.

See also
Snippets: Section “Rhythms” in Snippets.
Internals Reference: Section “RhythmicStaff” in Internals Reference, Section “Pitch_square engraver” in Internals Reference.

1.2.4 Beams

Automatic beams
By default, beams are inserted automatically:

```
\relative c' { 
  \time 2/4 c4 c8 c c c 
  \time 6/8 c8 c c c8. c16 c8 
} 
```

If these automatic decisions are not satisfactory, beaming can be entered explicitly; see [Manual beams], page 103. Beams must be entered manually if beams are to be extended over rests.

If automatic beaming is not required, it may be turned off with \autoBeamOff and on with \autoBeamOn:

```
\relative c' {  
c4 c8 c8. c16 c8. c16 c8 
\autoBeamOff  
c4 c8 c8. c16 c8. 
\autoBeamOn
```
Chapter 1: Musical notation

Note: If beams are used to indicate melismata in songs, then automatic beaming should be switched off with \autoBeamOff and the beams indicated manually. Using \partCombine with \autoBeamOff can produce unintended results. See the snippets for more information.

Beaming patterns that differ from the automatic defaults can be created; see [Setting automatic beam behavior], page 95.

Predefined commands
\autoBeamOff, \autoBeamOn.

Selected Snippets

Beams across line breaks
Line breaks are normally forbidden when beams cross bar lines. This behavior can be changed as shown:
\relative c’ {
\override Beam.breakable = ##t
c8 c[c] c[c] c[c] \break
c8] c[c] c[c] c[c] c
}

Changing beam knee gap
Kneed beams are inserted automatically when a large gap is detected between the note heads. This behavior can be tuned through the auto-knee-gap property. A kneed beam is drawn if the gap is larger than the value of auto-knee-gap plus the width of the beam object (which depends on the duration of the notes and the slope of the beam). By default auto-knee-gap is set to 5.5 staff spaces.
{
\override Beam.auto-knee-gap = #6
f8 f’’8 f8 f’’8
}

Partcombine and autoBeamOff

The function of `\autoBeamOff` when used with `\partCombine` can be difficult to understand. It may be preferable to use

\begin{verbatim}
\set Staff.autoBeaming = ##f
\end{verbatim}

instead, to ensure that autobeaming will be turned off for the entire staff.

`\partCombine` apparently works with 3 voices – stem up single, stem down single, stem up combined.

An `\autoBeamOff` call in the first argument to `\partCombine` will apply to the voice that is active at the time the call is processed, either stem up single or stem up combined. An `\autoBeamOff` call in the second argument will apply to the voice that is stem down single.

In order to use `\autoBeamOff` to stop all autobeaming when used with `\partCombine`, it will be necessary to use three calls to `\autoBeamOff`.

\begin{verbatim}
{ %\set Staff.autoBeaming = ##f \% turns off all autobeaming
 \partCombine
 { \autoBeamOff \% applies to split up stems
 \repeat unfold 4 a'16
 %\autoBeamOff \% applies to combined up stems
 \repeat unfold 4 a'8
 \repeat unfold 4 a'16
 }
 { \autoBeamOff \% applies to down stems
 \repeat unfold 4 f'8
 \repeat unfold 8 f'16 |
 }
}
\end{verbatim}

See also

Notation Reference: [Manual beams], page 103, [Setting automatic beam behavior], page 95.

Installed Files: scm/auto-beam.scm.

Snippets: Section “Rhythms” in Snippets.

Known issues and warnings

The properties of a beam are determined at the start of its construction and any additional beam property changes that occur before the beam has been completed will not take effect until the next, new beam starts.
Setting automatic beam behavior

When automatic beaming is enabled, the placement of automatic beams is determined by three context properties: `baseMoment`, `beatStructure`, and `beamExceptions`. The default values of these variables may be overridden as described below, or alternatively the default values themselves may be changed as explained in [Time signature], page 72.

If a `beamExceptions` rule is defined for the time signature in force, that rule alone is used to determine the beam placement; the values of `baseMoment` and `beatStructure` are ignored.

If no `beamExceptions` rule is defined for the time signature in force, the beam placement is determined by the values of `baseMoment` and `beatStructure`.

Beaming based on baseMoment and beatStructure

By default, `beamExceptions` rules are defined for most common time signatures, so the `beamExceptions` rules must be disabled if automatic beaming is to be based on `baseMoment` and `beatStructure`. The `beamExceptions` rules are disabled by

\set Timing.beamExceptions = #'()

When `beamExceptions` is set to `#'()`, either due to an explicit setting or because no `beamExceptions` rules are defined internally for the time signature in force, the ending points for beams are on beats as specified by the context properties `baseMoment` and `beatStructure`. `beatStructure` is a scheme list that defines the length of each beat in the measure in units of `baseMoment`. By default, `baseMoment` is one over the denominator of the time signature. By default, each unit of length `baseMoment` is a single beat.

Note that there are separate `beatStructure` and `baseMoment` values for each time signature. Changes to these variables apply only to the time signature that is currently in force, hence those changes must be placed after the `\time` command which starts a new time signature section, not before it. New values given to a particular time signature are retained and reinstated whenever that time signature is reestablished.

\relative c' {
 \time 5/16
 c16"default" c c c c |
 % beamExceptions are unlikely to be defined for 5/16 time,
 % but let's disable them anyway to be sure
 \set Timing.beamExceptions = #'()
 \set Timing.beatStructure = 2,3
 c16"'(2+3)" c c c c |
 \set Timing.beatStructure = 3,2
 c16"'(3+2)" c c c c |
}

\relative {
 \time 4/4
 a'8"default" a a a a a a
 % Disable beamExceptions because they are definitely
 % defined for 4/4 time
 \set Timing.beamExceptions = #'()
 \set Timing.baseMoment = \musicLength 4
 \set Timing.beatStructure = 1,1,1,1
 a8"changed" a a a a a a
}
Beam setting changes can be limited to specific contexts. If no setting is included in a lower-level context, the setting of the enclosing context will apply.

```latex
\new Staff {
\time 7/8
% No need to disable beamExceptions
% as they are not defined for 7/8 time
\set Staff.beatStructure = 2,3,2
<<
\new Voice = one {
  \relative {
    a'8 a a a a a a
  }
}
\new Voice = two {
  \relative {
    \voiceTwo
    \set Voice.beatStructure = 1,3,3
    f'8 f f f f f f
  }
}
>>
}
```

When multiple voices are used the Staff context must be specified if the beaming is to be applied to all voices in the staff:

```latex
\time 7/8
% rhythm 3-1-1-2
% Change applied to Voice by default -- does not work correctly
% Because of auto-generated voices, all beating will
% be at baseMoment (1 . 8)
\set beatStructure = 3,1,1,2
<< \relative {a'8 a a a16 a a a8 a} \relative {f'4. f8 f f f} >>

% Works correctly with context Staff specified
\set Staff.beatStructure = 3,1,1,2
<< \relative {a'8 a a a16 a a a8 a} \relative {f'4. f8 f f f} >>
```
The value of baseMoment can be adjusted to change the beaming behavior, if desired. When this is done, the value of beatStructure must be set to be compatible with the new value of baseMoment.

\time 5/8
% No need to disable beamExceptions
% as they are not defined for 5/8 time
\set Timing.baseMoment = \musicLength 16
\set Timing.beatStructure = 7,3
\repeat unfold 10 { a'16 }

baseMoment is a moment; a unit of musical duration. For more information about this type, see [Time administration], page 139.

By default baseMoment is set to one over the denominator of the time signature. Any exceptions to this default can be found in \texttt{scm/time-signature-settings.scm}.

Beaming based on beamExceptions

Special auto-beaming rules (other than ending a beam on a beat) are defined in the beamExceptions property.

The value for beamExceptions, a somewhat complex Scheme data structure, is easiest generated with the \texttt{\beamExceptions} function. This function is given one or more manually beamed measure-long rhythmic patterns (measures have to be separated by a bar check | since the function has no other way to discern the measure length). Here is a simple example:

\relative c' {
 \time 3/16
 \set Timing.beatStructure = 2,1
 \set Timing.beamExceptions =
 c16 c c |
 \repeat unfold 6 { c32 } |
}

Note: A beamExceptions value must be complete exceptions list. That is, every exception that should be applied must be included in the setting. It is not possible to add, remove, or change only one of the exceptions. While this may seem cumbersome, it means that the current beaming settings need not be known in order to specify a new beaming pattern.

When the time signature is changed, default values of Timing.baseMoment, Timing.beatStructure, and Timing.beamExceptions are set. Setting the time signature will reset the automatic beaming settings for the Timing context to the default behavior.

\relative a' {
 \time 6/8
The default automatic beaming settings for a time signature are determined in `scm/time-signature-settings.scm`. Changing the default automatic beaming settings for a time signature is described in [Time signature], page 72.

Many automatic beaming settings for a time signature contain an entry for `beamExceptions`. For example, 4/4 time tries to beam the measure in two if there are only eighth notes. The `beamExceptions` rule can override the `beatStructure` setting if `beamExceptions` is not reset.

```
\time 4/4
\set Timing.beatStructure = 3,3,2
% This won't beam (3 3 2) because of beamExceptions
\repeat unfold 8 {c''8} |
% This will beam (3 3 2) because we clear beamExceptions
\set Timing.beamExceptions = #'() 
\repeat unfold 8 {c''8}
```

In a similar fashion, eighth notes in 3/4 time are beamed as a full measure by default. To beam eighth notes in 3/4 time on the beat, reset `beamExceptions`.

```
\time 3/4 
% by default we beam in (6) due to beamExceptions
\repeat unfold 6 {a'8} |
% This will beam (1 1 1) due to default baseMoment and beatStructure 
\set Timing.beamExceptions = #'() 
\repeat unfold 6 {a'8} 
```

In engraving from the Romantic and Classical periods, beams often begin midway through the measure in 3/4 time, but modern practice is to avoid the false impression of 6/8 time (see Gould, p. 153). Similar situations arise in 3/8 time. This behavior is controlled by the context property `beamHalfMeasure`, which has effect only in time signatures with 3 in the numerator:

```
\relative a' {  
\time 3/4 
\set Timing.beamHalfMeasure = ##f 
   r4. a8 a a |
```
How automatic beaming works

When automatic beaming is enabled, the placement of automatic beams is determined by the context properties baseMoment, beatStructure, and beamExceptions.

The following rules, in order of priority, apply when determining the appearance of beams:

- If a manual beam is specified with [...] set the beam as specified, otherwise
- if a beam ending rule is defined in beamExceptions for the beam type, use it to determine the valid places where beams may end, otherwise
- if a beam ending rule is defined in beamExceptions for a longer beam type, use it to determine the valid places where beams may end, otherwise
- use the values of baseMoment and beatStructure to determine the ends of the beats in the measure, and end beams at the end of beats.

In the rules above, the beam type is the duration of the shortest note in the beamed group.

The default beaming rules can be found in scm/time-signature-settings.scm.

Selected Snippets

Subdividing beams

The beams of consecutive 16th (or shorter) notes are, by default, not subdivided. That is, the three (or more) beams stretch unbroken over entire groups of notes. This behavior can be modified to subdivide the beams into sub-groups by setting the property subdivideBeams. When set, multiple beams will be subdivided at intervals defined by the current value of baseMoment by reducing the multiple beams to the number of beams that indicates the metric value of the subdivision. If the group following the division is shorter than the current metric value (usually because the beam is incomplete) the number of beams reflects the longest possible subdivision group. However, if there is only one note left after the division this restriction isn’t applied. Note that baseMoment defaults to one over the denominator of the current time signature if not set explicitly. It must be set to a fraction giving the duration of the beam sub-group using the ly:make-moment function, as shown in this snippet. Also, when baseMoment is changed, beatStructure should also be changed to match the new baseMoment:

\relative c' {
 c32[c c c c c c c]
 \set subdivideBeams = ##t
 c32[c c c c c c c]
 % Set beam sub-group length to an eighth note
 \set baseMoment = \musicLength 8
 \set beatStructure = 2,2,2,2
 c32[c c c c c c c]

 % Set beam sub-group length to a sixteenth note
 \set baseMoment = \musicLength 16
 \set beatStructure = 4,4,4,4
 c32[c c c c c c c]
% Shorten beam by 1/32
\set baseMoment = \musicLength 8
\set beatStructure = 2,2,2,2
c32[c c c c c c] r32

% Shorten beam by 3/32
\set baseMoment = \musicLength 8
\set beatStructure = 2,2,2,2
c32[c c c] r16.

Strict beat beaming

Beamlets can be set to point in the direction of the beat to which they belong. The first beam avoids sticking out flags (the default); the second beam strictly follows the beat.

\relative c'' {
 \time 6/8
 a8. a16 a a
 \set strictBeatBeaming = ##t
 a8. a16 a a
}

Conducting signs, measure grouping signs

Beat grouping within a measure is controlled by the beatStructure context property. Values of beatStructure are established for many time signatures in file scm/time-signature-settings.scm. Values of beatStructure can be changed or set with \set. Alternatively, \time can be used to both set the time signature and establish the beat structure. For this, you specify the internal grouping of beats in a measure as a list of numbers (in Scheme syntax) before the time signature.

\time applies to the Timing context, so it will not reset values of beatStructure or baseMoment that are set in other lower-level contexts, such as Voice.

If the Measure_grouping_ engraver is included in one of the display contexts, measure grouping signs will be created. Such signs ease reading rhythmically complex modern music. In the example, the 9/8 measure is grouped in two different patterns using the two different methods, while the 5/8 measure is grouped according to the default setting in scm/time-signature-settings.scm:

\score {
 \new Voice \relative c'' {
 \time 9/8
 }
}
Chapter 1: Musical notation

\set Timing.beatStructure = 2,2,2,3
\time 4,5 \frac{9}{8}
\set Timing.beatStructure = 5/8
\stop
\layout {
 \context {
 \Staff
 \consists "Measure_grouping_engraver"
 }
}

\relative c' {
 \time 5/4
 % Set default beaming for all staves
 \set Score.baseMoment = \musicLength 8
 \set Score.beatStructure = 3,4,3
 \new Staff {
 c8 c c c c c c c
 }
 \new Staff {
 % Modify beaming for just this staff
 \set Staff.beatStructure = 6,4
 c8 c c c c c c c c c
 }
 \new Staff {
 % Inherit beaming from Score context
 \new Voice {
 \voiceOne
 c8 c c c c c c c c c
 }
 % Modify beaming for this voice only
 \new Voice {
 c8 c c c c c c c c c
 }
 }
}

Beam endings in Score context

Beam-ending rules specified in the Score context apply to all staves, but can be modified at both Staff and Voice levels:

\set Timing.beatStructure = 2,2,2,3
\time 4,5 \frac{9}{8}
\set Timing.beatStructure = 5/8
\stop
\layout {
 \context {
 \Staff
 \consists "Measure_grouping_engraver"
 }
}
Chapter 1: Musical notation

See also

Notation Reference: [Time signature], page 72.

Installed Files: scm/time-signature-settings.scm.

Snippets: Section “Rhythms” in Snippets.

Known issues and warnings

If a score ends while an automatic beam has not been ended and is still accepting notes, this last beam will not be typeset at all. The same holds for polyphonic voices, entered with \new ... \new ... \repeat ... \repeat. If a polyphonic voice ends while an automatic beam is still accepting notes, it is not typeset. The workaround for these problems is to manually beam the last beam in the voice or score.

By default, the Timing translator is aliased to the Score context. This means that setting the time signature in one staff will affect the beaming of the other staves as well. Thus, a time signature setting in a later staff will reset custom beaming that was set in an earlier staff. One way to avoid this problem is to set the time signature in only one staff.

\new Staff {
\time 3/4
\set Timing.baseMoment = \musicLength 8
\set Timing.beatStructure = 1,5
\set Timing.beamExceptions = #'
\repeat unfold 6 { a'8 }
}
\new Staff {
\repeat unfold 6 { a'8 }
}
}
The default beam settings for the time signature can also be changed, so that the desired beaming will always be used. Changes in automatic beaming settings for a time signature are described in [Time signature], page 72.

\begin{verbatim}
\new Staff {
 \overrideTimeSignatureSettings
 3/4 % timeSignatureFraction
 1/8 % baseMomentFraction
 1,5 % beatStructure
 #'() % beamExceptions
 \time 3/4
 \repeat unfold 6 { a'8 }
}
\new Staff {
 \time 3/4
 \repeat unfold 6 { a'8 }
}
\end{verbatim}

Manual beams

In some cases it may be necessary to override the automatic beaming algorithm. For example, the auto-beamer will not put beams over rests or bar lines, and in choral scores the beaming is often set to follow the meter of the lyrics rather than the notes. Such beams can be specified manually by marking the begin and end point with \[and \].

\begin{verbatim}
\relative { r4 r8 [g' a r] r g [| a] r }
\end{verbatim}

Beaming direction can be set manually using direction indicators:

\begin{verbatim}
\relative { c'\'8' [d e] c,_[d e f g] }
\end{verbatim}
Individual notes may be marked with \noBeam to prevent them from being beamed:

\relative {
 \time 2/4
 c''8 c \noBeam c c
}

Grace note beams and normal note beams can occur simultaneously. Unbeamed grace notes are not put into normal note beams.

\relative {
 c''4 d8[
 \grace { e32 d c d }
 e8] e[e
 \grace { f16 }
 e8 e]
}

Even more strict manual control with the beams can be achieved by setting the properties stemLeftBeamCount and stemRightBeamCount. They specify the number of beams to draw on the left and right side, respectively, of the next note. If either property is set, its value will be used only once, and then it is erased. In this example, the last f is printed with only one beam on the left side, i.e., the eighth-note beam of the group as a whole.

\relative a' {
 a8[r16 f g a]
 a8[r16
 \set stemLeftBeamCount = #2
 \set stemRightBeamCount = #1
 f16
 \set stemLeftBeamCount = #1
 g16 a]
}

Predefined commands

\noBeam.

Selected Snippets

Flat flags and beam nibs

Flat flags on lone notes and beam nibs at the ends of beamed figures are both possible with a combination of stemLeftBeamCount, stemRightBeamCount and paired [] beam indicators.

For right-pointing flat flags on lone notes, use paired [] beam indicators and set stemLeftBeamCount to zero (see Example 1).
For left-pointing flat flags, set `stemRightBeamCount` instead (Example 2).

For right-pointing nibs at the end of a run of beamed notes, set `stemRightBeamCount` to a positive value. And for left-pointing nibs at the start of a run of beamed notes, set `stemLeftBeamCount` instead (Example 3).

Sometimes it may make sense for a lone note surrounded by rests to carry both a left- and right-pointing flat flag. Do this with paired \[\] beam indicators alone (Example 4).

(Note that \set `stemLeftBeamCount` is always equivalent to \once \set. In other words, the beam count settings are not “sticky”, so the pair of flat flags attached to the lone c’16[] in the last example have nothing to do with the \set two notes prior.)

\begin{verbatim}
\score { << % Example 1
 \new RhythmicStaff {
 \set stemLeftBeamCount = #0
 c16[]
 r8.
 }
 % Example 2
 \new RhythmicStaff {
 r8.
 \set stemRightBeamCount = #0
 16[]
 }
 % Example 3
 \new RhythmicStaff {
 16 16
 \set stemRightBeamCount = #2
 16 r r
 \set stemLeftBeamCount = #2
 16 16
 }
 % Example 4
 \new RhythmicStaff {
 16 16
 \set stemRightBeamCount = #2
 16 r16
 16[]
 r16
 \set stemLeftBeamCount = #2
 16 16
 }
 >> }
\end{verbatim}
Feathered beams are used to indicate that a small group of notes should be played at an increasing (or decreasing) tempo, without changing the overall tempo of the piece. The extent of the feathered beam must be indicated manually using [and], and the beam feathering is turned on by specifying a direction to the \override Beam.grow-direction.

If the placement of the notes and the sound in the MIDI output is to reflect the ritardando or accelerando indicated by the feathered beam the notes must be grouped as a music expression delimited by braces and preceded by a \featherDurations command which specifies the ratio between the durations of the first and last notes in the group.

The square brackets show the extent of the beam and the braces show which notes are to have their durations modified. Normally these would delimit the same group of notes, but this is not required: the two commands are independent.

In the following example the eight 16th notes occupy exactly the same time as a half note, but the first note is one half as long as the last one, with the intermediate notes gradually lengthening. The first four 32nd notes gradually speed up, while the last four 32nd notes are at a constant tempo.

\relative c' {
 \override Beam.grow-direction = #LEFT
 \featherDurations 2/1
 { c16[c c c c c c c] }
 \override Beam.grow-direction = #RIGHT
 \featherDurations 2/3
 { c32[d e f] }
 % revert to non-feathered beams
 \override Beam.grow-direction = #'()
 { g32[a b c] }
}
The spacing in the printed output represents the note durations only approximately, but the MIDI output is exact.

Predefined commands
\featherDurations.

See also
Snippets: Section “Rhythms” in Snippets.

Known issues and warnings
The \featherDurations command only works with very short music snippets, and when numbers in the fraction are small.

1.2.5 Bars

Bar lines
Bar lines are used to delimit measures and sections, and to indicate repetition. Normally, simple bar lines are automatically inserted into the printed output at places according to the current time signature. Various commands insert other kinds of bar lines automatically as part of their effect (see [Automatic bar lines], page 117).

A bar line inserted automatically can be changed to another type with the \bar command:
\relative { e'4 d c2 \bar "!" }

The final note of a measure is not required to end on the automatically inserted bar line: the note is assumed to carry over into the next measure. But if a long sequence of such carry-over measures appears, the music can appear compressed or even flowing off the page. This is because automatic line breaks happen only at the end of complete measures, i.e., where all notes end before the end of a measure.

Note: An incorrect duration can inhibit line breaks, leading to a line of highly compressed music or music that flows off the page.

Line breaks are also permitted at manually inserted bar lines even within incomplete measures. To allow a line break without printing a bar line, use \allowBreak; see Section 4.3.1 [Line breaking], page 621.

This and other special bar lines may be inserted manually at any point. When they coincide with the end of a measure they replace the simple bar line which would have been inserted there automatically. When they do not coincide with the end of a measure the specified bar line is inserted at that point in the printed output.

Manual bar lines are purely visual. They do not affect any of the properties that a normal bar line would affect, such as measure numbers and accidentals. They do not affect the calculation and placement of subsequent automatic bar lines. When a manual bar line is placed where a normal bar line already exists, the effects of the original bar line are not altered.
Various single and double bar lines are available for manual insertion:

```
relative {
  f'1 \bar "|"
f1 \bar "."
g1 \bar "||" \% see \section
a1 \bar ".|
```

```
\relative {
  f'1 \bar ","
  g1 \bar "!"
  a1
```

```
\relative {
  f'1 \bar ",:"
  g1 \bar ":...
  a1 \bar ":|
  b1 \bar "::
  c1 \bar ":..:
  d1 \bar ":|:
  e1 \bar ":[]:
  f1 \bar ":[]
  g1 \bar "|
  a1
```

Ticks and short bar lines are also available; however, in the context of Gregorian chant, using \divisioMinima and \divisioMaior is preferable (see [Divisiones], page 509).
LilyPond supports Kievan notation and provides a special Kievan bar line:
\begin{verbatim}
f'1 \bar "k"
\end{verbatim}

Further details of this notation are explained in Section 2.9.5 [Typesetting Kievan square notation], page 516.

There are various in-staff segno signs which differ in their behavior at line breaks:
\begin{verbatim}
\fixed c' {
 c4 4 4 4
 \bar "S"
 d4 4 4 4 \break
 \bar "S"
 e4 4 4 4
 \bar "S-|
 f4 4 4 4 \break
 \bar "S-|
 g4 4 4 4
 \bar "S-||
 a4 4 4 4 \break
 \bar "S-||
 b4 4 4 4
 \bar "S-S"
 c'4 4 4 4 \break
 \bar "S-S"
 d'1
}
\end{verbatim}

Although the bar line types signifying repeats may be inserted manually they do not in themselves cause LilyPond to recognize a repeated section. Such repeated sections are better entered
using the various repeat commands (see Section 1.4 [Repeats], page 171), which automatically print the appropriate bar lines, which can be customized (see [Automatic bar lines], page 117).

In addition, you can specify ".|:-||", which is equivalent to ".|:" except at line breaks, where it gives a double bar line at the end of the line and a start repeat at the beginning of the next line.

\fixed c' \{
 c4 4 4 4
 \bar ".|:"
 d4 4 4 4 \break
 \bar ".|:"
 e4 4 4 4
 \bar ".|-|"
 f4 4 4 4 \break
 \bar ".|-|"
 g4 4 4 4
 \bar ".|-|"
 a4 4 4 4 \break
 \bar ".|-|"
 b4 4 4 4
 \bar ".|-|."
 c'4 4 4 4 \break
 \bar ".|-|."
 d'4 4 4 4
\}

There are various combinations of repeats with the segno sign:

\fixed c' \{
 g,4 4 4 4
 \bar ":|.|.S"
 a,4 4 4 4 \break
 \bar ":|.|.S"
 b,4 4 4 4
 \bar ":|.|S-S"
c4 4 4 4 \break
\bar "\.|S-S"
d4 4 4 4
\bar "S.|:-S"
e4 4 4 4 \break
\bar "S.|:-S"
f4 4 4 4
\bar "S.|:

This page contains musical notation with various notes and bars.
Many of the repeat and segno bar lines above can be inserted automatically by \repeat commands (see Section 1.4 [Repeats], page 171).

New bar line types can be defined with \defineBarLine:

\defineBarLine bar-type #'(eol-bar bol-bar span-bar)

Briefly, the bar-type argument specifies the bar line glyph to use in the middle of a staff line, and also serves as the name by which this bar line type is referenced. The other arguments specify the bar line glyph to use at the end or beginning of a line, or in the span between multiple staves. Setting any of eol-bar, bol-bar, or span-bar to #t means to use the same bar line type specified by bar-type for the corresponding position. Setting them to #f means to print no bar line in the corresponding position.

In more detail, the bar-type argument is a string that serves a dual purpose: It specifies the bar line glyph to be printed when it occurs in the middle of a staff line; and it identifies the bar line object that can be invoked with \bar bar-type. It must have the form midglyph or midglyph-annotation (with a literal hyphen), where annotation is an arbitrary string, and midglyph is a string each of whose characters is the name of one of the predefined bar line elements listed below. The resulting bar line glyph to be used in the middle of a line is the concatenation of these elements. For example, a bar-type of either ";" or ";-other" specifies a compound bar line consisting of a dotted line (’;’) paired with a solid line (’;’):

\defineBarLine ";" #'(#t #t #t)
\defineBarLine ";-other" #'(#f #f #f)
\fixed c' {
 \bar ";" a1 \bar ";" b1 \bar ";-other" c'1 \bar ";-other"
}

The annotation (’other’ in the second example above) is used to distinguish this bar type from others with the same midglyph but different line break or multi-staff behavior. (By convention, the string specified in eol-bar is often used as the annotation, so we might have named the second example ";-f".)

The arguments eol-bar and bol-bar specify the bar line to be printed at the end of the line and beginning of the next line, when \bar bar-type occurs at a line break. bol-bar also applies when \bar bar-type is used at the beginning of a score. The format of these arguments is the same as that of bar-type. The string of bar line elements specifies the bar line glyph to print at the corresponding line position. In addition, either of these arguments can be #t as a shorthand for copying the value of bar-type; or #f to print no bar line. For example, all of the bar line
types in this example print a dotted-solid line pair in the middle of a staff line, but have different behavior at ends or beginnings of lines:

\defineBarLine "|" #'(#t #t #t)
\defineBarLine "|" #'("|." "||" #f)
\defineBarLine ";|-A" #'("|." "||" #f)
\defineBarLine ";|-B" #'(#t #f #f)
\defineBarLine ";|-C" #'(#f #t #f)

\relative c'' {
 \bar "|" \textMark "|;|" a1 \bar ";|-A" \textEndMark "|;|" \break
 b1 \bar ";|-B" b \bar ";|-B" \textEndMark "|;|" \break
 c1 \bar ";|-C" c \bar ";|-C" \textEndMark "|;|" \break
 d1 \bar "|" \textEndMark "|;|"
}

Note: The eol-bar or bol-bar strings may be names of previously defined bar line types. In a single staff context, it does not matter: the bar line elements in the given string are used regardless of any features of the defined bar line named by the string. In particular, any annotation is ignored in this context. However, in a multi-staff system it is important that eol-bar and bol-bar refer to previously defined bar line types (including \textMark itself), or be #t or #f. This is explained in more detail below.

The argument span-bar has an effect only in multi-staff systems (see \textMark {Grouping staves}, page 221), where it specifies what to print between grouped staves. This argument should be a string of bar line elements, of the same length as bar-type or shorter. (Extra elements are ignored.) Each element will be printed in line with the corresponding element of bar-type. A space character (‘ ’) can be used to omit a bar line element but leave space for it. Setting span-bar to #t makes it the same as the mid-line glyph. Setting it to #f omits the span bar, and setting it to " " (an empty string) makes a zero-width span bar. Here are some examples:

\defineBarLine ";|!-A" #'(#t #t "!|"
\defineBarLine ";|!-B" #'(#t #t "!|
\defineBarLine ";|!-C" #'(#t #t)
At line breaks, instead of using span-bar, the bar line types referenced by eol-bar and bol-bar are used to determine the span bar to print. In the context of a staff group, if eol-bar and bol-bar do not refer to defined bar line types, LilyPond issues a warning, and no span bar is printed at line breaks. It is allowed for eol-bar or bol-bar to be #f, in which case no span bar is printed at the corresponding line position. These arguments can also be #t, or equivalently, equal to bar-type, in which case the current span-bar does determine the span bar to print at the corresponding line position:

\defineBarLine "|!-t" #'(#t #t #t)
\defineBarLine "|!-t" #'(#t #t #t)
\defineBarLine ";|!-bad" #'("|" "|" #t) \% fails at line breaks
\defineBarLine ";|!-good" #'("|!-t" "|!-t" #t)
\relative c' {
 \new StaffGroup <<
 \new Staff {
 \bar ";|!-good"
 a1 \bar ";|!-good"
 % \bar ";|!-bad" \% "WARNING: No span bar glyph defined..."
 b1 \bar ";|!-good"
 }
 \new Staff {
 a1 b1
 }
 >>>
}
Note: If span-bar is a string, it should contain only bar line elements, or space (‘ ’), and not an annotation such as allowed in the other arguments. If span-bar contains an annotation, LilyPond issues a warning. The one exception is that it may be equal to bar-type, in which case no warning is issued even if bar-type includes an annotation.

All the available bar line elements are shown below. Most also have predefined bar types (for arguments to \bar) that reference them individually. Some elements are primarily intended to be combined with others and so do not have predefined individual bar types.

\defineBarLine ":" #'(#f #t #f)
\defineBarLine ":-" #'(#t #f #t)
\defineBarLine ":[" #'(#f #t #f)
\defineBarLine ":]" #'(#t #f #f)

The "=" bar line provides a double span bar line for use in combination with the segno sign. Using it as a stand-alone double thin bar line is not recommended; \bar "||" is preferred.

If additional elements are needed, LilyPond provides a simple way to define them. For more information on modifying or adding bar lines, see file scm/bar-line.scm.

In scores with many staves, a \bar command in one staff is automatically applied to all staves. The resulting bar lines are connected between different staves of a StaffGroup, PianoStaff, or GrandStaff.
The bar type used for automatically inserted measure bar lines is "|". This may be changed at any time with `{set Timing.measureBarType = bartype}`.

It is also possible to set different types of bar lines in a score with multiple staves, using one of the possible commands or properties explained below (see [Automatic bar lines], page 117). Of course this may lead to a mismatch of bar lines and span bars, due to their different width.

Usually bar lines are left-aligned (disregarding colon signs as in repeat bar lines). To get them right-aligned the command

```
\once \override Context.BarLine.right-justified = ##t
```

needs to be applied, where `Context` is a context suitable for multiple staves, like `Score`, `StaffGroup`, `Grandstaff`, etc.

```
\new StaffGroup
<<
  \new Staff = "a" {
    b1 b b
  } <<
  \textMark "BarLines right-justified" b b
  \new Staff \with { alignAboveContext = "b" }
  {
    \override StaffGroup.BarLine.right-justified = ##t
    b
    \section
  }
>>

\new Staff = "b" { b \section }
\new Staff = "c" { b b \section b b b \section }
>>
```
After a line-break bar lines are never right-aligned. For mid-line and right-aligned bar lines the anchor-point (used to align BarNumber, RehearsalMark, etc.) moves accordingly.

See also
Notation Reference: Section 4.3.1 [Line breaking], page 621, Section 1.4 [Repeats], page 171, [Grouping staves], page 221.

Installed Files: scm/bar-line.scm.
Snippets: Section “Rhythms” in Snippets.
Internals Reference: Section “BarLine” in Internals Reference (created at Staff level), Section “SpanBar” in Internals Reference (across staves), Section “Timing_translator” in Internals Reference (for Timing properties).

Automatic bar lines
Various commands other than \bar can also create bar lines as part of their effect. The bar lines created in these cases can be changed by setting context properties. If a property is set to ‐ () or is unset, it is ignored; otherwise, the value must be a predefined bar type or one previously defined with the \defineBarLine command (see [Bar lines], page 107).

Multiple reasons for creating different automatic bar lines may apply at the same time. Conflicts are resolved in part by providing properties for predetermined combinations and in part by a priority scheme. The table below presents the available properties in order of increasing priority.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>underlyingRepeatBarType</td>
<td>Used at points of repetition or departure where no bar line would otherwise appear. This is expected when repeated sections are not aligned to measures. Several commands employ this bar type: \codaMark, \inStaffSegno, \repeat segno, \repeat volta, and \segnoMark.</td>
</tr>
<tr>
<td>caesuraType underlying-bar-line</td>
<td>Used at \caesura; see [Phrase bar lines in hymn tunes], page 376.</td>
</tr>
<tr>
<td>measureBarType</td>
<td>Used at a measure boundary.</td>
</tr>
<tr>
<td>caesuraType bar-line</td>
<td>Used at \caesura; see [Phrase bar lines in hymn tunes], page 376.</td>
</tr>
<tr>
<td>sectionBarType</td>
<td>Used at a section break created by \section.</td>
</tr>
</tbody>
</table>
fineBarType
 Used at \fine.

doubleRepeatBarType
doubleRepeatSegnoBarType
doubleRepeatBarType
doubleRepeatSegnoBarType
fineSegnoBarType
fineStartRepeatSegnoBarType
segnoBarType
startRepeatBarType
startRepeatSegnoBarType

Only one of these bar types is used at a time; which one is used depends on the structure of the piece.

Properties with startRepeat or endRepeat in the name are used at the start or end of a repeated section created by \repeat volta, and properties with doubleRepeat in the name are used where the end of one repeated section and the start of another coincide.

Properties with segno in the name are used at an in-staff segno, which can be created by \repeat segno or \segnoMark when the segnoStyle property is set to bar-line, or created by \inStaffSegno.

Properties with fine in the name are used at \fine.

Priority applies independently to beginning-, middle-, and end-of-line bar lines, allowing a lower-priority bar line to appear where higher-priority bar types have no glyphs defined (see [Bar lines], page 107).

\fixed c' {
 c1 \section \break
 \repeat volta 2 d1
}

\relative c' {
 \repeat volta 2 { c1 }
 \set Score.doubleRepeatBarType = #":::
 \repeat volta 2 { c1 }
 \set Score.doubleRepeatBarType = #":|
 \repeat volta 2 { c1 }
 \set Score.doubleRepeatBarType = #"::
 \repeat volta 2 { c1 }
}

Selected Snippets

Setting the double repeat default for volte

There are three different styles of double repeats for volte, that can be set using doubleRepeatBarType.

\relative c' {
 \repeat volta 2 { c1 }
 \set Score.doubleRepeatBarType = #":::
 \repeat volta 2 { c1 }
 \set Score.doubleRepeatBarType = #":|
 \repeat volta 2 { c1 }
 \set Score.doubleRepeatBarType = #"::
 \repeat volta 2 { c1 }

Bar numbers

Bar numbers are typeset by default at the start of every line except the first line. The number itself is stored in the `currentBarNumber` property, which is normally updated automatically for every measure. It may also be set manually:

```latex
\relative c' {
  c1 c c c
  \break
  \set Score.currentBarNumber = #50
  c1 c c c
}
```

The default behavior of only printing bar numbers at the start of every line can be changed through the `break-visibility` property of `BarNumber`. This takes three values which may be set to `#t` or `#f` to specify whether the corresponding bar number is visible or not. The order of the three values is end of line visible, middle of line visible, beginning of line visible. In the following example bar numbers are printed at all possible places:

```latex
\relative c' {
  \override Score.BarNumber.break-visibility = ##(#t #t #t)
  \set Score.currentBarNumber = #11
  c1 | c | c | c |
  \break
  c1 | c | c | c |
}
```

Selected Snippets
Chapter 1: Musical notation

Printing the bar number for the first measure

By default, the first bar number in a score is suppressed if it is less than or equal to 1. By setting `barNumberVisibility` to `all-bar-numbers-visible`, any bar number can be printed for the first measure and all subsequent measures.

```
\layout {
  \indent = 0
  \ragged-right = ##t
}
\relative c' {
  \set Score.barNumberVisibility = #all-bar-numbers-visible
  c1 | d | e | f \break
  g1 | e | d | c
}
```

Printing bar numbers at regular intervals

By setting the `barNumberVisibility` property, bar numbers can be printed at regular intervals. Here the bar numbers are printed every two measures except at the end of the line.

```
\relative c' {
  \override Score.BarNumber.break-visibility = #end-of-line-invisible
  \set Score.currentBarNumber = #11
  % Print a bar number every second measure
  \set Score.barNumberVisibility = #(every-nth-bar-number-visible 2)
  c1 | c | c | c | c
  \break
  c1 | c | c | c | c
}
```

Printing bar numbers with changing regular intervals

Using the `set-bar-number-visibility` context function, bar number intervals can be changed.

```
\relative c' {
  \override Score.BarNumber.break-visibility = #end-of-line-invisible
  \context Score \applyContext #(set-bar-number-visibility 4)
  \repeat unfold 10 c'1
  \context Score \applyContext #(set-bar-number-visibility 2)
  \repeat unfold 10 c
```
Printing bar numbers for broken measures

By default a BarNumber of a broken measure is not repeated at the beginning of the new line. Use first-bar-number-invisible-save-broken-bars for barNumberVisibility to get a parenthesized BarNumber there.

```latex
\layout {
  \context {
    \Score
    barNumberVisibility = \first-bar-number-invisible-save-broken-bars
    \override BarNumber.break-visibility = \##f\#t\#t
  }
}

\relative c' {
  c1 | d | e | f2 \bar "" \break
  fis | g1 | e2 \bar "" \break
  <>"reenabled default"
  % back to default -
  % \unset Score.barNumberVisibility would do so as well
  \set Score.barNumberVisibility =
  \first-bar-number-invisible-and-no-parenthesized-bar-numbers
  es | d1 | c
}
```

```
\relative c' {
  c1 | d | e | f2 \bar "" \break
  fis | g1 | e2 \bar "" \break
  <>"reenabled default"
  % back to default -
  % \unset Score.barNumberVisibility would do so as well
  \set Score.barNumberVisibility =
  \first-bar-number-invisible-and-no-parenthesized-bar-numbers
  es | d1 | c
}
```
Printing bar numbers using modulo-bar-number-visible

If the remainder of the division of the current BarNumber by the first argument of modulo-bar-number-visible equals its second argument print the BarNumber.

Useful to print the BarNumber at certain distances, p.e:

- (modulo-bar-number-visible 3 2) -> prints 2,5,8
- (modulo-bar-number-visible 4 2) -> prints 2,6,10
- (modulo-bar-number-visible 3 1) -> prints 3,5,7
- (modulo-bar-number-visible 5 2) -> prints 2,7,12

```latex
\layout {
  \context {
    \Score
    \override BarNumber.break-visibility = ##(#f #t #t)
    barNumberVisibility = #(modulo-bar-number-visible 3 2)
  }
}
```

```latex
\relative c' {
  c1 | d | e | f \break
  g1 | e | d | c
}
```

Printing bar numbers inside boxes or circles

Bar numbers can also be printed inside boxes or circles.

```latex
\relative c' {
  \% Prevent bar numbers at the end of a line and permit them elsewhere
  \override Score.BarNumber.break-visibility = #end-of-line-invisible
  \set Score.barNumberVisibility = #(every-nth-bar-number-visible 4)

  \% Increase the size of the bar number by 2
  \override Score.BarNumber.font-size = #2

  \% Draw a box round the following bar number(s)
  \override Score.BarNumber.stencil
  = #(make-stencil-boxer 0.1 0.25 ly:text-interface::print)
  \repeat unfold 5 { c1 }

  \% Draw a circle round the following bar number(s)
  \override Score.BarNumber.stencil
  = #(make-stencil-circler 0.1 0.25 ly:text-interface::print)
  \repeat unfold 4 { c1 } \bar "|."}
```
Alternative bar numbering

Two alternative methods for bar numbering can be set, especially for when using repeated music.

```
music = \relative c' {
    \repeat volta 3 {
        c4 d e f |
        \alternative {
            \volta 1 { c4 d e f | c2 d \break }
            \volta 2 { f4 g a b | f4 g a b | f2 a | \break }
            \volta 3 { c4 d e f | c2 d } }
        c1 \bar "|."
    }
}
\markup "default"
{ 
    \music 
}
\markup \typewriter "'numbers"
{ 
    \set Score.alternativeNumberingStyle = #'numbers
    \music 
}
\markup \typewriter "'numbers-with-letters"
{ 
    \set Score.alternativeNumberingStyle = #'numbers-with-letters
    \music 
}
default
`
Aligning bar numbers

Bar numbers by default are right-aligned to their parent object. This is usually the left edge of a line or, if numbers are printed within a line, the left hand side of a bar line. The numbers may also be positioned directly over the bar line or left-aligned to the bar line.

```
\relative c' {
 \set Score.currentBarNumber = #111
 \override Score.BarNumber.break-visibility = #all-visible
 % Increase the size of the bar number by 2
 \override Score.BarNumber.font-size = #2
 % Print a bar number every second measure
 \set Score.barNumberVisibility = #(every-nth-bar-number-visible 2)
 c1 | c1
 % Center-align bar numbers
 \override Score.BarNumber.self-alignment-X = #CENTER
 c1 | c1
 % Left-align bar numbers
 \override Score.BarNumber.self-alignment-X = #LEFT
 c1 | c1
}
```
Removing bar numbers from a score

Bar numbers can be removed entirely by removing the Bar_number_engraver from the Score context.

\layout {
  \context {
    \Score
    \omit BarNumber
    \%
    \%remove "Bar_number_engraver"
  }
}

\relative c' { c4 c c c \break c4 c c c
}

Measure-centered bar numbers

For film scores, a common convention is to center bar numbers within their measure. This is achieved through setting the centerBarNumbers context property to true. When this is used, the type of the bar number grobs is CenteredBarNumber rather than BarNumber.

This example demonstrates a number of settings: the centered bar numbers are boxed and placed below the staves.

\layout {
  \context {
    \Score
    centerBarNumbers = ##t
    barNumberVisibility = #all-bar-numbers-visible
    \override CenteredBarNumber.stencil
      = #(make-stencil-boxer 0.1 0.25 ly:text-interface::print)
    \override CenteredBarNumberLineSpanner.direction = #DOWN
  }
}

\new StaffGroup <<
  \new Staff \relative c' { d4-. f8( e d4) bes'--> |
  d,.-. f8( e d4) cis'--> |
  g-. f8( d e4) g-> |
  a, i--> |
}
  \new Staff \relative c { \clef bass

Chapter 1: Musical notation

\begin{verbatim}
d4 f8 e d2- |
4 f8 e d2- |
\end{verbatim}

See also
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “BarNumber” in Internals Reference, Section “CenteredBarNumber” in Internals Reference, Section “CenteredBarNumberLineSpanner” in Internals Reference, Section “Bar_number_engraver” in Internals Reference, Section “Centered_bar_number_align_engraver” in Internals Reference.

Known issues and warnings
Bar numbers may collide with the top of the StaffGroup bracket, if there is one. To solve this, the padding property of BarNumber can be used to position the number correctly. See Section “StaffGroup” in Internals Reference and Section “BarNumber” in Internals Reference for more.

Bar and bar number checks
Bar checks help detect errors in the entered durations. A bar check may be entered using the bar symbol, |, at any place where a bar line is expected to fall. If bar check lines are encountered at other places, a list of warnings is printed in the log file, showing the line numbers and lines in which the bar checks failed. In the next example, the second bar check will signal an error.

\begin{verbatim}
\time 3/4 c2 e4 | g2 |
\end{verbatim}

An incorrect duration can result in a completely garbled score, especially if the score is polyphonic, so a good place to start correcting input is by scanning for failed bar checks and incorrect durations.

If successive bar checks are off by the same musical interval, only the first warning message is displayed. This allows the warning to focus on the source of the timing error.

Bar checks can also be inserted in lyrics:

\begin{verbatim}
\lyricmode {
  \time 2/4
  Twin -- kle | Twin -- kle |
}\end{verbatim}

Note that bar check marks in lyrics are evaluated at the musical moment when the syllable following the check mark is processed. If the lyrics are associated with the notes of a voice which has a rest at the beginning of a bar, then no syllable can be located at the start of that bar and a warning will be issued if a bar check mark is placed in the lyrics at that position.

It is also possible to redefine the action taken when a bar check or pipe symbol, |, is encountered in the input, so that it does something other than a bar check. This is done by assigning...
a music expression to "|". In the following example | is set to insert a double bar line wherever it appears in the input, rather than checking for end of bar.

"|" = \bar "||"
{
c'2 c' |
c'2 c'
c'2 c'
c'2 c'
}

When copying large pieces of music, it can be helpful to check that the LilyPond bar number corresponds to the original that you are entering from. This can be checked with \barNumberCheck, for example,
\barNumberCheck #123
will print a warning if the currentBarNumber is not 123 when it is processed.

See also
Snippets: Section “Rhythms” in Snippets.

Rehearsal marks
To print a rehearsal mark, use the \mark command.

\relative c' {
  c1 \mark \default
  c1 \mark \default
  c1 \mark \default
  c1 \mark \default
}

The mark is incremented automatically if you use \mark \default, but you can also use an integer argument to set the mark manually. The value to use is stored in the property rehearsalMark.

\relative c' {
  c1 \mark \default
  c1 \mark \default
  c1 \mark #8
  c1 \mark \default
  c1 \mark \default
}

---

Chapter 1: Musical notation

---

\bar "||"
{
c'2 c' |
c'2 c'
c'2 c'
c'2 c'
}
The letter ‘I’ is skipped in accordance with engraving traditions. If you wish to include the letter ‘I’, then use one of the following commands, depending on which style of rehearsal mark you want (letters only, letters in a hollow box, or letters in a hollow circle).

\set Score.rehearsalMarkFormatter = #format-mark-alphabet
\set Score.rehearsalMarkFormatter = #format-mark-box-alphabet
\set Score.rehearsalMarkFormatter = #format-mark-circle-alphabet

\relative c'' {
  \set Score.rehearsalMarkFormatter = #format-mark-box-alphabet
  c1 \mark \default
c1 \mark \default
c1 \mark #8
c1 \mark \default
c1 \mark \default
}

The style is defined by the property rehearsalMarkFormatter. It is a function taking the current mark (an integer) and the current context as argument. It should return a markup object. In the following example, rehearsalMarkFormatter is set to a predefined procedure. After a few measures, it is set to a procedure that produces a boxed number.

\relative c'' {
  \set Score.rehearsalMarkFormatter = #format-mark-numbers
  c1 \mark \default
c1 \mark \default
  \set Score.rehearsalMarkFormatter = #format-mark-box-numbers
  c1 \mark \default
  \set Score.rehearsalMarkFormatter = #format-mark-circle-numbers
  c1 \mark \default
  \set Score.rehearsalMarkFormatter = #format-mark-circle-letters
  c1
}

The file scm/translation-functions.scm contains the definitions of format-mark-letters (the default format), format-mark-box-letters, format-mark-numbers, and format-mark-box-numbers. These can be used as inspiration for other formatting functions.

You may use format-mark-barnumbers, format-mark-box-barnumbers, and format-mark-circle-barnumbers to get bar numbers instead of incremented numbers or letters.

For common tweaks to the positioning of rehearsal marks, see Section 1.8.2 [Formatting text], page 293. For more precise control, consider break-alignable-interface (see Section 5.4.9 [Aligning objects], page 715).

The file scm/translation-functions.scm contains the definitions of format-mark-numbers and format-mark-letters. They can be used as inspiration for other formatting functions.

Selected Snippets
Printing marks on every staff

Although text marks are normally only printed above the topmost staff, they may also be printed on every staff.

\score {
  \context {
    \Score
    \remove Mark_engraver
    \remove Text_mark_engraver
    \remove Staff_collecting_engraver
  }
  \context {
    \Staff
    \consists Mark_engraver
    \consists Text_mark_engraver
    \consists Staff_collecting_engraver
  }
}

\context {  
  \Clip  
  \Notehead {c'} 
  \Notehead {c''}
  \Notehead {c'} 
}

See also

Notation Reference: Section A.8 [The Emmentaler font], page 743, Section 1.8.2 [Formatting text], page 293, Section 5.4.9 [Aligning objects], page 715, [Music notation inside markup], page 307, [Metronome marks], page 77, [Section labels], page 287.

Installed Files: scm/translation-functions.scm.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “AdHocMarkEvent” in Internals Reference, Section “RehearsalMark” in Internals Reference, Section “RehearsalMarkEvent” in Internals Reference.

Measure counts

Measure counts are a way to number consecutive measures, for example as an aid for musicians to count measures in written-out repeats. Using this feature requires adding the Measure_counter_engraver to a context type, usually Staff or Score.

\context { 
  \Staff 
  \consists Measure_counter_engraver 
}
Broken measures are numbered in parentheses.

Compressed multi-measure rests receive special treatment: the full measure range is shown.
Measure counters honor alternative numbering styles. If the style is numbers-with-letters, they render best with a textual font.
Chapter 1: Musical notation

Predefined commands
\startMeasureCount, \stopMeasureCount.

See also
Notation Reference: Section 5.1.4 [Modifying context plug-ins], page 671, [Compressing empty measures], page 252, Section 4.3 [Breaks], page 621, [Bar numbers], page 119.
Internals Reference: Section “Measure_counter_engraver” in Internals Reference, Section “MeasureCounter” in Internals Reference, Section “measure-counter-interface” in Internals Reference.

Section divisions
The \section command marks a point where one section of music ends and another begins. It does not have to be followed by more music: it may also be used to emphasize that the written end of the music is not the end of the piece, such as at a D.C. instruction or where one movement continues into the next without a break. \section normally creates a double bar line, but its effect can depend on other notation, e.g., repeat bar lines.

The \fine command ends the piece, normally with a final bar line. It is not limited to use at the written end of the music: it may also appear inside \repeat (see [Al-fine repeats], page 176).

A section can optionally be named with \sectionLabel (see [Section labels], page 287).
\fixed c' {
    f1
    \section
    \sectionLabel "Refrain"
    g1
    a1
    \fine
}

For details on interactions of \fine and \section bar lines with other types of bar lines, and options for changing their appearance, see [Automatic bar lines], page 117.

See also
Notation Reference: [Automatic bar lines], page 117, [Divisiones], page 509, [Al-fine repeats], page 176, [Section labels], page 287.
Internals Reference: Section “FineEvent” in Internals Reference, Section “SectionEvent” in Internals Reference.

1.2.6 Special rhythmic concerns
Grace notes

Grace notes are musical ornaments, printed in a smaller font, that take up no additional logical time in a measure.

\relative {
  c''4 \grace b16 a4 (\grace { b16 c16 } a2)}

There are three other types of grace notes possible; the *acciaccatura* – an unmeasured grace note indicated by a slurred note with a slashed stem – and the *appoggiatura*, which takes a fixed fraction of the main note it is attached to and prints without the slash. It is also possible to write a grace note with a slashed stem, like the *acciaccatura* but without the slur, so as to place it between notes that are slurred themselves, using the \slashedGrace function.

\relative {
  \acciaccatura d''8 c4
  \appoggiatura e8 d4
  \acciaccatura { g16 f } e2
  \slashedGrace a,8 g4
  \slashedGrace b16 a4 (\slashedGrace b8 a2) }

The placement of grace notes is synchronized between different staves. In the following example, there are two sixteenth grace notes for every eighth grace note

<<
  \new Staff \relative { e''2 \grace { c16 d e f } e2 }
  \new Staff \relative { c''2 \grace { g8 b } c2 }>>

If you want to end a note with a grace, use the \afterGrace command. It takes two arguments: the main note, and the grace notes following the main note.

\relative { c''1 \afterGrace d1 \afterGrace { c16[ d] } c1 }
This will place the grace notes after the start of the main note. The point of time where the grace notes are placed is a given fraction of the main note’s duration. The default setting of \afterGraceFraction = 3/4 may be redefined at top level. Individual \afterGrace commands may have the fraction specified right after the command itself instead.

The following example shows the results from setting with the default space, setting it at 15/16, and finally at 1/2 of the main note.

\new Staff \relative {
  c''1 \afterGrace d1 { c16[ d] } c1
}
\new Staff \relative {
  c''1 \afterGrace 15/16 d1 { c16[ d] } c1
}
\new Staff \relative {
  c''1 \afterGrace 1/2 d1 { c16[ d] } c1
}

The effect of \afterGrace can also be achieved using spacers. The following example places the grace note after a space lasting 7/8 of the main note.

\new Voice \relative {
    \acciaccatura {
      \stemDown
        { d''1\trill_( } 
        { s2 s4. \grace { c16 d } } 
    }
  c1)
}

A \grace music expression will introduce special typesetting settings, for example, to produce smaller type, and set directions. Hence, when introducing layout tweaks to override the special settings, they should be placed inside the grace expression. The overrides should also be reverted inside the grace expression. Here, the grace note’s default stem direction is overridden and then reverted.

\new Voice \relative {
  \acciaccatura {
    \stemDown
Selected Snippets

Using grace note slashes with normal heads

The slash through the stem found in acciaccaturas can be applied in other situations.

\relative c'' {
  \override Flag.stroke-style = \#"grace"
  c8 (\d2 \e8 (\f4))
}

Tweaking grace layout within music

The layout of grace expressions can be changed throughout the music using the functions \add-grace-property and \remove-grace-property.

The following example undefines the Stem direction for this grace, so that stems do not always point up, and changes the default note heads to crosses.

\relative c'' {
  \new Staff {
    $(\remove-grace-property 'Voice 'Stem 'direction)
    $(\add-grace-property 'Voice 'NoteHead 'style 'cross)
    \new Voice {
      \acciaccatura { f16 } g4
      \grace { d16 e } f4
      \appoggiatura { f,32 g a } e2
    }
  }
}

Redefining grace note global defaults

The global defaults for grace notes are stored in the following identifiers.

startGraceMusic
stopGraceMusic
startAcciaccaturaMusic
stopAcciaccaturaMusic
startAppoggiaturaMusic
stopAppoggiaturaMusic
They are defined in file ly/grace-init.ly. By redefining them other effects may be obtained.

```latex
\begin{verbatim}
startAcciaccaturaMusic = {
 \override Flag.stroke-style = #"grace"
 \slurDashed
}

stopAcciaccaturaMusic = {
 \revert Flag.stroke-style
 \slurSolid

}
\end{verbatim}
```

\relative c'' { 
  \acciaccatura d8 c1 
}

---

**Positioning grace notes with floating space**

Setting the property `strict-grace-spacing` makes the musical columns for grace notes 'floating', i.e., decoupled from the non-grace notes: first the normal notes are spaced, then the (musical columns of the) graces are put left of the musical columns for the main notes.

```latex
\begin{verbatim}
\relative c'' {
 <<
 \override Score.SpacingSpanner.strict-grace-spacing = ##t
 \new Staff \new Voice {
 \afterGrace c4 { c16[c8 c16] }
 c8[\grace { b16 d } c8]
 c4 r
 }
 \new Staff {
 c16 c c c c c c c c c c4 r
 }
 >>
}
\end{verbatim}
```

---

**See also**


Notation Reference: [Scaling durations], page 57, [Manual beams], page 103.

Installed Files: ly/grace-init.ly.
Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “GraceMusic” in Internals Reference, Section “Grace_beam_engraver” in Internals Reference, Section “Grace_auto_beam_engraver” in Internals Reference, Section “Grace_engraver” in Internals Reference, Section “Grace_spacing_engraver” in Internals Reference.

Known issues and warnings
A multi-note beamed acciaccatura is printed without a slash, and looks exactly the same as a multi-note beamed appoggiatura.

Grace note synchronization can also lead to surprises. Staff notation, such as key signatures, bar lines, etc., are also synchronized. Take care when you mix staves with grace notes and staves without, for example,

```
<<
\new Staff \relative { e''4 \section \grace c16 d2. }
\new Staff \relative { c''4 \section d2. }
>>
```

This can be remedied by inserting grace skips of the corresponding durations in the other staves. For the above example

```
<<
\new Staff \relative { e''4 \section \grace c16 d2. }
\new Staff \relative { c''4 \section \grace s16 d2. }
>>
```

Please make sure that you use the \grace command for the spacer part, even if the visual part uses \acciaccatura or \appoggiatura because otherwise an ugly slur fragment will be printed, connecting the invisible grace note with the following note.

Grace sections should only be used within sequential music expressions. Nesting or juxtaposing grace sections is not supported, and might produce crashes or other errors.

Each grace note in MIDI output has a length of 1/4 of its actual duration. If the combined length of the grace notes is greater than the length of the preceding note a “Going back in MIDI time” error will be generated. Either make the grace notes shorter in duration, for example:

c'8 \acciaccatura { c'8[ d' e' f' g' ] }

becomes:

c'8 \acciaccatura { c'16[ d' e' f' g' ] }

Or explicitly change the musical duration:

\code{c'8 \acciaccatura \scaleDurations 1/2 { c'8[ d' e' f' g'] }}

See [Scaling durations], page 57.

**Aligning to cadenzas**

In an orchestral context, cadenzas present a special problem: when constructing a score that includes a measured cadenza or other solo passage, all other instruments should skip just as many notes as the length of the cadenza, otherwise they will start too soon or too late.

One solution to this problem is to use the functions \code{mmrest-of-length} and \code{skip-of-length}. These Scheme functions take a defined piece of music as an argument and generate a multi-measure rest or \code{skip} exactly as long as the piece.

\code{MyCadenza = \relative{c'4 d8 e f g g4 f2 g4 g}}

\code{\new GrandStaff <<}
\code{\new Staff { \MyCadenza c'1 \MyCadenza c'1}}
\code{\new Staff { #(mmrest-of-length MyCadenza) c'1 #(skip-of-length MyCadenza) c'1}}
\code{>>}

Another solution is to use the \code{\skip} command.

\code{MyCadenza = \fixed c' \repeat volta 2 { d8 e f g g4 f4 }}

\code{music = <<}
\code{\new Staff { \MyCadenza c'1}}
\code{\new Staff { \skip \MyCadenza c'1}}
Chapter 1: Musical notation

\[ \text{unfoldRepeats \ music} \]

\begin{align*}
\text{\flat} & c'1 \ c4 \ |
\text{\flat} & c1 \ c4 \ |
\text{\flat} & c4 \ c
\end{align*}

\[ \text{\flat} \]

\[ \text{\flat} \]

See also
Snippets: Section “Rhythms” in Snippets.

Time administration
Time is administered by the Timing_translator, which by default is to be found in the Score context. An alias, Timing, is added to the context in which the Timing_translator is placed. To ensure that the Timing alias is available, you may need to explicitly instantiate the containing context (such as Voice or Staff).

The following properties of Timing are used to keep track of timing within the score.

\begin{itemize}
\item \texttt{currentBarNumber}
\begin{itemize}
\item The current measure number. For an example showing the use of this property see [Bar numbers], page 119.
\end{itemize}
\item \texttt{measureLength}
\begin{itemize}
\item The length of the measures in the current time signature. For a 4/4 time this is 1, and for 6/8 it is 3/4. Its value determines when bar lines are inserted and how automatic beams should be generated.
\end{itemize}
\item \texttt{measurePosition}
\begin{itemize}
\item The point within the measure where we currently are. This quantity is reset by subtracting \texttt{measureLength} whenever \texttt{measureLength} is reached or exceeded. When that happens, \texttt{currentBarNumber} is incremented.
\end{itemize}
\item \texttt{timing}
\begin{itemize}
\item If set to true, the above variables are updated for every time step. When set to false, the engraver stays in the current measure indefinitely.
\end{itemize}
\end{itemize}

Timing can be changed by setting any of these variables explicitly. In the next example, the default 4/4 time signature is printed, but \texttt{measureLength} is set to 5/4. At 4/8 through the third measure, the \texttt{measurePosition} is advanced by 1/8 to 5/8, shortening that bar by 1/8. The next bar line then falls at 9/8 rather than 5/4.

\begin{verbatim}
\new Voice \relative \{ \\
\set Timing.measureLength = \musicLength 4*5 \\
c'1 c4 | \\
c1 c4 | \\
c4 c \\
\set Timing.measurePosition = \musicLength 8*5 \\
b4 b b8 | \\
c4 c1 | \\
\}
\end{verbatim}
As the example illustrates, `\musicLength` computes the musical length of the given music. For example, `\musicLength 8` is the length of an eighth note and `\musicLength {8, 8, 8}` is the length of seven sixteenth notes.

**See also**

Notation Reference: [Bar numbers], page 119, [Unmetered music], page 82.

Snippets: Section “Rhythms” in Snippets.

Internals Reference: Section “Timing translator” in Internals Reference, Section “Score” in Internals Reference.

### 1.3 Expressive marks

This section lists various expressive marks that can be created in a score.

#### 1.3.1 Expressive marks attached to notes

This section explains how to create expressive marks that are attached to notes: articulations, ornamentations, and dynamics. Methods to create new dynamic markings are also discussed.

**Articulations and ornamentations**

A variety of symbols that denote articulations, ornamentations, and other performance indications can be attached to a note using this syntax:

```latex
\texttt{note\name}
```
The possible values for name are listed in Section A.15 [List of articulations], page 833. For example:

\relative {
  c''4\staccato c\mordent b2\turn 
  c1\fermata
}

\relative {
  c''4-^- c-- c-- c--!
  c4-> c-- c2--
}

Some of these articulations have shorthands for easier entry. Shorthands are appended to the note name, and their syntax consists of a dash - followed by a symbol signifying the articulation. Predefined shorthands exist for marcato, stopped, tenuto, staccatissimo, accent, staccato, and portato. Their corresponding output appears as follows:

The rules for the default placement of articulations are defined in scm/script.scm. Articulations and ornamentations may be manually placed above or below the staff; see Section 5.4.1 [Direction and placement], page 698.

The type of grob that an articulation creates depends on what it is attached to.

- On notes or ordinary rests, articulations create Script objects.
- On multi-measure rests, articulations create MultiMeasureRestScript objects.
- On \caesura, articulations create CaesuraScript objects.

In addition to articulations, text and markups can be attached to notes. See [Text scripts], page 283.

For more information about the ordering of Script and TextScript grobs that are attached to notes, see Section “Placement of objects” in Learning Manual.

Selected Snippets
Modifying default values for articulation shorthand notation

The shorthands are defined in ‘ly/script-init.ly’, where the variables dashHat, dashPlus, dashDash, dashBang, dashLarger, dashDot, and dashUnderscore are assigned default values. The default values for the shorthands can be modified. For example, to associate the \dashPlus shorthand with the trill symbol instead of the default + symbol, assign the value \trill to the variable dashPlus:

\paper { tagline = ##f }
\relative c'' { c1\dashPlus }
dashPlus = \trill
\relative c'' { c1\dashPlus }

Controlling the vertical ordering of scripts

The vertical ordering of scripts is controlled with the 'script-priority property. The lower this number, the closer it will be put to the note. In this example, the TextScript (the sharp symbol) first has the lowest priority, so it is put lowest in the first example. In the second, the prall trill (the Script) has the lowest, so it is on the inside. When two objects have the same priority, the order in which they are entered determines which one comes first.

\relative c''' {
  \once \override TextScript.script-priority = #-100
  a2\after \prall\markup { \sharp }
}

\relative c''' {
  \once \override Script.script-priority = #-100
  a2\after \prall\markup { \sharp }
}

Creating a delayed turn

Creating a delayed turn, where the lower note of the turn uses the accidental, requires several overrides. The outside-staff-priority property must be set to #f, as otherwise this would take precedence over the avoid-slur property. Changing the fractions 2/3 and 1/3 adjusts the horizontal position.

\relative c'' {
  \after 2*2/3 \turn c2( d4) r |
  \after 4 \turn c4.( d8)
  \after 4
}
\once \set suggestAccidentals = ##t
\once \override AccidentalSuggestion.outside-staff-priority = ##f
\once \override AccidentalSuggestion.avoid-slur = #'inside
\once \override AccidentalSuggestion.avoid-slur = 
\once \override AccidentalSuggestion.script-priority = -1
\once \hideNotes

cis8\turn \noBeam
}
d4. ( e8)
}

See also

Notation Reference: [Text scripts], page 283, Section 5.4.1 [Direction and placement], page 698, Section A.15 [List of articulations], page 833, [Trills], page 168.
Installed Files: scm/script.scm.
Snippets: Section “Expressive marks” in Snippets.

Dynamics

Absolute dynamic marks are specified using a command after a note, such as c4\ff. The available dynamic marks are \pppp, \ppp, \pp, \p, \mp, \f, \ff, \fff, \ffff, \fp, \fz, \ff, \app, \appz, \rfz, \rfz, and \zn. Dynamic marks may be manually placed above or below the staff; see Section 5.4.1 [Direction and placement], page 698.

\relative c' {
  c2\ppp c\mp
  c2\rfz c\mf
  c2\_app c\ff
}

A crescendo mark is started with \< and terminated with \!, an absolute dynamic, or an additional crescendo or decrescendo mark. A decrescendo mark is started with \> and is also terminated with \!, an absolute dynamic, or another crescendo or decrescendo mark. \cr and \decr may be used instead of \< and \>; \endcr and \enddecr may be used instead of \! to end a crescendo or decrescendo mark, respectively. Hairpins are engraved by default using this notation.

\relative c' {

A hairpin that is terminated with `!` will end at the right edge of the note that has the `!` assigned to it. In the case where it is terminated with the start of another crescendo or decrescendo mark, it will end at the center of the note that has the next `<` or `>` assigned to it. The next hairpin will then start at the right edge of the same note instead of the usual left edge had it been terminated with `!` before. A hairpin ending on a downbeat will stop at the preceding bar line.

```latex
\relative {
 c''1< | c4 a c< a | c4 a c! a< | c4 a c a!}
```

Hairpins that are terminated with absolute dynamic marks instead of `!` will also be engraved in a similar way. However, the length of the absolute dynamic itself can alter where the preceding hairpin ends.

```latex
\relative {
 c''1< | c4 a c\mf a | c1< | c4 a c\ffff a}
```

Often, marks like crescendo or decrescendo should begin or end at some point of time during a sustained note. This can be achieved with `\after`, which can also be used to create delayed articulations or text scripts:

```latex
<<
\relative {
 \after 2 \< c'1
d4\f> e f g
 \after 2. \pp c,1
 \after 2. \f\text{"Fine."} f
}
\relative {
 \repeat unfold 12 c'4
```
Multiple instances of \after can be used to engrave multiple marks on one note. This is particularly useful when adding a crescendo and decrescendo to the same note:

\begin{verbatim}
relative {
  c''4< d\! e\> c\!
  \after 4 \< \after 2\> \after 2. \! f1 \textLengthOn
  \after 4 \> \after 2. "hush!" c1 g4\pp
}
\end{verbatim}

If the first in such a sequence of marks on a single note is supposed to coincide with the onset of the note, it is convenient to attach it to an empty chord <>. This way, all marks can be entered in their natural visual order:

\begin{verbatim}
{ <>
  \after 4 \> \after 2 \! c'1
  % easier to write and read than:
  \after 4 \> \after 2 \! c'1<
}
\end{verbatim}

The \espressivo command can also be used to indicate a crescendo and decrescendo on the same note. However, be warned that this is implemented as an articulation, not a dynamic.

\begin{verbatim}
relative {
  c''2 b4 a
  g\\espressivo
  \after 2. \espressivo c
}
\end{verbatim}
Textual crescendo marks begin with \cresc. Textual decrescendos begin with \decresc or \dim. Extender lines are engraved as required.

```
\relative {
 g'8\cresc a b c b c d e\mf |
 f8\decresc e d c e\> d c b |
 a1\dim - |
 a2. r4\! |
}
```

Textual marks for dynamic changes can also replace hairpins:

```
\relative c' {
 \crescTextCresc c4\< d e f\! |
 \dimTextDecresc g4\> e d c\! |
 \dimTextDecr e4\> d c b\! |
 \dimTextDim d4\> c b a\! |
 \crescHairpin \dimHairpin
 c4\< d\! e\> d\! |
}
```

To create new absolute dynamic marks or text that should be aligned with dynamics, see [New dynamic marks], page 151.

Vertical positioning of dynamics is handled by Section “DynamicLineSpanner” in Internals Reference.

A Dynamics context is available to engrave dynamics on their own horizontal line. Use spacer rests to indicate timing. (Notes in a Dynamics context will also take up musical time, but will not be engraved.) The Dynamics context can usefully contain some other items such as text scripts, text spanners, and piano pedal marks.

```
<<
 \new Staff \relative {
 c'2 d4 e |
 c4 e e,2 |
 g'4 a g a |
 c1 |
 }
 \new Dynamics {
 s1\< |
 s1\f |
 s2\dim s2-"rit." |
 }
```
Predefined commands
\dynamicUp, \dynamicDown, \dynamicNeutral, \crescTextCresc, \dimTextDim, \dimTextDecr, \dimTextDecresc, \crescHairpin, \dimHairpin.

Selected Snippets

### Setting hairpin behavior at bar lines
If the note which ends a hairpin falls on a downbeat, the hairpin stops at the bar line immediately preceding. This behavior can be controlled by overriding the 'to-barline property.

```latex
\relative c'' {
e4< e2.
e1!
\override Hairpin.to-barline = ##f
e4< e2.
e1! }
```

### Setting the minimum length of hairpins
If hairpins are too short, they can be lengthened by modifying the minimum-length property of the Hairpin object.

```latex
<<
{
\after 4 \after 2 \after 2. \! f'1
\override Hairpin.minimum-length = #8
\after 4 \after 2 \after 2. \! f'1
}
{
\repeat unfold 8 c'4
}
>>
```
Aligning the ends of hairpins to NoteColumn directions

The ends of hairpins may be aligned to the LEFT, CENTER or RIGHT of NoteColumn grobs by overriding the property endpoint-alignments, which is a pair of numbers representing the left and right ends of the hairpin. endpoint-alignments are expected to be directions (either -1, 0 or 1). Other values will be transformed with a warning. The right end of a hairpin terminating at a rest is not affected, always ending at the left edge of the rest.

```
\override Hairpin.endpoint-alignments = #'(1 . -1)
```

Moving the ends of hairpins

The ends of hairpins may be offset by setting the shorten-pair property of the Hairpin object. Positive values move endpoints to the right, negative to the left. Unlike the minimum-length property, this property only affects the appearance of the hairpin; it does not adjust horizontal spacing (including the position of bounding dynamics). This method is thus suitable for fine-tuning a hairpin within its allotted space.

```
\override Hairpin.shorten-pair = #'(2 . 2)
\override Hairpin.shorten-pair = #'(-2 . -2)
\once \override Hairpin.shorten-pair = #'(2 . 0)
```

Printing hairpins using al niente notation

Hairpin dynamics may be printed with a circled tip (“al niente” notation) by setting the circled-tip property of the Hairpin object to \#t.

```
relative c' \{
 \override Hairpin.circled-tip = ##t
 c2\< c\!
 c4\> c\< c2\!
}
```
Printing hairpins in various styles

Hairpin dynamics may be created in a variety of styles.

```latex
\relative c' {
 \override Hairpin.stencil = #flared-hairpin
 a4\p< a a a\f
 a4\p\f< a a a\ff
 a4\sfz< a a a\!
 \override Hairpin.stencil = #constante-hairpin
 a4\f< a a a\f
 a4\p\f< a a a\ff
 a4\sfz< a a a\!
 \override Hairpin.stencil = #flared-hairpin
 a4\> a a a\f
 a4\p\> a a a\ff
 a4\sfz\> a a a\!
 \override Hairpin.stencil = #constante-hairpin
 a4\> a a a\f
 a4\p\> a a a\ff
 a4\sfz\> a a a\!
}
```

Vertically aligned dynamics and textscripts

All DynamicLineSpanner objects (hairpins and dynamic texts) are placed with their reference line at least 'staff-padding' from the staff, unless other notation forces them to be farther. Setting 'staff-padding' to a sufficiently large value aligns the dynamics.

The same idea, together with \textLengthOn, is used to align the text scripts along their baseline.

```latex
\music = \relative c' {
 a'2\p b\f
 e4\p f\f\> g, b\p
 c2^-\markup { \huge gorgeous } c^-\markup { \huge fantastic }
}
```

{ 
\music 
\break 
\override DynamicLineSpanner.staff-padding = #3 
\textLengthOn
By default, LilyPond uses DynamicLineSpanner grobs to vertically align successive dynamic objects like hairpins and dynamic text. However, this is not always wanted. By inserting \breakDynamicSpan, which ends the alignment spanner prematurely, this vertical alignment can be avoided.

```
\relative c'' {
 g\ < |
 e'' \f \ > |
 c' \p }
```

Text style dynamic changes (such as cresc. and dim.) are printed with a dashed line showing their extent. This line can be suppressed in the following way:

```
\relative c'' {
 \override DynamicTextSpanner.style = #'none
 \crescTextCresc
 c1\ < | d | b | c!}
```

---

\override TextScript.staff-padding = #1
\music

---

```
\relative c'' {
 g\ < |
 e'' \f \ > |
 c' \p }
```

---

```
\relative c'' {
 \override DynamicTextSpanner.style = #'none
 \crescTextCresc
 c1\ < | d | b | c!}
```
Changing text and spanner styles for text dynamics

The text used for crescendos and decrescendos can be changed by modifying the context properties crescendoText and decrescendoText.

The style of the spanner line can be changed by modifying the 'style' property of DynamicTextSpanner. The default value is 'dashed-line', and other possible values include 'line', 'dotted-line' and 'none.

\relative c' { 
\set crescendoText = \markup { \italic { cresc. poco } } 
\set crescendoSpanner = #'text 
\override DynamicTextSpanner.style = #'dotted-line
\relative a2< a2 
\relative a2 a 
\relative a2 a 
\relative a2 a\!mf 
}

See also


Notation Reference: Section 5.4.1 [Direction and placement], page 698, [New dynamic marks], page 151, Section 3.6.9 [Enhancing MIDI output], page 601, Section 3.6.4 [Controlling MIDI dynamics], page 592.

Snippets: Section “Expressive marks” in Snippets.


New dynamic marks

The easiest way to create dynamic indications is to use \markup objects.

\relative { 
<\d' e>16 \moltoF <\d e> 
<d e>2.. 
}

In markup mode, editorial dynamics (within parentheses or square brackets) can be created. The syntax for markup mode is described in Section 1.8.2 [Formatting text], page 293.

roundF = \markup { 
\center-align \concat \bold { \italic ( 
}
Simple, centered dynamic marks are easily created with the make-dynamic-script function.

In general, make-dynamic-script takes any markup object as its argument. The dynamic font only contains the characters f,m,p,r,s and z, so if a dynamic mark that includes plain text or punctuation symbols is desired, markup commands that reverts font family and font encoding to normal text should be used, for example \normal-text. The interest of using make-dynamic-script instead of an ordinary markup is ensuring the vertical alignment of markup objects and hairpins that are attached to the same note head.
The Scheme form of markup mode may be used instead. Its syntax is explained in Section “Markup construction in Scheme” in Extending.

```
moltoF = #(make-dynamic-script
 (markup #:normal-text "molto"
 #:dynamic "f"))
```

To left-align the dynamic text rather than centering it on a note use a \tweak:

```
moltoF = \tweak DynamicText.self-alignment-X #LEFT
 #(make-dynamic-script
 (markup #:normal-text "molto"
 #:dynamic "f"))
```

Font settings in markup mode are described in [Selecting font and font size], page 297.

**See also**

Notation Reference: Section 1.8.2 [Formatting text], page 293, [Selecting font and font size], page 297, Section 3.6.9 [Enhancing MIDI output], page 601, Section 3.6.4 [Controlling MIDI dynamics], page 592.

Extending LilyPond: Section “Markup construction in Scheme” in Extending.

Snippets: Section “Expressive marks” in Snippets.

### 1.3.2 Expressive marks as curves

This section explains how to create various expressive marks that are curved: normal slurs, phrasing slurs, breath marks, falls, and doits.

**Slurs**

*Slurs* are entered using parentheses:

```
\relative {
 f''4(g a) a8 b(
 a4 g2 f4)
```
Slurs may be manually placed above or below the staff; see Section 5.4.1 [Direction and placement], page 698.

Simultaneous or overlapping slurs require special attention. Most occurrences of outer slurs actually indicate phrasing, and phrasing slurs may overlap a regular slur, see [Phrasing slurs], page 157. When multiple regular slurs are needed in a single Voice, matching slur starts and ends need to be labeled by preceding them with \= followed by an identifying key (a symbol or non-negative integer).

\fixed c' {
  \<c- f\=1( g\=2( >2 <c \=1) a\=2) >
}

Slurs can be solid, dotted, or dashed. Solid is the default slur style:

\relative {
  c'4( e g2) \slurDashed g4( e c2) \slurDotted c4( e g2) \slurSolid g4( e c2)
}

Slurs can also be made half-dashed (the first half dashed, the second half solid) or half-solid (the first half solid, the second half dashed):

\relative {
  c'4( e g2) \slurHalfDashed g4( e c2) \slurHalfSolid c4( e g2) \slurSolid g4( e c2)
}
Custom dash patterns for slurs can be defined:

\relative {  
c'4( e g2)  
\slurDashPattern #0.7 #0.75  
g4( e c2)  
\slurDashPattern #0.5 #2.0  
c4( e g2)  
\slurSolid  
g4( e c2)  
}\n
### Predefined commands

- \slurUp, \slurDown, \slurNeutral, \slurDashed, \slurDotted, \slurHalfDashed, \slurHalfSolid, \slurDashPattern, \slurSolid.

### Selected Snippets

#### Adjusting slur positions vertically

Using \override Slur.positions it is possible to set the vertical position of the start and end points of a slur to absolute values (or rather, forcing LilyPond’s slur algorithm to consider these values as desired). In many cases, this means a lot of trial and error until good values are found. You probably have tried the \offset command next just to find out that it doesn’t work for slurs, emitting a warning instead.

The code in this snippet allows you to tweak the vertical start and end positions by specifying relative changes, similar to \offset.

**Syntax:** \offsetPositions #'(dy1 . dy2)

```lilypond
offsetPositions =
#(define-music-function (offsets) (number-pair?)
#{
 \once \override Slur.control-points =
 #(lambda (grob)
 (match-let (((_ . y1) _ _ (_ . y2)))
 (ly:slur::calc-control-points grob))
 ((off1 . off2) offsets))
 (set! (ly:grob-property grob 'positions)
 (cons (+ y1 off1) (+ y2 off2))))
 (ly:slur::calc-control-points grob)))
 #})
\relative c'' {
c4("default" c, d2)
\offsetPositions #'(0 . 1)
c'4("(0 . 1)" c, d2)
\offsetPositions #'(0 . 2)
c'4("(0 . 2)" c, d2)
\bar "||"
g4("default" a d'2)
```
Using double slurs for legato chords

Some composers write two slurs when they want legato chords. This can be achieved by setting doubleSlurs.

```latex
\relative c' {
 \set doubleSlurs = ##t
 \<c e>4(\<d f> \<c e> \<d f>)
}
```

Positioning text markups inside slurs

Text markups need to have the outside-staff-priority property set to false in order to be printed inside slurs.

```latex
\relative c'' {
 \override TextScript.avoid-slur = #'inside
 \override TextScript.outside-staff-priority = ##f
 \<c e>2(\markup { \halign \natural } d4.) c8
}
```

Making slurs with complex dash structure

Slurs can be made with complex dash patterns by defining the dash-definition property. dash-definition is a list of dash-elements. A dash-element is a list of parameters defining the dash behavior for a segment of the slur.

The slur is defined in terms of the bezier parameter \( t \) which ranges from 0 at the left end of the slur to 1 at the right end of the slur. dash-element is a list (start-\( t \) stop-\( t \) dash-fraction dash-period). The region of the slur from start-\( t \) to stop-\( t \) will have a fraction dash-fraction of each dash-period black. dash-period is defined in terms of staff spaces. dash-fraction is set to 1 for a solid slur.

```latex
\relative c' {
 \once \override Slur.dash-definition = #'((0 0.3 0.1 0.75)
 (0.3 0.6 1 1)
 (0.65 1.0 0.4 0.75))
```
Phrasing slurs

Phrasing slurs (or phrasing marks) that indicate a musical sentence are written using the commands \( and \) respectively:

\[
\begin{align*}
\text{\relative { c'4\( d\( e\) f\( e2\) d\)}}
\end{align*}
\]

Typographically, a phrasing slur behaves almost exactly like a normal slur. However, they are treated as different objects; a \slurUp{} will have no effect on a phrasing slur. Phrasing may be manually placed above or below the staff; see Section 5.4.1 [Direction and placement], page 698.

Simultaneous or overlapping phrasing slurs are entered using \(= as with regular slurs, see [Slurs], page 153.

Phrasing slurs can be solid, dotted, or dashed. Solid is the default style for phrasing slurs:

\[
\begin{align*}
\text{\relative { c'4\( e\) g2\}) }
\phrasingSlurDashed
\text{g4\( e\) c2\}) }
\phrasingSlurDotted
\text{c4\( e\) g2\}) }
\phrasingSlurSolid
\text{g4\( e\) c2\}) }
\end{align*}
\]
Phrasing slurs can also be made half-dashed (the first half dashed, the second half solid) or half-solid (the first half solid, the second half dashed):

\begin{verbatim}
\relative {
  c'4\( e g2\)
  \phrasingSlurHalfDashed
  g4\( e c2\)
  \phrasingSlurHalfSolid
  c4\( e g2\)
  \phrasingSlurSolid
  g4\( e c2\)
}
\end{verbatim}

Custom dash patterns for phrasing slurs can be defined:

\begin{verbatim}
\relative {
  c'4\( e g2\)
  \phrasingSlurDashPattern #0.7 #0.75
  g4\( e c2\)
  \phrasingSlurDashPattern #0.5 #2.0
  c4\( e g2\)
  \phrasingSlurSolid
  g4\( e c2\)
}
\end{verbatim}

Dash pattern definitions for phrasing slurs have the same structure as dash pattern definitions for slurs. For more information about complex dash patterns, see the snippets under [Slurs], page 153.

**Predefined commands**

\phrasingSlurUp, \phrasingSlurDown, \phrasingSlurNeutral, \phrasingSlurDashed, \phrasingSlurDotted, \phrasingSlurHalfDashed, \phrasingSlurHalfSolid, \phrasingSlurDashPattern, \phrasingSlurSolid.

**See also**


Notation Reference: Section 5.4.1 [Direction and placement], page 698, [Slurs], page 153.

Snippets: Section “Expressive marks” in Snippets.

Internals Reference: Section “PhrasingSlur” in Internals Reference.
Breath marks

The \breathe command calls for the performer to shorten the previous note to take a breath.

\fixed c' { c2. \breathe d4 }

For a short break in sound that is not taken away from the previous note, see [Caesuras], page 70.

Unlike other expressive marks, a breath mark is treated as a separate music event; therefore, any expressive marks pertaining to the preceding note, and any brackets indicating manual beams, slurs, or phrasing slurs, must be placed before \breathe. \breathe does not accept articulations itself, but see [Caesuras], page 70.

A breath mark ends an automatic beam; to override this, see [Manual beams], page 103.

\fixed c' { c8 \breathe d e f g2 }

The breathMarkType context property controls which of several predefined breath marks the \breathe command creates. See Section A.16 [List of breath marks], page 835.

\fixed c' {
  \set breathMarkType = #'tickmark
  c2. \breathe d4
}

See also


Notation Reference: [Caesuras], page 70, [Divisiones], page 509.

Snippets: Section “Expressive marks” in Snippets.


Falls and doits

Falls and doits can be added to notes using the \bendAfter command. The direction of the fall or doit is indicated with a plus or minus (up or down). The number indicates the pitch interval that the fall or doit will extend beyond the main note.

\relative c' {
  c2\bendAfter #+4
  c2\bendAfter #-4
  c2\bendAfter #+6.5
  c2\bendAfter #-6.5
  c2\bendAfter +#8
  c2\bendAfter #-8
}
Selected Snippets

Adjusting the shape of falls and doits
The shortest-duration-space property may be tweaked to adjust the shape of falls and doits.

\relative c' {  
  \override Score.SpacingSpanner.shortest-duration-space = \number 4.0  
  c2-\bendAfter #5  
  c2-\bendAfter #-4.75  
  c2-\bendAfter #8.5  
  c2-\bendAfter #-6  
}

See also
Snippets: Section “Expressive marks” in Snippets.

1.3.3 Expressive marks as lines
This section explains how to create various expressive marks that follow a linear path: glissandi, arpeggios, and trills.

Glissando
A glissando is created by appending \glissando to a note:

\relative {  
  g'2\glissando g'  
  c2\glissando c,  
  \afterGrace f,\glissando f'16  
}

A glissando can connect notes across staves:

\new PianoStaff <<  
\new Staff = "right" {  
  e''2\glissando  
  \change Staff = "left"  
  a,,4\glissando  
  \change Staff = "right"  
  b'8 r |  
}  
\new Staff = "left" {  
  \clef bass  
}
A glissando can connect notes in chords. If anything other than a direct one-to-one pairing of the notes in the two chords is required, the connections between the notes are defined by setting \glissandoMap to a Scheme list. The elements are pairs of integers; each pair \((x . y)\) creates a glissando line from the \(x\)-th note of the first chord to the \(y\)-th note of the second chord. Notes are numbered from zero in the order in which they appear in the input .ly file. Not all notes need be part in a glissando.

\begin{verbatim}
\relative { 
  <c' e>2\glissando g' 
  <c, e>\glissando <g' b> 
  \set glissandoMap = #'((0 . 1) (1 . 0)) 
  <c, g'>\glissando <d a'> 
  \set glissandoMap = #'((0 . 0) (0 . 1) (0 . 2)) 
  c\glissando <d f a> 
  \set glissandoMap = #'((2 . 2) (0 . 0)) 
  <f d a'>\glissando <c f c'> 
}
\end{verbatim}

Different styles of glissandi can be created. For details, see Section 5.4.5 [Line styles], page 705.

**Selected Snippets**

**Contemporary glissando**

A contemporary glissando without a final note can be typeset using a hidden note and cadenza timing.

\begin{verbatim}
\relative c' { 
  \time 3/4 
  \override Glissando.style = #'zigzag 
  c4 c 
  \cadenzaOn 
  c4\glissando
}\end{verbatim}
Adding timing marks to long glissandi

Skipped beats in very long glissandi are sometimes indicated by timing marks, often consisting of stems without noteheads. Such stems can also be used to carry intermediate expression markings.

If the stems do not align well with the glissando, they may need to be repositioned slightly.

```latex
\glissandoSkipOn = {
 \override NoteColumn.glissando-skip = ##t
 \hide NoteHead
 \override NoteHead.no-ledgers = ##t
}
\glissandoSkipOff = {
 \revert NoteColumn.glissando-skip
 \undo \hide NoteHead
 \revert NoteHead.no-ledgers
}
\relative c' {
 r8 f8\glissando
 \glissandoSkipOn
 f4 g a a8\noBeam
 \glissandoSkipOff
 a8 |
 r8 f8\glissando
 \glissandoSkipOn
 g4 a8
 \glissandoSkipOff
 a8 |
 r4 f\glissando \<
 \glissandoSkipOn
 a4\f \>
 \glissandoSkipOff
 b8! r |}
```
Making glissandi breakable

Setting the breakable property to \#t in combination with after-line-breaking allows a glissando to break if it occurs at a line break:

```
\glissandoSkipOn = {
 \override NoteColumn.glissando-skip = ##t
 \hide NoteHead
 \override NoteHead.no-ledgers = ##t
}
```

\relative c' { 
\glissando
\break
a4 r2. |
f1\glissando
\break
a2 a4 r4 |
}

Extending glissandi across repeats

A glissando which extends into several `alternative` blocks can be simulated by adding a hidden grace note with a glissando at the start of each `alternative` block. The grace note should be at the same pitch as the note which starts the initial glissando. This is implemented here with a music function which takes the pitch of the grace note as its argument.

Note that in polyphonic music the grace note must be matched with corresponding grace notes in all other voices.

```
repeatGliss = #(define-music-function (grace)
 (ly:pitch?)
 #{
 % the next two lines ensure the glissando is long enough
 % to be visible
 \once \override Glissando.springs-and-rods
 = #ly:spanner::set-spacing-rods
```
\once \override Glissando.minimum-length = #3.5
\once \hideNotes
\grace $\text{grace}$ \glissando
#

\score { 
  \relative c' { 
    \repeat volta 3 { c4 d e f \glissando } 
    \alternative { 
      { g2 d } 
      { \repeatGliss f g2 e } 
      { \repeatGliss f e2 d } 
    } 
  } 
} 

\music = \relative c' { 
  \voiceOne 
  \repeat volta 2 { 
    g a b c \glissando 
  } 
  \alternative { 
    { d1 } 
    { \repeatGliss c \once \omit \text{StringNumber} e1\text{2} } 
  } 
} 

\score { 
  \new StaffGroup << 
    \new Staff << 
      \new Voice { \clef "G_8" \music } 
      
    \new TabStaff << 
      \new TabVoice { \clef "moderntab" \music } 
      
  } 

\paper { \tagline = ##f }
See also
Notation Reference: Section 5.4.5 [Line styles], page 705.
Snippets: Section “Expressive marks” in *Snippets*.
Internals Reference: Section “Glissando” in *Internals Reference*.

Known issues and warnings
Printing text over the line (such as gliss.) is not supported.

Arpeggio
An arpeggio on a chord (also known as a broken chord) is denoted by appending \arpeggio to the chord construct:

```
\relative { <c' e g c>1\arpeggio }
```

Different types of arpeggios may be written. \arpeggioNormal reverts to a normal arpeggio:

```
\relative { <c' e g c>2\arpeggio
 \arpeggioArrowUp
 <c e g c>2\arpeggio
 \arpeggioArrowDown
 <c e g c>2\arpeggio
 \arpeggioNormal
 <c e g c>2\arpeggio }
```

These predefined commands internally modify the arpeggio-direction property; see their full definition in the ly/property-init.ly file.

Special bracketed arpeggio symbols can be created:

```
\relative { <c' e g c>2
 \arpeggioBracket
 <c e g c>2\arpeggio
 \arpeggioParenthesis
 <c e g c>2\arpeggio
 \arpeggioParenthesisDashed
 <c e g c>2\arpeggio
```
These predefined commands internally override the \texttt{Arpeggio} object’s stencil property, and may also adapt its $x$-extent (that is, the horizontal dimension it takes not to collide with other objects).

The dash properties of the parenthesis arpeggio are controlled with the dash-definition property (see \texttt{[Slurs]}, page 153).

Arpeggios can be explicitly written out with ties. For more information, see \texttt{[Ties]}, page 58.

Predefined commands
\texttt{\arpeggio, \arpeggioArrowUp, \arpeggioArrowDown, \arpeggioNormal, \arpeggioBracket, \arpeggioParenthesis, \arpeggioParenthesisDashed.}

Selected Snippets

\textit{Creating cross-staff arpeggios in a piano staff}

In a \texttt{PianoStaff}, it is possible to let an \texttt{arpeggio} cross between the staves by setting the property \texttt{PianoStaff.connectArpeggios}.

\begin{verbatim}
\new PianoStaff \relative c'' << 
  \set PianoStaff.connectArpeggios = ##t 
\new Staff { 
  <c e g c>4 \arpeggio 
  <g c e g>4 \arpeggio 
  <e g c e>4 \arpeggio 
  <c e g c>4 \arpeggio 
} 
\new Staff { 
  \clef bass 
  \repeat unfold 4 { 
    <c,, e g c>4 \arpeggio 
  } 
} >>
\end{verbatim}

\textit{Creating cross-staff arpeggios in other contexts}

Cross-staff \texttt{arpeggios} can be created in contexts other than \texttt{GrandStaff}, \texttt{PianoStaff} and \texttt{StaffGroup} if the \texttt{Span\_arpeggio\_engraver} is included in the \texttt{Score} context.

\begin{verbatim}
\score { 

\end{verbatim}
Creating arpeggios across notes in different voices

An arpeggio can be drawn across notes in different voices on the same staff if the `Span_arpeggio_engraver` is added to the `Staff` context:

```
\new Staff \with {
 \consists "Span_arpeggio_engraver"
}
\relative c' {
 \set Staff.connectArpeggios = ##t
 \new Voice \relative c' {
 <e' g>4\arpeggio <d f> <d f>2 }
 \new Voice \relative c {
 \clef bass
 <g>2\arpeggio <g>2 \arpeggio <g'>1 \arpeggio
 }
}
```
See also

Notation Reference: [Slurs], page 153, [Ties], page 58.

Installed Files: ly/property-init.ly.

Snippets: Section “Expressive marks” in *Snippets*.


**Known issues and warnings**

Predefined commands such as \arpeggioArrowUp only apply to the current context, and thus will not affect arpeggios spanning several voices or staves. In such cases, these commands need to be used in a `\context` block within `\layout`, or in a `\with` block, as explained in Section 5.1.5 [Changing context default settings], page 672. Alternatively, rather than using predefined shortcuts, it may be advisable to directly override the relevant properties for the `Arpeggio` object in the appropriate context; for example:

\override Staff.Arpeggio.stencil = #ly:arpeggio::brew-chord-bracket

to print cross-voice arpeggio brackets at the Staff level, or

\override PianoStaff.Arpeggio.arpeggio-direction = #UP

to print cross-staff arrowed arpeggios (pointing upwards) in a PianoStaff context.

It is not possible to mix connected arpeggios and unconnected arpeggios in one PianoStaff at the same point in time.

The simple way of setting parenthesis-style arpeggio brackets does not work for cross-staff arpeggios; see [Staff-change lines], page 386.

**Trills**

Short trills without an extender line are printed with `\trill`; see [Articulations and ornaments], page 140.

Longer trills with an extender line are made with `\startTrillSpan` and `\stopTrillSpan`:

```latex
\relative {
 d''1\startTrillSpan
d1
 c2\stopTrillSpan
 r2
}
```

A trill spanner crossing a line break will restart exactly above the first note on the new line.

```latex
\relative {
 d''1\startTrillSpan
 \break
d1
 c2\stopTrillSpan
 r2
}
```
Consecutive trill spans will work without explicit \stopTrillSpan commands, since successive trill spanners will automatically become the right bound of the previous trill.

Trills can also be combined with grace notes. The syntax of this construct and the method to precisely position the grace notes are described in [Grace notes], page 133.

Trills that require an auxiliary note with an explicit pitch can be typeset with the \pitchedTrill command. The first argument is the main note, and the second is the trilled note, printed as a stemless note head in parentheses.

The Accidental of the first pitched trill in a measure is always printed, even for naturals.
Subsequent accidentals (of the same note in the same measure) will need to be added manually.

Predefined commands
\startTrillSpan, \stopTrillSpan.

See also

Notation Reference: [Articulations and ornamentations], page 140, [Grace notes], page 133.

Snippets: Section “Expressive marks” in Snippets.

Repetition is a central concept in music, and multiple notations exist for repetitions. LilyPond supports the following kinds of repeats:

- **volta** This is the standard notation for repeats with or without alternative endings. The repeated section is framed between repeat bar lines, but the starting bar line is omitted when the repeated section begins the piece. Alternative endings are printed in sequence, bracketed, and numbered with the volte to which they apply.

- **segno** This supports various *da capo* and *dal segno* cases. The repeated section begins with a segno mark, except at the start of the piece. Alternative endings are printed in sequence and marked with coda marks, and a section label such as ‘Coda’ can optionally be applied to the final alternative. The repeated section ends with an instruction such as *D.S.*

- **unfold** The repeated music is written out in full a specified number of times.

- **percent** These are beat or measure repeats. They look like single slashes or percent signs.

- **tremolo** This is used to write tremolo beams.

Chord constructs can be repeated using the chord repetition symbol, q. See [Chord repetition], page 197.

### 1.4.1 Long repeats

This section discusses how to input long (usually multi-measure) repeats.

#### Written-out repeats

The \repeat unfold command repeats music by writing it out a number of times. The syntax is the same as the \repeat volta and \repeat segno commands, which are documented in following sections.

To avoid redundancy, unfolding is not demonstrated in detail here; however, some of the examples in following sections illustrate repeats in multiple forms using the \unfoldRepeats command to convert the volta or segno form to the unfold form. For another important use of the \unfoldRepeats command, see Section 3.6.6 [Using repeats with MIDI], page 597.
There are some points of interest specific to the \repeat unfold command. In some cases, especially in a relative context, the outcome of unfolding is not the same as of writing the input music expression multiple times, e.g.,

\repeat unfold 2 { a'4 b c d | }
differs from the following by an octave change:

a'4 b c d |
a'4 b c d |

Also, nesting \repeat unfold can be practical in ways that nesting \repeat volta or \repeat segno would not be.

Note: If you include relative inside a \repeat without explicitly instantiating the Voice context, extra (unwanted) staves will appear. See Section “An extra staff appears” in Application Usage.

See also
Snippets: Section “Repeats” in Snippets.

Simple repeats
This is the syntax for a repeat without variation:
\repeat volta repeatcount musicexpr
where musicexpr is the music expression to be repeated.

\fixed c'' {
\repeat volta 2 { c2 f } \repeat volta 2 { g2 c }
}

By default, a starting bar line is not automatically printed at the beginning of a piece, in accordance with classical engraving conventions. However, in some contexts, these bar lines are traditionally added, such as in lead sheets for jazz standards. This can be achieved by setting the printInitialRepeatBar property.

\fixed c'' {
\set Score.printInitialRepeatBar = ##t
\repeat volta 2 { c2 f }
}

A repeated section that starts in the middle of a measure usually ends at the same position in a later measure so that the two ends make a complete measure. The repeat bar lines are not measure boundaries in such cases, so no bar checks should be placed there. Likewise, no
The \textbackslash partial command should be placed within the repeated music, because the measures are complete; however, a \textbackslash partial command should be placed before the repeat when there is a truly incomplete measure the first time through.

\begin{verbatim}
\fixed c'' {
  \partial 4
  \repeat volta 2 {
    c4
    c2 d
    g4 g g
  }
  \repeat volta 2 {
    e4
    f2 g
    c2.
  }
}
\end{verbatim}

\begin{verbatim}
\fixed c'' {
  \partial 4
  \repeat volta 2 {
    c4
    c2 d
    g4 g g
  }
  \repeat volta 2 {
    e4
    f2 g
    c2.
  }
}
\end{verbatim}

\begin{center}
\begin{music}
\includegraphics{music.png}
\end{music}
\end{center}

**Alternative endings**

Repeats with alternative endings can be written two ways. This is the preferred syntax:

\begin{verbatim}
\repeat volta \repeatcount {
  \musicexpr...
  \alternative {
    \volta \numberlist \musicexpr
    \volta \numberlist \musicexpr
    ...
  }
}
\end{verbatim}

where \texttt{\musicexpr} is a music expression, \texttt{\musicexpr...} is any number of them, and \texttt{\numberlist} is a comma-separated list of volta numbers chosen from the range 1 to \texttt{\repeatcount}.

\begin{verbatim}
\fixed c'' {
  \repeat volta 6 {
    c4 d e f
    \alternative {
      \volta 1,2,3 { c2 e }\n      \volta 4,5 { f2 d }\n      \volta 6 { e2 f }
    }
  }
  c1
}
\end{verbatim}

\begin{center}
\begin{music}
\includegraphics{music.png}
\end{music}
\end{center}

An older syntax where the \texttt{\alternative} block follows outside the repeated music expression is still supported and has the same effect.

\begin{verbatim}
\repeat volta \repeatcount \musicexpr
\end{verbatim}
\alternative {
  \volta numberlist musicexpr
  \volta numberlist musicexpr
  ...
}

\volta specifications within an \alternative block are optional on an all-or-none basis. If they are omitted, alternatives are used once each, but the first is repeated as needed to satisfy the repeat count.

\fixed c'\{ 
  \repeat volta 6 { 
    c4 d e f 
    \alternative { 
      \volta 1 { c2 e } 
      \volta 2,3 { 
        \once \override Score.VoltaBracket.musical-length = \musicLength 1 
        s1_"C" 
        s1_"D" 
      } 
    } 
  } 
  c1 
}

\alternative blocks can be nested.

\music = \fixed c'\{ 
  \repeat volta 3 { 
    s1_"A" 
    \alternative { 
      \volta 1 { s1_"B" } 
      \volta 2,3 { 
        \once \override Score.VoltaBracket.musical-length = \musicLength 1 
        s1_"C" 
        s1_"D" 
      } 
    } 
  } 
  \fine 
}

\score { \music }
\score { \unfoldRepeats \music }

Other variation in repeated sections

An \alternative block can be used within a \repeat block to produce notation similar to alternative endings (see [Alternative endings], page 173).

\begin{verbatim}
\fixed c'' \{ \\
\repeat volta 2 \{ \\
    R1 \\
    \alternative \{ \\
        \volta 1 \{ c1 \} \\
        \volta 2 \{ d1 \} \\
    \} \\
    R1 \\
\} \\
\end{verbatim}

The \volta command is not limited to use on the elements of an \alternative block. It can be used anywhere within a \repeat to designate music for particular volte, though it does not create brackets in other cases.

When a \repeat is unfolded, volta-specific music is omitted from every volta to which it does not apply. Providing an empty Scheme list in place of volta numbers removes the music entirely.

\begin{verbatim}
Music = \repeat volta 3 \{ \\
    \volta #'() \{ s1*0 \markup { \bold "3×" } \} \\
    \volta 1 \{ s1*0 \markup { \italic dolce } \} \\
    g''1 \\
\} \\
\score { \music } \\
\score { \unfoldRepeats \music } 
\end{verbatim}
When a \repeat is unfolded, it may be desirable not only to filter out volta-specific music, but also to add music that was not present in the folded form. The \unfolded command designates music to be ignored until the enclosing \repeat is unfolded.

```latex
\begin{raw}
\score { \music }
\score { \unfoldRepeats \music }
\end{raw}
```

Note: The \volta and \unfolded commands function with respect to the innermost repeat enclosing them.

### Al-fine repeats

The \fine command marks the end of the music but does not enforce it. When a repeat containing \fine is unfolded, the \fine command is unfolded like any other music. For correct unfolding, it is necessary to specify the volta in which the Fine should be performed and the volte in which any following music should be performed (see [Other variation in repeated sections], page 175).

```latex
\begin{raw}
\score { \music }
\score { \repeat volta 2 { }
\end{raw}
```
As shown immediately above, at the written end of the music, \fine creates a final
bar line without a Fine instruction. To force Fine to appear in such cases, set the
finalFineTextVisibility context property.

\fixed c' {
\set Score.finalFineTextVisibility = ##t
f1
\fine
}

To change the text that \fine prints, set the fineText context property.

\fixed c' {
\set Score.fineText = "Fine."
\repeat volta 2 {
  f1
  \volta 2 \fine
  \volta 1 b1
}
}

For details on interactions with other types of bar lines and options for changing their ap-
pearance, see [Automatic bar lines], page 117.

See also


Notation Reference: [Automatic bar lines], page 117, [Other variation in repeated sections],
page 175, [Section divisions], page 132.

Snippets: Section “Repeats” in Snippets.

Internals Reference: Section “FineEvent” in Internals Reference, Section “Jump_engraver”
in Internals Reference, Section “JumpScript” in Internals Reference.
Segno repeat structure

\repeat segno differs from \repeat volta only in the resulting notation. Refer to the preceding sections for general information on entering music with repetition, alternatives, and variation. This section covers particulars of segno notation without fully reiterating the input syntax.

\repeat segno notates repetition with D.C. or D.S. instructions. It marks the beginning of the repeated section with a segno mark when it is not the beginning of the piece. It also marks alternative endings with coda marks in lieu of volta brackets, provided that the endings are intended to be performed in order, e.g., not \ volta 1,3 then \ volta 2,4.

When alternative bar numbering is enabled, it is applied to alternatives notated with volta brackets whether they are created by \repeat segno or \repeat volta, but it is not applied to alternative endings notated with coda marks.

Demonstrations of common uses follow.

\begin{itemize}
\item \textit{al fine} \hspace{1cm} Repeat instructions include \textit{al Fine} if a \textit{fine} command appears at any prior point (see [Al-fine repeats], page 176).
\begin{verbatim}
music = \fixed c' { f1 \repeat segno 2 { g1 \ volta 2 \fine \ volta 1 \al } } \section \score { \music } \score { \unfoldRepeats \music } \end{verbatim}
\end{itemize}

\begin{itemize}
\item \textit{alla coda} \hspace{1cm} The beginning of each alternative ending is marked with an implied \texttt{\codaMark \default}. Repeat instructions in alternatives include \texttt{‘al . . . e poi la . . .’} referring to the mark at the first alternative and the mark to skip to. Provided that the duration of the final alternative is zero, the automatic mark is suppressed, allowing a section label to be set instead.
\begin{verbatim}
music = \fixed c' { f1 \repeat segno 2 { g1 \alternative { \ volta 1 { \repeat unfold 4 { a2 } } } \ volta 2 \ volta #'() { \section } } \end{verbatim}
\end{itemize}


\sectionLabel "Coda"

\fine

\score { \music }
\score { \unfoldRepeats \music }

The return instruction can be abbreviated by setting an alternative formatting procedure (see [Segno repeat appearance], page 181).

da capo Repeat instructions include \textit{D.C.} when the repeated section begins at the beginning of the score. The supported \textit{da capo} cases parallel the supported \textit{dal segno} cases.

\begin{verbatim}
\music = \fixed c' { \\
\repeat segno 2 { \\
\fine 
}

\score { \music }
\score { \unfoldRepeats \music }
\end{verbatim}

\textit{Dal segno} Repeat instructions include \textit{D.S.} when the repeated section begins after the beginning of the score. The beginning of the repeated section is marked with an implied \texttt{\segnoMark \default}.

\begin{verbatim}
\music = \fixed c' { \\
\repeat segno 2 { \\
\repeat segno 2 { 
\end{verbatim}
A *dal-segno* repeat starting at the beginning of the score can be forced (see [Segno repeat appearance], page 181).

**multiple return**

A repeat instruction to be performed more than once includes ‘... V.’. The number of times the instruction is performed is one less than the number of times the passage is performed.

```plaintext
music = \fixed c' {
\repeat segno 3 {
g1
}
\fine
}
```

See also


Notation Reference:  [Al-fine repeats], page 176, [Alternative endings], page 173, [Automatic bar lines], page 117, [Other variation in repeated sections], page 175, [Section divisions], page 132, [Section labels], page 287, [Simple repeats], page 172.

Snippets: Section “Repeats” in *Snippets*.

Segno repeat appearance

The marks and return instructions that \repeat segno creates are adjustable in some respects.

Return instructions are formatted with the Scheme procedure specified in the dalSegnoTextFormatter property. There is a predefined alternative formatter that creates shorter instructions.

\fixed c’ {
\set Score.dalSegnoTextFormatter = #format-dal-segno-text-brief
f1
\repeat segno 2 {
  g1
  \alternative {
    \volta 1 { a1 }
    \volta 2 \volta #'() {
      \section
      \sectionLabel "Coda"
    }
  }
  }
  b1
  \fine
}

\fixed c’ {
\repeat segno 2 {
  \volta #'() { \segnoMark 2 }
  g1
  \alternative {
    \volta 1 {
      \volta #'() { \codaMark 2 }
      \repeat unfold 8 { a4 }
    }
    \volta 2 \volta #'() {
      \section
      \sectionLabel "Coda"
    }
  }
  }
  b1
  \fine
}

The sequence numbers of the marks at the beginning of the repeated section and the beginning of the first alternative may be set explicitly without interfering with automatic return instructions (see [Manual repeat marks], page 186).
Without the explicit \segnoMark 2, the above would have been rendered as a da-capo repeat.

As an alternative to printing a segno as a mark above the staff, it is possible to print it as a bar line by setting the segnoStyle property to bar-line. To avoid ambiguity, only the first segno bar remains unmarked.

```
\fixed c' {
 \set Score.segnoStyle = #'bar-line
 R1
 \repeat unfold 3 {
 \repeat segno 2 {
 R1*2
 }
 }
 \fine
}
```

Where a segno bar coincides with other special bar lines, a combination bar line is chosen automatically from a predetermined set. For each supported combination, the bar line can be customized by setting a context property (see [Automatic bar lines], page 117).

Segno and coda marks are formatted with procedures specified in the segnoMarkFormatter and codaMarkFormatter properties. These are interchangeable with procedures used to format rehearsal marks (see [Rehearsal marks], page 127).

```
\fixed c' {
 \set Score.segnoMarkFormatter = #format-mark-numbers
 \set Score.segnoStyle = #'bar-line
 R1
 \repeat unfold 3 {
 \repeat segno 2 {
 R1*2
 }
 }
 \fine
}
```

There is a predefined alternative segno formatter that prints a mark even over the first bar line:

```
\fixed c' {
```
There is a predefined alternative coda mark formatter that uses \varcoda signs.

By default, the volta brackets will be drawn over all of the alternative music, but it is possible to shorten them by setting voltaSpannerDuration. In the next example, the bracket only lasts one measure, which is a duration of 3/4.

\relative c'' {
\time 3/4
\alternative {\volta 1,2,3,4 {e4 e e f4 f f} \volta 5 {g4 g g}}
\repeat volta 5 {
d4 d d
}\set Score.voltaSpannerDuration = \musicLength 2.
}

Selected Snippets

**Shortening volta brackets**

By default, the volta brackets will be drawn over all of the alternative music, but it is possible to shorten them by setting voltaSpannerDuration. In the next example, the bracket only lasts one measure, which is a duration of 3/4.

\relative c'' {
\time 3/4
c4 c c
\set Score.voltaSpannerDuration = \musicLength 2.
\repeat volta 5 {
d4 d d
}\alternative {\volta 1,2,3,4 {e4 e e f4 f f} \volta 5 {g4 g g}}
}
Adding volta brackets to additional staves

The Volta_engraver by default resides in the Score context, and brackets for the repeat are thus normally only printed over the topmost staff. This can be adjusted by adding the Volta_engraver to the Staff context where the brackets should appear; see also the “Volta multi staff” snippet.

\begin{verbatim}
<< \new Staff \{ \repeat volta 2 \{ c'1 \} \alternative \{ c' \} \}
\new Staff \{ \repeat volta 2 \{ c'1 \} \alternative \{ c' \} \}
\new Staff \with \{ \consists "Volta_engraver" \} \{ c'2 g' e' a' \}
\new Staff \{ \repeat volta 2 \{ c'1 \} \alternative \{ c' \} \}
>>
\end{verbatim}

Alternative bar numbering

Two alternative methods for bar numbering can be set, especially for when using repeated music.

\begin{verbatim}
\texttt{music} = \relative c' \{
\repeat volta 3 \{ 
 c4 d e f | 
\alternative \{
 \volta 1 \{ c4 d e f | c2 d \break \}
 \volta 2 \{ f4 g a b | f4 g a b | f2 a | \break \}
 \volta 3 \{ c4 d e f | c2 d \} \}

 c1 \bar "." 
\} 

\markup "default"
{
  \music
}
\markup \texttt{typewriter} "'numbers"
{
  \set \Score.alternativeNumberingStyle = #'numbers
  \music
}
\markup \texttt{typewriter} "'numbers-with-letters"
{

\set Score.alternativeNumberingStyle = #'numbers-with-letters
\music

\default

\new Staff
\with {\notes {G2} \clef = \clefhigh }
\note {1.} \rest
\note {2.} \rest
\note {3.} \rest

\new Staff
\with {\notes {G2} \clef = \clefhigh }
\note {4.} \rest
\note {5.} \rest
\note {6.} \rest

\new Staff
\with {\notes {G2} \clef = \clefhigh }
\note {7.} \rest
\note {8.} \rest
\note {9.} \rest

'numbers

\new Staff
\with {\notes {G2} \clef = \clefhigh }
\note {1.} \rest
\note {2.} \rest
\note {3.} \rest

'numbers-with-letters

\new Staff
\with {\notes {G2} \clef = \clefhigh }
\note {1.} \rest
\note {2.} \rest
\note {3.} \rest
See also


Notation Reference: [Automatic bar lines], page 117, [Bar lines], page 107, Section 5.1.4 [Modifying context plug-ins], page 671, [Modifying ties and slurs], page 721, [Time administration], page 139.

Installed Files: ly/engraver-init.ly.

Snippets: Section “Repeats” in Snippets.


Known issues and warnings

For repeats in volta form, spanners (slurs, etc.) that cross into alternatives work for the first alternative only. They likewise cannot wrap around from the end of an alternative back to the beginning of the repeated section.

The visual appearance of a continuing slur or tie in subsequent alternatives can be achieved with \repeatTie if the slur extends into only one note in the alternative block, although this method does not work in TabStaff; see [Ties], page 59. Other methods which may be tailored to indicate continuing slurs over several notes in alternative blocks, and which also work in TabStaff contexts, are shown in [Modifying ties and slurs], page 721.

The visual appearance of a continuing glissando in subsequent alternatives can be achieved by coding a glissando starting on a hidden grace note. See [Glissando], page 163.

If a repeat that begins with an incomplete measure has an \alternative block that contains modifications to the measureLength property, using \unfoldRepeats will result in wrongly-placed bar lines and bar check warnings.

A nested repeat like
\repeat ...
\repeat ...
\alternative

is ambiguous, since it is not clear to which \repeat the \alternative belongs. This ambiguity is resolved by always having the \alternative belong to the inner \repeat. For clarity, it is advisable to use braces in such situations.

Manual repeat marks

\begin{note}
These methods are only used for displaying unusual repeat constructs, and may produce unexpected behavior. In most cases, repeats should be created using the standard \repeat command or by printing the relevant bar lines. For more information, see [Bar lines], page 107.
\end{note}

The property repeatCommands can be used to control the layout of volta-style repeats. Its value is a Scheme list. In general, each element is itself a list, '[(command args...)], but a command with no arguments may be abbreviated to a symbol; e.g., '[(start-repeat)] may be given as '[(start-repeat)].

\end-repeat
End a repeated section.
\relative {
  c'"1
d4 e f g
\set Score.repeatCommands = #'(end-repeat)
c1
}

\relative {
  c''1
  \set Score.repeatCommands = #'(start-repeat)
d4 e f g
c1
}

As per standard engraving practice, repeat signs are not printed at the beginning of a piece.

\relative {
  f''4 g a b
  \set Score.repeatCommands = #'((volta ,#{\markup \volta-number "2" #}))
g4 a g a
  \set Score.repeatCommands = #'((volta #f))
c1
}

Multiple repeat commands may occur at the same point:
\relative {
  f''4 g a b
  \set Score.repeatCommands = #'((volta ,#{\markup \volta-number 2 , }\ concat { \volta-number 5 } #))
    end-repeat)
g4 a g a
c1
  \set Score.repeatCommands = #'((volta #f)
    (volta ,#{\markup \volta-number 95 #})
}
Text can be included with the volta bracket. The text can be a number or numbers or markup text, see Section 1.8.2 [Formatting text], page 293. The simplest way to use markup text is to define the markup first, then include the markup in a Scheme list.

\texttt{voltaAdLib = \markup \{ \volta-number \{ 1. 2. 3.. \} \italic \{ ad lib. \} \}}

\texttt{\relative \{ c''1 \set Score.repeatCommands = #'((volta ,voltaAdLib) start-repeat) c4 b d e \set Score.repeatCommands = #'((volta #f) (volta ,#{ \markup \volta-number "4." #}) end-repeat) f1 \set Score.repeatCommands = #'((volta #f)) \}}

Segno and coda marks can be created with the \segnoMark, \inStaffSegno, and \codaMark commands. This is the syntax for the mark commands:

\texttt{\codaMark n} \segnoMark n

where \texttt{n} is a sequence number, or \texttt{\default} to use the next automatically. Rehearsal, segno, and coda marks are counted independently.

\texttt{\fixed c' \{ e1 \segnoMark \default e1 \segnoMark \default g1 \codaMark \default g1 \codaMark \default b1 \codaMark 96 b1 \segnoMark 96 \}}
At the beginning of a piece, \segnoMark \default and \codaMark \default create no mark. Specify ‘1’ to force a mark.

\fixed c' { 
  \segnoMark 1 
  f1 
}

The \inStaffSegno command is equivalent to \segnoMark \default with the extra effect of temporarily setting the segnoStyle property to bar-line to force printing it as a bar line.

\fixed c' { 
  e1 
  \inStaffSegno 
  g1 
  \segnoMark \default 
  b1 
}

For more information on changing the appearance of segno and coda marks, see [Segno repeat appearance], page 181.

To create arbitrary jump instructions, use the \jump command.

\fixed c' { 
  \time 2/4 
  f4 a 
  b4 c'8 d' 
  c'4 c 
  \jump "Gavotte I D.C." 
  \section 
}

See also
Notation Reference: [Bar lines], page 107, Section 1.8.2 [Formatting text], page 293, [Rehearsal marks], page 127, [Segno repeat appearance], page 181.

Snippets: Section “Repeats” in Snippets.
1.4.2 Short repeats

This section discusses how to input short repeats. Short repeats can take two forms: slashes or percent signs to represent repeats of a single note, a single measure or two measures, and tremolos otherwise.

**Percent repeats**

Repeated short patterns are printed once, and the repeated pattern is replaced with a special sign.

The syntax is

```
\repeat percent number musicexpr
```

where `musicexpr` is a music expression.

Patterns that are shorter than one measure are replaced by slashes.

```
\relative c' {
 \repeat percent 4 { c128 d e f }
 \repeat percent 4 { c64 d e f }
 \repeat percent 5 { c32 d e f }
 \repeat percent 4 { c16 d e f }
 \repeat percent 4 { c8 d }
 \repeat percent 4 { c4 }
 \repeat percent 2 { c2 }
}
```

Patterns of one or two measures are replaced by percent-like symbols.

```
\relative c' {
 \repeat percent 2 { c4 d e f }
 \repeat percent 2 { c2 d }
 \repeat percent 2 { c1 }
}
```

```
\relative {
 \repeat percent 3 { c''4 d e f | c2 g' }
}
```
Note that the correct time offset to access the DoublePercentRepeat grob is the beginning of the repeat’s second bar, which can be easily achieved with \after.

\new Voice \with { \consists Balloon_engraver }
{ \after 1*3
  \balloonGrobText DoublePercentRepeat #'(-1 . 2) "repeat"
  \repeat percent 2 { g'1 | a'1 } }

Patterns that are shorter than one measure but contain mixed durations use a double-percent symbol.

\relative { \repeat percent 4 { c''8. <d f>16 } \repeat percent 2 { \tuplet 3/2 { r8 c d } e4 } }

Selected Snippets

**Percent repeat counter**

Measure repeats of more than two repeats can get a counter when the convenient property is switched, as shown in this example:

\relative c'' { \set countPercentRepeats = ##t \repeat percent 4 { c1 } }

**Percent repeat count visibility**

Percent repeat counters can be shown at regular intervals by setting the context property repeatCountVisibility.

\relative c'' { \set countPercentRepeats = ##t \set repeatCountVisibility = #(every-nth-repeat-count-visible 5) \repeat percent 10 { c1 } \break \set repeatCountVisibility = #(every-nth-repeat-count-visible 2) \repeat percent 6 { c1 d1 } }
Isolated percent repeats

Isolated percents can also be printed.

\begin{verbatim}
makePercent = 
  #(define-music-function (note) (ly:music?)
    "Make a percent repeat the same length as NOTE."
    (make-music 'PercentEvent
     'length (ly:music-length note)))
\end{verbatim}

\relative c' {
  \makePercent s1
}

See also


Snippets: Section “Repeats” in Snippets.

Internals Reference: Section “RepeatSlash” in Internals Reference, Section “Repeat-SlashEvent” in Internals Reference, Section “DoubleRepeatSlash” in Internals Reference, Section “PercentRepeat” in Internals Reference, Section “PercentRepeatCounter” in Internals Reference, Section “PercentRepeatedMusic” in Internals Reference, Section “Percent_repeat_engraver” in Internals Reference, Section “DoublePercentEvent” in Internals Reference, Section “DoublePercentRepeat” in Internals Reference, Section “DoublePercentRepeatCounter” in Internals Reference, Section “Double_percent_repeat_engraver” in Internals Reference, Section “Slash_repeat_engraver” in Internals Reference.

Known issues and warnings

Percent repeats will not contain anything else apart from the percent sign itself; in particular, timing changes will not be repeated.

\begin{verbatim}
\repeat percent 3 { \time 5/4 \texttt{c2. 2} \time 4/4 2 2 }
\end{verbatim}

Any meter changes or \texttt{partial} commands need to occur in parallel passages outside of any percent repeat, e.g in a separate timing track.

<<
Tremolo repeats

Tremolos can take two forms: alternation between two chords or two notes, and rapid repetition of a single note or chord. Tremolos consisting of an alternation are indicated by adding beams between the notes or chords being alternated, while tremolos consisting of the rapid repetition of a single note are indicated by adding beams or slashes to a single note.

To place tremolo marks between notes, use `\repeat` with tremolo style:

```
\repeat c'' {
 \repeat tremolo 8 { c16 d }
 \repeat tremolo 6 { c16 d }
 \repeat tremolo 2 { c16 d }
}
```

The `\repeat tremolo` syntax expects exactly two notes within the braces, and the number of repetitions must correspond to a note value that can be expressed with plain or dotted notes. Thus, `\repeat tremolo 7` is valid and produces a double dotted note, but `\repeat tremolo 9` is not.

The duration of the tremolo equals the duration of the braced expression multiplied by the number of repeats: `\repeat tremolo 8 { c16 d16 }` gives a whole note tremolo, notated as two whole notes joined by tremolo beams.

There are two ways to put tremolo marks on a single note. The `\repeat tremolo` syntax is also used here, in which case the note should not be surrounded by braces:

```
\repeat tremolo 4 c'16
```

The same output can be obtained by adding `:N` after the note, where `N` indicates the duration of the subdivision (it must be at least 8). If `N` is 8, one beam is added to the note’s stem. If `N` is omitted, the last value is used:

```
\relative {
 c''2:8 c:32
 c: c:
}
```
Selected Snippets

Cross-staff tremolos

Since `\repeat tremolo` expects exactly two musical arguments for chord tremolos, the note or chord which changes staff within a cross-staff tremolo should be placed inside curly braces together with its `\change Staff` command.

\new PianoStaff <<
  \new Staff = "up" \relative c'' {
    \key a \major
    \time 3/8
    s4.
  }
  \new Staff = "down" \relative c'' {
    \key a \major
    \time 3/8
    \voiceOne
    \repeat tremolo 6 {
      <a e'>32
      {\change Staff = "up"
        \voiceTwo
        <cis a' dis>32
      }
    }
  }
>>

See also

Snippets: Section “Repeats” in Snippets.

1.5 Simultaneous notes
Polyphony in music refers to having more than one voice occurring in a piece of music. Polyphony in LilyPond refers to having more than one voice on the same staff.

### 1.5.1 Single voice

This section discusses simultaneous notes inside the same voice.

**Chorded notes**

A chord is formed by enclosing a set of pitches between `<` and `>`. A chord may be followed by a duration just like simple notes.

\[
\text{\texttt{relative}} \{
\texttt{<a' c e>1 <a c e>2 <f a c e>4 <a c>8. <g c e>16}
\}
\]

Chords may also be followed by articulations, again just like simple notes.

\[
\text{\texttt{relative}} \{
\texttt{<a' c e>1\texttt{fermata} <a c e>2-> <f a c e>4\texttt{prall} <a c>8.>1 <g c e>16->}
\}
\]

The notes within the chord themselves can also be followed by articulation and ornamentation.

\[
\text{\texttt{relative}} \{
\texttt{<a' c\texttt{prall} e>1 <a-> c-> e>2 <f->. a c-> e->4}
\}
\]
However some notation, such as dynamics and hairpins must be attached to the chord rather than to notes within the chord, otherwise they will not print. Other notation like fingerings and slurs will get placed markedly different when attached to notes within a chord rather than to whole chords or single notes.

\relative {
    <a\'f c( e>1 <a c) e\f <a\! c e)( <a\! c e>)
    <a c e>\f <a c e> <a c e>!
}

A chord acts merely as a container for its notes, its articulations and other attached elements. Consequently, a chord without notes inside does not actually have a duration. Any attached articulations will happen at the same musical time as the next following note or chord and be combined with them (for more complex possibilities of combining such elements, see \cite{Simultaneous expressions}, page 199):

\relative {
    \grace { g'8( a b )
        <> ) \p \< -. \markup \italic "sempre staccato"
    \repeat unfold 4 { c4 e } c1\f
}

Relative mode can be used for pitches in chords. The first note of each chord is always relative to the first note of the chord that came before it, or in the case where no preceding chord exists, the pitch of the last note that came before the chord. All remaining notes in the chord are relative to the note that came before it within the same chord.

\relative {
    <a\' c e>1 <f a c> <a c e> <f\' a c> <b, e b,>
}

For more information about chords, see Section 2.7 \cite{Chord notation}, page 469.
See also

Notation Reference: Section 2.7 [Chord notation], page 469, [Articulations and ornamentations], page 140, [Relative octave entry], page 2, Section 1.5.2 [Multiple voices], page 201.
Snippets: Section “Simultaneous notes” in *Snippets*.

Known issues and warnings

Chords containing more than two pitches within a staff space, such as ‘<e f! fis!>’, create overlapping note heads. Depending on the situation, better representations might involve

- temporary use of Section 1.5.2 [Multiple voices], page 201, ‘<< f! \ <e fis! >>’,
- enharmonic transcription of one or more pitches, ‘<e f ges>’, or
- [Clusters], page 200.

Chord repetition

In order to save typing, a shortcut can be used to repeat the preceding chord. The chord repetition symbol is q:

\[\textbf{\texttt{\textbackslash relative}} \{
\texttt{\textbackslash text} <a’ c e>1 q <f a c>2 q
\}
\]

\begin{center}
  \includegraphics[width=0.5\textwidth]{chord-repetition.png}
\end{center}

As with regular chords, the chord repetition symbol can be used with durations, articulations, markups, slurs, beams, etc., as only the pitches of the previous chord are duplicated.

\[\textbf{\texttt{\textbackslash relative}} \{
\texttt{\textbackslash text} <a’ c e>1 \textbackslash p’”\textbackslash text” q2<q8\}[-! q8.]\! q16-1-2-3 q8\textbackslash prall
\}
\]

\begin{center}
  \includegraphics[width=0.5\textwidth]{chord-repetition-2.png}
\end{center}

The chord repetition symbol always remembers the last instance of a chord so it is possible to repeat the most recent chord even if other non-chorded notes or rests have been added since.

\[\textbf{\texttt{\textbackslash relative}} \{
\texttt{\textbackslash text} <a’ c e>1 c’4 q2 r8 q8 |
q2 c, |
\}
\]

\begin{center}
  \includegraphics[width=0.5\textwidth]{chord-repetition-3.png}
\end{center}

However, the chord repetition symbol does not retain any dynamics, articulation or ornamentation within, or attached to, the previous chord.

\[\textbf{\texttt{\textbackslash relative}} \{
\]
To have some of them retained, the \chordRepeats function can be called explicitly with an extra argument specifying a list of event types to keep unless events of that type are already present on the q chord itself.

\relative {
\chordRepeats #'(articulation-event)
{ <a'-c\prall e>1\sfz c'4 q2 r8 q8 - |
 q2 c, |}
}

Here using \chordRepeats inside of a \relative construction produces unexpected results: once chord events have been expanded, they are indistinguishable from having been entered as regular chords, making \relative assign an octave based on their current context.

Since nested instances of \relative don’t affect one another, another \relative inside of \chordRepeats can be used for establishing the octave relations before expanding the repeat chords. In that case, the whole content of the inner \relative does not affect the outer one; hence the different octave entry of the final note in this example.

\relative {
\chordRepeats #'(articulation-event)
\relative
{ <a'- c\prall e>1\sfz c'4 q2 r8 q8 - |
 q2 c'' |}
}

Interactions with \relative occur only with explicit calls of \chordRepeats: the implicit expansion at the start of typesetting is done at a time where all instances of \relative have already been processed.

**See also**

Notation Reference: Section 2.7 [Chord notation], page 469, [Articulations and ornaments], page 140.

Simultaneous expressions

One or more music expressions enclosed in double angle brackets are taken to be simultaneous. If the first expression begins with a single note or if the whole simultaneous expression appears explicitly within a single voice, the whole expression is placed on a single staff; otherwise the elements of the simultaneous expression are placed on separate staves.

The following examples show simultaneous expressions on one staff:

```music
% explicit single voice
\relative { a' \4 b \g2 }
\relative { d' \4 g \c,2 } >>
```

This can be useful if the simultaneous sections have identical rhythms, but attempts to attach notes with different durations to the same stem will cause errors. Notes, articulations, and property changes in a `\relative` are collected and engraved in musical order:

```music
% single first note
a' << \relative { a' \4 b \g }
\relative { d' \4 g \c, } >>
```

Multiple stems or beams or different note durations or properties at the same musical time require the use of multiple voices.

The following example shows how simultaneous expressions can generate multiple staves implicitly:

```music
% no single first note
<< \relative { a' \4 b \g2 }
\relative { d' \4 g2 \c,4 } >>
```

Here different rhythms cause no problems because they are interpreted in different voices.
Known issues and warnings

If notes from two or more voices, with no shifts specified, have stems in the same direction, the message

warning: This voice needs a \voiceXx or \shiftXx setting will appear during compilation. This message can be suppressed by:
\override NoteColumn.ignore-collision = ##t

However, this not only suppresses the warning but will prevent any collision resolution whatsoever and may have other unintended effects (also see Known Issues in [Collision resolution], page 206).

Clusters

A cluster indicates a continuous range of pitches to be played. They can be denoted as the envelope of a set of notes. They are entered by applying the function \makeClusters to a sequence of chords, e.g.,

\relative \makeClusters { <g' b>2 <c g'> }

Ordinary notes and clusters can be put together in the same staff, even simultaneously. In such a case no attempt is made to automatically avoid collisions between ordinary notes and clusters.

The following cluster styles are supported: ramp, leftsided-stairs, rightsided-stairs, and centered-stairs.

\begin{verbatim}
fragment = { <e' d''>4 <g' a'> <e' a'> r }
\end{verbatim}

\begin{verbatim}
\omit Staff.Clef
\omit Staff.TimeSignature

<>\markup \typewriter "ramp"
\override ClusterSpanner.style = #'ramp
\makeClusters \fragment

<>\markup \typewriter "leftsided-stairs"
\override ClusterSpanner.style = #'leftsided-stairs
\makeClusters \fragment

<>\markup \typewriter "rightsided-stairs"
\override ClusterSpanner.style = #'rightsided-stairs
\makeClusters \fragment

<>\markup \typewriter "centered-stairs"
\override ClusterSpanner.style = #'centered-stairs
\makeClusters \fragment
\end{verbatim}
Chapter 1: Musical notation

See also
Snippets: Section “Simultaneous notes” in Snippets.

Known issues and warnings
Clusters look good only if they span at least two chords; otherwise they appear too narrow.
Clusters do not have a stem and cannot indicate durations by themselves, but the length of the printed cluster is determined by the durations of the defining chords. Separate clusters need a separating rest between them.
Clusters do not produce MIDI output.

1.5.2 Multiple voices
This section discusses simultaneous notes in multiple voices or multiple staves.

Single-staff polyphony

Explicitly instantiating voices
The basic structure needed to achieve multiple independent voices in a single staff is illustrated in the following example:

\new Staff <<
\new Voice = "first"
\relative { \voiceOne r8 r16 g'' e8. f16 g8[ c,] f e16 d }
\new Voice= "second"
\relative { \voiceTwo d''16 c d8~ 16 b c8~ 16 b c8~ 16 b8. }
>>

Here, voices are instantiated explicitly and are given names. The \voiceOne ... \voiceFour commands set up the voices so that first and third voices get stems up, second and fourth voices get stems down, third and fourth voice note heads are horizontally shifted, and rests in the respective voices are automatically moved to avoid collisions. The \oneVoice command returns all the voice settings to the neutral default directions.

Note that Voice is a bottom-level context (see [Bottom-level contexts – voices], page 665). In TabStaff one would use TabVoice instead.

Temporary polyphonic passages
A temporary polyphonic passage can be created with the following construct:

<< { \voiceOne ... } 
\new Voice { \voiceTwo ... } 
>> \oneVoice

Here, the first expression within a temporary polyphonic passage is placed into the Voice context which was in use immediately before the polyphonic passage, and that same Voice context continues after the temporary section. Other expressions within the angle brackets are assigned
to distinct temporary voices. This allows lyrics to be assigned to one continuing voice before, during and after a polyphonic section:

\begin{verbatim}
\relative <<
  \new Voice = "melody" {
    a'4
    <<
      \voiceOne
      g f
    }
  \new Voice {
    \voiceTwo
    d2
  } >>
  \oneVoice e4
}
\new Lyrics \lyricsto "melody" {
  This is my song.
}
\end{verbatim}

This is my song.

Here, the \voiceOne and \voiceTwo commands are required to define the settings of each voice. In TabStaff one needs to use TabVoice.

If the same music should appear in Staff and TabStaff the general Bottom context may be used (see [Bottom-level contexts – voices], page 665).

\begin{verbatim}
\relative
\new Bottom = "melody" {
  a'4
  <<
    {
      \voiceOne
      g f
    }
  \new Bottom {
    \voiceTwo
    d2
  } >>
  \oneVoice e4
}
\end{verbatim}

<<
\new \Staff
\new \Lyrics \lyricsto "melody" {
  \my \relative { r8 r16 g'' e8. f16 g8[ c,,] f e16 d }
  \my \relative { d''16 c d8= 16 b c8= 16 b c8= 16 b8. }
}\my

The double backslash construct
The << {...} \ \ {...} >> construct, where the two (or more) expressions are separated by double backslashes, behaves differently to the similar construct without the double backslashes: all the expressions within this construct are assigned to new \Bottom contexts of the current type, typically \Voice or \TabVoice (see \[Bottom-level contexts – voices\], page 665). These new \Bottom contexts are created implicitly and are given the fixed names "1", "2", etc.

The first example could be typeset as follows:
<<
\relative { r8 g'' g g g f16 ees f8 d }
\my
\relative { d''16 c d8= 16 b c8= 16 b c8= 16 b8. }
>>

This syntax can be used where it does not matter that temporary voices are created and then discarded. These implicitly created voices are given the settings equivalent to the effect of the \\voiceOne ... \\voiceFour commands, in the order in which they appear in the code.

In the following example, the intermediate voice has stems up, therefore we enter it in the third place, so it becomes voice three, which has the stems up as desired. Spacer rests are used to avoid printing doubled rests.
<<
\relative { r8 g'' g g g f16 ees f8 d }
\my
\relative { ees'8 r ees r d r d r }
\my

This is my song.
\relative { d'8 s c s bes s a s }

>>

\new Staff <<
\time 2/4
{ f''2 } % 1: highest
\ 
{ c'2 } % 2: lowest
\ 
{ d''2 } % 3: second-highest
\ 
{ e'2 } % 4: second-lowest
\ 
{ b'2 } % 5: third-highest
\ 
{ g'2 } % 6: third-lowest
>>

When a different voice entry order is desired, the command \voices may be convenient:
\new Staff \voices 1,3,5,6,4,2 <<
\time 2/4
{ f''2 } % 1: highest
\ 
{ d''2 } % 3: second-highest
\ 

In all but the simplest works it is advisable to create explicit Voice contexts as explained in Section “Contexts and engravers” in Learning Manual and Section “Explicitly instantiating voices” in Learning Manual.

**Voice order**

When entering multiple voices in the input file, use the following order:

Voice 1: highest  
Voice 2: lowest  
Voice 3: second highest  
Voice 4: second lowest  
Voice 5: third highest  
Voice 6: third lowest  

etc.

Though this may seem counterintuitive, it simplifies the automatic layout process. Note that the odd-numbered voices are given up-stems, and the even-numbered voices are given down-stems:
{ b'2 } % 5: third-highest
\%
{ g'2 } % 6: third-lowest
\%
{ e'2 } % 4: second-lowest
\%
{ c'2 } % 2: lowest
>>

Note: Lyrics and spanners (such as slurs, ties, hairpins, etc.) cannot be created ‘across’ voices.

Identical rhythms
In the special case that we want to typeset parallel pieces of music that have the same rhythm, we can combine them into a single Voice context, thus forming chords. To achieve this, enclose them in a simple simultaneous music construct within an explicit voice:
\new Voice <<
\relative { e''4 f8 d e16 f g8 d4 }
\relative { c''4 d8 b c16 d e8 b4 }
>>

This method leads to strange beamings and warnings if the pieces of music do not have the same rhythm.

Predefined commands
\voiceOne, \voiceTwo, \voiceThree, \voiceFour, \oneVoice.

See also
Notation Reference: [Percussion staves], page 450, [Invisible rests], page 64, [Stems], page 271.
Snippets: Section “Simultaneous notes” in Snippets.

Voice styles
Voices may be given distinct colors and shapes, allowing them to be easily identified:
<<
\relative { \voiceOneStyle d''4 c2 b4 }
\%
\relative { \voiceTwoStyle e'2 e }
\%

Voices may be given distinct colors and shapes, allowing them to be easily identified:
\relative { \voiceThreeStyle b2. c4 } \\ \relative { \voiceFourStyle g’2 g } >>

The \voiceNeutralStyle command is used to revert to the standard presentation.

Predefined commands
\voiceOneStyle, \voiceTwoStyle, \voiceThreeStyle, \voiceFourStyle, \voiceNeutralStyle.

See also
Snippets: Section “Simultaneous notes” in Snippets.

Collision resolution
The note heads of notes in different voices with the same pitch, same note head and opposite stem direction are automatically merged, but notes with different note heads or the same stem direction are not. Rests opposite a stem in a different voice are shifted vertically. The following example shows three different circumstances, on beats 1 and 3 in bar 1 and beat 1 in bar 2, where the automatic merging fails.

<<
\relative {
  c’’8 d e d c d c4
  g’2 fis
} \\
\relative {
  c’’2 c8. b16 c4
  e,2 r
} \\
\relative {
  \oneVoice
  s1
  e’8 a b c d2
}
>>

Notes with different note heads may be merged as shown below. In this example the note heads on beat 1 of bar 1 are now merged:

<<
\relative {
  \mergeDifferentlyHeadedOn
}
Quarter and half notes are not merged in this way, since it would be difficult to tell them apart.

Note heads with different dots as shown in beat 3 of bar 1 may be also be merged:

The half note and eighth note at the start of the second measure are incorrectly merged because the automatic merge cannot successfully complete the merge when three or more notes line up in the same note column, and in this case the merged note head is incorrect. To allow the merge to select the correct note head a \shift must be applied to the note that should not be merged. Here, \shiftOn is applied to move the top g out of the column, and \mergeDifferentlyHeadedOn then works properly.
The `\shiftOn` command allows (but does not force) the notes in a voice to be shifted. When `\shiftOn` is applied to a voice, a note or chord in that voice is shifted only if its stem would otherwise collide with a stem from another voice, and only if the colliding stems point in the same direction. The `\shiftOff` command prevents this type of shifting from occurring.

By default, the outer voices (normally voices one and two) have `\shiftOff` specified, while the inner voices (three and above) have `\shiftOn` specified. When a shift is applied, voices with up-stems (odd-numbered voices) are shifted to the right, and voices with down-stems (even-numbered voices) are shifted to the left.

Here is an example to help you visualize how an abbreviated polyphonic expression would be expanded internally.

```
\new Staff \relative {
 \%% abbreviated entry
 \<<
 \{ f''2 \} \ % 1: highest
 \\
 \{ g,2 \} \ % 2: lowest
 \\
 \{ d'2 \} \ % 3: upper middle
 \\
 \{ b2 \} \ % 4: lower middle
 \>>
 \%% internal expansion of the above
 \<<
 \\new Voice = "1" \{ \voiceOne \shiftOff f'2 \}
 \\new Voice = "2" \{ \voiceTwo \shiftOff g,2 \}
 \>>
```
Two additional commands, \shiftOnnn and \shiftOnnnn provide further shift levels which may be specified temporarily to resolve collisions in complex situations – see Section “Real music example” in Learning Manual.

Notes are only merged if they have opposing stem directions (as they have, for example, in voices one and two by default or when the stems are explicitly set in opposite directions).

### Predefined commands

\mergeDifferentlyDottedOn, \mergeDifferentlyDottedOff, \mergeDifferentlyHeadedOn, \mergeDifferentlyHeadedOff.

\shiftOn, \shiftOnnn, \shiftOnnnn, \shiftOff.

### Selected Snippets

#### Additional voices to avoid collisions

In some instances of complex polyphonic music, additional voices are necessary to prevent collisions between notes. If more than four parallel voices are needed, additional voices can be added by defining a variable using the Scheme function context-spec-music.

\begin{verbatim}
voiceFive = #(context-spec-music (make-voice-props-set 4) 'Voice)
\end{verbatim}

\begin{verbatim}
\relative c' {
  \time 3/4
  \key d \minor
  \partial 2
  \new Voice {
    \voiceOne
    a4. a8
e'4 e4. e8
  f4 d4. c8
  }
  \new Voice {
    \voiceTwo
d,2
d4 cis2
d4 bes2
  }
  \new Voice {
    \voiceThree
    f'2
    bes4 a2
    a4 s2
  }
\end{verbatim}
Moving dotted notes in polyphony

When a dotted note in the upper voice is moved to avoid a collision with a note in another voice, the default is to move the upper note to the right. This behaviour can be over-ridden by using the `prefer-dotted-right` property of `NoteCollision`.

Forcing horizontal shift of notes

When the typesetting engine cannot cope, the following syntax can be used to override typesetting decisions. The units of measure used here are staff spaces.

\new Staff \relative c' <<
{ 
  f2. f4
\override Staff.NoteCollision.prefer-dotted-right = ##f
  f2. f4
\override Staff.NoteCollision.prefer-dotted-right = ##t
  f2. f4
}
\once \override NoteColumn.force-hshift = #1.7
{ e4 e e e e e e e e e e e e e e e e e e e e }
>>
See also


Snippets: Section “Simultaneous notes” in Snippets.

Internals Reference: Section “NoteColumn” in Internals Reference, Section “NoteCollision” in Internals Reference, Section “RestCollision” in Internals Reference.

Known issues and warnings

Using \override NoteColumn.ignore-collision = ##t will cause differently headed notes in different voices to merge incorrectly.

\mergeDifferentlyHeadedOn
<< \relative { c'16 a' b a } \relative { c'2 } >>
\override NoteColumn.ignore-collision = ##t
<< \relative { c'16 a' b a } \relative { c'2 } >>

Merging rests

When using multiple voices it is common to merge rests which occur in both parts. This can be accomplished using Merge_rests_engraver.

voiceA = \relative { d''4 r d2 | R1 | }
voiceB = \relative { fis'4 r g2 | R1 | }
\score {
  << \new Staff \with {
      instrumentName = "unmerged"
    }
  <<
    \new Voice { \voiceOne \voiceA }
    \new Voice { \voiceTwo \voiceB }
  >>
  \new Staff \with {
      instrumentName = "merged"
      \consists Merge_rests_engraver
    }
  <<
    \new Voice { \voiceOne \voiceA }
    \new Voice { \voiceTwo \voiceB }
  >>
  >>
}
Chapter 1: Musical notation

Setting the context property `suspendRestMerging` to `#t` allows for turning off rest merging temporarily.

**Automatic part combining**

Automatic part combining is used to merge two separate parts of music onto a single staff. This can be especially helpful when typesetting orchestral scores. A single `Voice` is printed while the two parts of music are the same, but in places where they differ, a second `Voice` is printed. Stem directions are set up & down accordingly while Solo and a due parts are also identified and marked appropriately.

The syntax for automatic part combining is:

```
\partCombine musicexpr1 musicexpr2
```

The following example demonstrates the basic functionality, putting parts on a single staff as polyphony and setting stem directions accordingly. The same variables are used for the independent parts and the combined staff.

```
instrumentOne = \relative {
 c'4 d e f |
 R1 |
 d'4 c b a |
 b4 g2 f4 |
 e1 |
}

instrumentTwo = \relative {
 R1 |
 g'4 a b c |
 d4 c b a |
 g4 f(e) d |
 e1 |
}

<<
\new Staff \instrumentOne
\new Staff \instrumentTwo
\new Staff \partCombine \instrumentOne \instrumentTwo
>>
```
Both parts have identical notes in the third measure, so only one instance of the notes is printed. Stem, slur, and tie directions are set automatically, depending on whether the parts are playing solo or in unison. When needed in polyphony situations, the first part (with context called one) gets “up” stems, while the second (called two) always gets “down” stems. In solo situations, the first and second parts get marked with “Solo” and “Solo II”, respectively. The unison (a due) parts are marked with the text “a2”.

By default, the part combiner merges two notes of the same pitch as an a due note, combines notes with the same rhythm less than a ninth apart as chords and separates notes more than a ninth apart (or when the voices cross) into separate voices. This can be overridden with an optional argument of a pair of numbers after the \partCombine command: the first specifies the interval where notes start to be combined (the default is zero) and the second where the notes are split into separate voices. Setting the second argument to zero means that the part combiner splits notes with an interval of a second or more, setting it to one splits notes of a third or more, and so on.

\begin{verbatim}
instrumentOne = \relative { 
a4 b c d |
e f g a |
b c d e |
}

instrumentTwo = \relative { 
c'4 c c c |
c c c c |
c c c c |
}

<<
\new Staff \partCombine \instrumentOne \instrumentTwo
\new Staff \partCombine #'(2 . 3) \instrumentOne \instrumentTwo
>>
\end{verbatim}
Both arguments to \partCombine will be interpreted as separate Voice contexts, so if the music is being specified in relative mode then both parts must contain a \relative function, i.e.,

\partCombine
  \relative ... musicexpr1
  \relative ... musicexpr2

A \relative section that encloses a \partCombine has no effect on the pitches of musicexpr1 or musicexpr2.

In professional scores, voices are often kept apart from each other for long passages of music even if some of the notes are the same in both voices, and could just as easily be printed as unison. Combining notes into a chord, or showing one voice as solo is, therefore, not ideal as the \partCombine function considers each note separately. In this case the \partCombine function can be overridden with one of the following commands. All of the commands may be preceded with \once in order to have them only apply to the next note in the music expression.

- \partCombineApart keeps the notes as two separate voices, even if they can be combined into a chord or unison.
- \partCombineChords combines the notes into a chord.
- \partCombineUnisono combines both voices as “unison”.
- \partCombineSoloI prints only voice one, and marks it as a “Solo”.
- \partCombineSoloII prints only voice two and marks it as a “Solo”.
- \partCombineAutomatic ends the functions of the commands above, and reverts back to the standard \partCombine functionality.

instrumentOne = \relative c' {
  \partCombineApart c2"apart" e |
  \partCombineAutomatic e2"auto" e |
  \partCombineChords e'2"chord" e |
  \partCombineAutomatic c2"auto" c |
  \partCombineApart c2"apart"

  \once \partCombineChords e"chord once" |
  c2 c |
}

instrumentTwo = \relative {
  c'2 c |
  e2 e |
  a,2 c |
  c2 c' |
  c2 c |
  c2 c |
  c2 c |
}

<<
  new Staff { \instrumentOne }
  new Staff { \instrumentTwo }
  new Staff { \partCombine \instrumentOne \instrumentTwo }
>>
**Using \partCombine with lyrics**

The \partCombine command is not designed to work with lyrics; if one of the voices is explicitly named in order to attach lyrics to it, the part combiner will stop working. However, this effect can be achieved using a NullVoice context. See [Polyphony with shared lyrics], page 346.

**Selected Snippets**

**Combining two parts on the same staff**

The part combiner tool (\partCombine command) allows the combination of several different parts on the same staff. Text directions such as “solo” or “a2” are added by default; to remove them, simply set the property printPartCombineTexts to f.

For vocal scores (hymns), there is no need to add “solo/a2” texts, so they should be switched off. However, it might be better not to use it if there are any solos, as they won’t be indicated. In such cases, standard polyphonic notation may be preferable.

This snippet presents the three ways two parts can be printed on a same staff: standard polyphony, \partCombine without texts, and \partCombine with texts.

```latex
%% Combining pedal notes with clef changes

\begin{verbatim}
\score { << \\
\new Staff \with { instrumentName = "Standard polyphony" } \\
<< \musicUp \ \ \musicDown >> \\
\end{verbatim}
```
Changing partcombine texts

When using the automatic part combining feature, the printed text for the solo and unison sections may be changed:

\new Staff <<
\set Staff.soloText = #"girl"
\set Staff.soloIIText = #"boy"
\set Staff.aDueText = #"together"
\partCombine
\relative c' {  
g4 g r r  
a2 g  
}  
\relative c' {  
r4 r a(b)  
a2 g  
}
>>
Chapter 1: Musical notation

See also


Notation Reference: Section 1.6.3 [Writing parts], page 240.

Snippets: Section “Simultaneous notes” in Snippets.


Known issues and warnings

All \partCombine... functions can only accept two voices.

\partCombine... functions cannot be placed inside a \tuplet or \relative block.

If printPartCombineTexts is set and the two voices play the same notes “on and off”, in the same measure, the part combiner may typeset a2 more than once in that measure.

\partCombine only knows when a note starts in a Voice; it cannot, for example, remember if a note in one Voice has already started when combining notes that have just started in the other Voice. This can lead to a number of unexpected issues including “Solo” or “Unison” marks being printed incorrectly.

\partCombine keeps all spanners (slurs, ties, hairpins, etc.) in the same Voice so that if any such spanners start or end in a different Voice, they may not be printed properly or at all.

If the \partCombine function cannot combine both music expressions (i.e., when both voices have different durations), it will give the voices, internally, its own custom names: one and two respectively. This means if there is any “switch” to a differently named Voice context, the events in that differently named Voice will be ignored.

Refer also to Known issues and warnings when using \partCombine with tablature in [Default tablatures], page 397, and the Note in [Automatic beams], page 92, when using automatic beaming.

Writing music in parallel

Music for multiple parts can be interleaved in input code. The function \parallelMusic accepts a list with the names of a number of variables to be created, and a musical expression. The content of alternate measures from the expression become the value of the respective variables, so you can use them afterwards to print the music.

\parallelMusic voiceA,voiceB,voiceC {
% Bar 1
r8 g’16 c’' e’' g’ c’' e’' r8 g’16 c’' e’' g’ c’' e’' |
| r16 e’8.\- 4 r16 e’8.\- 4 | c’2 | c’2 |
% Bar 2
r8 a’16 d’’ f’’ a’ d’’ f’’ r8 a’16 d’’ f’’ a’ d’’ f’’ |
| r16 d’8.\- 4 r16 d’8.\- 4 |
Relative mode may be used. Note that the \relative command is not used inside \parallelMusic itself. The notes are relative to the preceding note in the voice, not to the previous note in the input — in other words, relative notes for voiceA ignore the notes in voiceB.

\parallelMusic voiceA, voiceB, voiceC { 
  \% Bar 1
  r8 g16 c e g, c e r8 g,16 c e g, c e | 
  r16 e8.\(\) 4  r16 e8.\(\) 4 | 
  c2 c | 

  \% Bar 2
  r8 a,16 d f a, d f r8 a,16 d f a, d f | 
  r16 d8.\(\) 4  r16 d8.\(\) 4 | 
  c2 c | 
}

This works quite well for piano music. This example maps four consecutive measures to four variables:

\nl smart { 
  \key g \major 
  \time 2/4
}

\parallelMusic voiceA, voiceB, voiceC, voiceD { 
  \% Bar 1

See also

Snippets: Section “Simultaneous notes” in Snippets.
## 1.6 Staff notation

This section explains how to influence the appearance of staves, how to print scores with more than one staff, and how to add tempo indications and cue notes to staves.

### 1.6.1 Displaying staves

This section describes the different methods of creating and grouping staves.

#### Instantiating new staves

*Staves* (singular: *staff*) are created with the \new or \context commands. For details, see Section 5.1.2 [Creating and referencing contexts], page 665.

The basic staff context is *Staff*:

```latex
\new Staff \relative { c'4 d e f }
```

The DrumStaff context creates a five-line staff set up for a typical drum set. Each instrument is shown with a different symbol. The instruments are entered in drum mode following a \drummode command, with each instrument specified by name. For details, see [Percussion staves], page 450.

```latex
\new DrumStaff {
 \drummode { cymc hh ss tomh }
}
```
RhythmicStaff creates a single-line staff that only displays the rhythmic values of the input. Real durations are preserved. For details, see [Showing melody rhythms], page 89.

\new RhythmicStaff \{ c4 d e f \}

\begin{music}
\new RhythmicStaff \{ c4 d e f \}
\end{music}

TabStaff creates a tablature with six strings in standard guitar tuning. For details, see [Default tablatures], page 397.

\new TabStaff \relative { c''4 d e f }

\begin{music}
\new TabStaff \relative { c''4 d e f }
\end{music}

There are two staff contexts specific for the notation of ancient music: MensuralStaff and VaticanaStaff. They are described in [Predefined contexts], page 497.

The GregorianTranscriptionStaff context creates a staff to notate modern Gregorian chant. It engraves divisiones as bar lines, but it does not show measure bar lines.

\new GregorianTranscriptionStaff \relative { c''4 d e f e d }

\begin{music}
\new GregorianTranscriptionStaff \relative { c''4 d e f e d }
\end{music}

New single staff contexts may be defined. For details, see Section 5.1.6 [Defining new contexts], page 677.

See also


Notation Reference: Section 5.1.2 [Creating and referencing contexts], page 665, [Percussion staves], page 450, [Showing melody rhythms], page 89, [Default tablatures], page 397, [Predefined contexts], page 497, [Staff symbol], page 228, [Gregorian chant contexts], page 507, [Mensural contexts], page 499, Section 5.1.6 [Defining new contexts], page 677.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “Staff” in Internals Reference, Section “DrumStaff” in Internals Reference, Section “GregorianTranscriptionStaff” in Internals Reference, Section “RhythmicStaff” in Internals Reference, Section “TabStaff” in Internals Reference, Section “MensuralStaff” in Internals Reference, Section “VaticanaStaff” in Internals Reference, Section “StaffSymbol” in Internals Reference.

Grouping staves

Various contexts exist to group single staves together in order to form multi-staff systems. Each grouping context sets the style of the system start delimiter and the behavior of bar lines.

If no context is specified, the default properties will be used: the group is started with a vertical line, and the bar lines are not connected.

\begin{music}
<<
\new Staff \relative { c''1 c }
\new Staff \relative { c''1 c }
>>
\end{music}
In the StaffGroup context, the group is started with a bracket and bar lines are drawn through all the staves.

```
\new StaffGroup <<
 \new Staff \relative { c''1 c }
 \new Staff \relative { c''1 c }
>>
```

In a ChoirStaff, the group starts with a bracket, but bar lines are not connected.

```
\new ChoirStaff <<
 \new Staff \relative { c''1 c }
 \new Staff \relative { c''1 c }
>>
```

In a GrandStaff, the group begins with a brace, and bar lines are connected between the staves.

```
\new GrandStaff <<
 \new Staff \relative { c''1 c }
 \new Staff \relative { c''1 c }
>>
```

The PianoStaff is identical to a GrandStaff, except that it supports printing the instrument name directly. For details, see [Instrument names], page 240.

```
\new PianoStaff \with { instrumentName = "Piano" }
The \texttt{OneStaff} is a staff group that places separate contexts in the same vertical alignment. This example shows three staves sharing the same space. Here, the \texttt{Time_signature_engraver} has been moved from the staves to the OneStaff context to prevent it from being repeated for each staff.

\begin{verbatim}
\layout {
 \context {
 \OneStaff
 \consists Time_signature_engraver
 }
 \context {
 \Staff
 \remove Time_signature_engraver
 }
 \context {
 \DrumStaff
 \remove Time_signature_engraver
 }
}

\new OneStaff {
 \new Staff {
 c'4 4 d'4 4 e'2 d'
 }
 \drums {
 hihat4 hh bassdrum bd
 }
 \new Staff {
 c'4 4 d'4 4 e'2 d'
 }
}
\end{verbatim}

Each staff group context sets the property \texttt{systemStartDelimiter} to one of the following values: \texttt{SystemStartBar}, \texttt{SystemStartBrace}, or \texttt{SystemStartBracket}. A fourth delimiter, \texttt{SystemStartSquare}, is also available, but it must be explicitly specified.

New staff group contexts may be defined. For details, see Section 5.1.6 [Defining new contexts], page 677.
Selected Snippets

Use square bracket at the start of a staff group

The system start delimiter SystemStartSquare can be used by setting it explicitly in a StaffGroup or ChoirStaff context.

\score {
 \new StaffGroup { <<
 \set StaffGroup.systemStartDelimiter = #'SystemStartSquare
 \new Staff { c'4 d' e' f' }
 \new Staff { c'4 d' e' f' }
 >> }
}

Display bracket with only one staff in a system

If there is only one staff in one of the staff types ChoirStaff or StaffGroup, by default the bracket and the starting bar line will not be displayed. This can be changed by overriding collapse-height to set its value to be less than the number of staff lines in the staff.

Note that in contexts such as PianoStaff and GrandStaff where the systems begin with a brace instead of a bracket, another property has to be set, as shown on the second system in the example.

\score {
 \new StaffGroup <<
 % Must be lower than the actual number of staff lines
 \override StaffGroup.SystemStartBracket.collapse-height = #4
 \override Score.SystemStartBar.collapse-height = #4
 \new Staff { c'1
 } >>
}

\score {
 \new PianoStaff <<
 \override PianoStaff.SystemStartBrace.collapse-height = #4
 \override Score.SystemStartBar.collapse-height = #4
 \new Staff { c'1
 } >>
}

\paper { tagline = ##f }
Mensurstriche layout (bar lines between the staves)

Mensurstriche, bar lines between but not through staves, can be printed by setting measureBarType to "-span!" and using a grouping context that allows span bars, such as StaffGroup.

\layout {
 \context {
 \Staff
 measureBarType = "-span!"
 }
}

music = \fixed c'' {
 c1
 d2 \section e2
 f1 \fine
}

\new StaffGroup <<
 \new Staff \music
 \new Staff \music
>>

See also

Notation Reference: [Instrument names], page 240, Section 5.1.6 [Defining new contexts], page 677.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “Staff” in Internals Reference, Section “StaffGroup” in Internals Reference, Section “ChoirStaff” in Internals Reference, Section “GrandStaff” in Internals Reference, Section “PianoStaff” in Internals Reference, Section “OneStaff” in Internals Reference, Section “SystemStartBar” in Internals Reference, Section “SystemStartBrace” in Internals Reference, Section “SystemStartBracket” in Internals Reference, Section “SystemStartSquare” in Internals Reference.
Nested staff groups

Staff-group contexts can be nested to arbitrary depths. In this case, each child context creates a new bracket adjacent to the bracket of its parent group.

\new StaffGroup <<
\new Staff \relative { c''2 c | c2 c }
\new StaffGroup <<
\new Staff \relative { g'2 g | g2 g }
\new StaffGroup \with { systemStartDelimiter = #'SystemStartSquare }
<<
\new Staff \relative { e'2 e | e2 e }
\new Staff \relative { c'2 c | c2 c }
>>
>>

New nested staff group contexts can be defined. For details, see Section 5.1.6 [Defining new contexts], page 677.

Selected Snippets

Nesting staves

The property systemStartDelimiterHierarchy can be used to make more complex nested staff groups. The command \set StaffGroup.systemStartDelimiterHierarchy takes an alphabetical list of the number of staves produced. Before each staff a system start delimiter can be given. It has to be enclosed in brackets and takes as much staves as the brackets enclose. Elements in the list can be omitted, but the first bracket takes always the complete number of staves. The possibilities are SystemStartBar, SystemStartBracket, SystemStartBrace, and SystemStartSquare.

\new StaffGroup
\relative c'' <<
\override StaffGroup.SystemStartSquare.collapse-height = #4
\set StaffGroup.systemStartDelimiterHierarchy
= #'(SystemStartSquare (SystemStartBrace (SystemStartBracket a
 (SystemStartSquare b)) c) d)
\new Staff { c1 }

\gg

See also

Notation Reference: [Grouping staves], page 221, [Instrument names], page 240, Section 5.1.6
[Defining new contexts], page 677.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “StaffGroup” in Internals Reference, Section “ChoirStaff” in Internals Reference, Section “SystemStartBar” in Internals Reference, Section “SystemStartBrace” in Internals Reference, Section “SystemStartBracket” in Internals Reference, Section “SystemStartSquare” in Internals Reference.

Separating systems

If the number of systems per page changes from page to page it is customary to separate the systems by placing a system separator mark between them. By default the system separator is blank, but can be turned on with a \paper option.

\book {
 \score {
 \new StaffGroup <<
 \new Staff {
 \relative {
 c''4 c c c
 }
 \break
 c4 c c c
 }
 \new Staff {
 \relative {
 c''4 c c c
 }
 \break
 }
 }
}
1.6.2 Modifying single staves

This section explains how to change specific attributes of one staff: for example, modifying the number of staff lines or the staff size. Methods to start and stop staves and set ossia sections are also described.

Staff symbol

The \stopStaff and \startStaff commands can be used to stop or (re)start the staff lines respectively, from being printed at any point within a score.

\relative {
 \stopStaff f'4 d \startStaff g, e
 f'4 d \stopStaff g, e
 f'4 d \startStaff g, e
}

Predefined commands

\startStaff, \stopStaff.
The lines of a staff belong to the StaffSymbol grob (including ledger lines) and can be modified using StaffSymbol properties, but these modifications must be made before the staff is (re)started.

The number of staff lines can be altered:

```plaintext
\override Staff.StaffSymbol.line-count = #2
\startStaff g, e |
\stopStaff
```

The position of each staff line can also be altered. A list of numbers sets each line's position. 0 corresponds to the normal center line, and the normal line positions are (-4 -2 0 2 4). A single staff line is printed for every value entered so that the number of staff lines, as well as their position, can be changed with a single override (thus, the line-count property is disregarded if line-positions is set).

```plaintext
\override Staff.StaffSymbol.line-positions = #'(1 3 5 -1 -3)
\startStaff g, e |
\stopStaff
\override Staff.StaffSymbol.line-positions = #'(8 6.5 -6 -8 -0.5)
\startStaff g, e |
```

To preserve typical stem directions (in the bottom half of the staff stems point up, in the top half they point down), align the center line (or space) of the customized staff with the position of the normal center line (0). The clef position and the position of middle C may need to be adjusted accordingly to fit the new lines. See [Clef], page 17.

Staff line thickness can be altered. Ledger lines and note stems, by default, are also affected.

```plaintext
\new Staff \with {
  \override StaffSymbol.thickness = #3
}
```

It is also possible to set ledger line thickness independently of staff lines.

```plaintext
\new Staff \with {
```
The first value is multiplied by the staff line thickness, the second by the staff space and then the two values are added together to give the new thickness of the ledger line.

The vertical positions of ledger lines can be altered,

\new Staff \with {\override StaffSymbol.ledger-positions = #'(-3 -2 -1 2 5 6)}
\relative {f'''4 a, a,, f}

Additional ledger lines can be made to appear above or below note heads depending on the current position relative to other note heads that also have their own ledger lines.

\new Staff \with {\override StaffSymbol.ledger-extra = #4}
\relative {f'''4 a, d, f,}

Ledger lines can also be made to appear inside the staff where custom staff lines are required. The example shows the default position of ledger lines when the explicit ledger-position is and is not set. The \stopStaff is needed in the example to revert the \override for the whole \StaffSymbol.

\relative d' {\override Staff.StaffSymbol.line-positions = #'(-8 0 2 4)
d4 e f g\stopStaff\startStaff\override Staff.StaffSymbol.ledger-positions = #'(-8 -6 (-4 -2) 0)
d4 e f g}
The distance between staff lines can be altered. This affects ledger line spacing as well.

\new Staff \with {
 \override StaffSymbol.staff-space = #1.5
} \relative {
 f'''4 d, g, e,
}

The width of a staff can be modified. The units are staff spaces. The spacing of objects inside the staff is not affected by this setting.

\new Staff \with {
 \override StaffSymbol.width = #23
} \relative { a4 e' f b | d1 }

Selected Snippets

Making some staff lines thicker than the others

For educational purposes, a staff line can be thickened (e.g., the middle line, or to emphasize the line of the G clef). This can be achieved by adding extra lines very close to the line that should be emphasized, using the line-positions property of the StaffSymbol object.

\{
 \override Staff.StaffSymbol.line-positions =
 #'(-4 -2 -0.2 0 0.2 2 4)
 d'4 e' f' g'
\}

See also

Notation Reference: [Clef], page 17.

Snippets: Section “Staff notation” in *Snippets*.

Internals Reference: Section “StaffSymbol” in *Internals Reference*, Section “staff-symbol-interface” in *Internals Reference*.
Ossia staves
Ossia staves can be set by creating a new simultaneous staff in the appropriate location:

\new Staff \relative {
 c''4 b d c
 <<
 { c4 b d c }
 \new Staff { e4 d f e }
 >>
 c4 b c2
}

\begin{music}
\begin{musicline}
\begin{musicnote} c' \end{musicnote} \begin{musicnote} e \end{musicnote} \begin{musicnote} g \end{musicnote} \begin{musicnote} b \end{musicnote} \begin{musicnote} d' \end{musicnote} \begin{musicnote} c' \end{musicnote}
\begin{musicnote} e \end{musicnote} \begin{musicnote} g \end{musicnote} \begin{musicnote} b \end{musicnote} \begin{musicnote} d' \end{musicnote} \begin{musicnote} c' \end{musicnote} \begin{musicnote} e \end{musicnote} \begin{musicnote} g \end{musicnote} \begin{musicnote} b \end{musicnote} \begin{musicnote} d' \end{musicnote} \begin{musicnote} c' \end{musicnote}
\end{musicline}
\end{music}

However, the above example is not what is usually desired. To create ossia staves that are above the original staff, have no time signature or clef, and have a smaller font size, tweaks must be used. The Learning Manual describes a specific technique to achieve this goal, beginning with Section “Nesting music expressions” in Learning Manual.

The following example uses the alignAboveContext property to align the ossia staff. This method is most appropriate when only a few ossia staves are needed.

\new Staff = "main" \relative {
 c''4 b d c
 <<
 { c4 b d c }
 \new Staff \with {
 \remove Time_signature_engraver
 alignAboveContext = "main"
 \magnifyStaff #2/3
 firstClef = ##f
 }
 { e4 d f e }
 >>
 c4 b c2
}

\begin{music}
\begin{musicline}
\begin{musicnote} c' \end{musicnote} \begin{musicnote} e \end{musicnote} \begin{musicnote} g \end{musicnote} \begin{musicnote} b \end{musicnote} \begin{musicnote} d' \end{musicnote} \begin{musicnote} c' \end{musicnote}
\begin{musicnote} e \end{musicnote} \begin{musicnote} g \end{musicnote} \begin{musicnote} b \end{musicnote} \begin{musicnote} d' \end{musicnote} \begin{musicnote} c' \end{musicnote} \begin{musicnote} e \end{musicnote} \begin{musicnote} g \end{musicnote} \begin{musicnote} b \end{musicnote} \begin{musicnote} d' \end{musicnote} \begin{musicnote} c' \end{musicnote}
\end{musicline}
\end{music}

If many isolated ossia staves are needed, creating an empty Staff context with a specific context id may be more appropriate; the ossia staves may then be created by calling this context and using \startStaff and \stopStaff at the desired locations. The benefits of this method are more apparent if the piece is longer than the following example.

<<
Using the \RemoveAllEmptyStaves command to create ossia staves may be used as an alternative. This method is most convenient when ossia staves occur immediately following a line break. For more information about \RemoveAllEmptyStaves, see [Hiding staves], page 235.
\new Staff \relative c'4
 { c'4 b c2
 e4 f e2
 g4 a g2 \break
 c4 b c2
 g4 a g2
 e4 d c2
 }

Selected Snippets

Vertically aligning ossias and lyrics

This snippet demonstrates the use of the context properties alignBelowContext and alignAboveContext to control the positioning of lyrics and ossias.

\paper {
 \ragged-right = \#t
}

\relative c' <<
\new Staff = "1" { c4 c s2 }
\new Staff = "2" { c4 c s2 }
\new Staff = "3" { c4 c s2 }
{ \skip 2
 \lyrics {
 \set alignBelowContext = "1"
 lyrics4 below
 }
}
\new Staff \with {
 \set alignAboveContext = "3"
 \fontSize = \#-2
 \override StaffSymbol.staff-space = \#(magstep -2)
 \remove "Time_signature_engraver"
} {
 \tuplet 6/4 {
 \override \n \override TextScript.padding = \#3
 c8[^"ossia above" d e d e f]
 }
}
See also

Notation Reference: [Hiding staves], page 235.
Snippets: Section “Staff notation” in Snippets.
Internals Reference: Section “StaffSymbol” in Internals Reference.

Hiding staves

Staff lines can be hidden by removing the Staff_symbol_engraver from the Staff context. As an alternative, \stopStaff may be used.

\new Staff \with {
 \remove Staff_symbol_engraver
}
\relative { a'8 f e16 d c b a2 }

Empty staves can be hidden (for a so-called ‘Frenched Score’) by applying the \RemoveEmptyStaves command on a context, which can be done globally (in a \layout block) as well as for specific staves only (in a \with block). This command removes all empty staves in a score except for those in the first system. If you want those in the first system to be hidden also, use \RemoveAllEmptyStaves.

\layout {
 \context {
 \Staff
 \RemoveEmptyStaves
 }
}
A staff is considered empty when it contains only multi-measure rests, rests, skips, or a combination of these elements. All other musical objects (that cause a staff not to be considered as empty) are listed in the keepAliveInterfaces context property, as initially set in the ly/engraver-init.ly file.

\RemoveEmptyStaves and \RemoveAllEmptyStaves are both predefined shortcuts that set such properties as remove-empty and remove-first for the VerticalAxisGroup object, as explained in Section A.22 [Context modification identifiers], page 861.

The Keep_alive_together_engraver allows groups of staves to only be removed together and not individually. By default, it is part of the PianoStaff context: a piano part will only be hidden when both of its staves are empty. Similarly, a common engraving practice in orchestral scores is to remove empty groups of staves rather than individual staves; that can be achieved by adding the Keep_alive_together_engraver to the relevant staff grouping context, as explained Section 5.1.4 [Modifying context plug-ins], page 671, (see [Grouping staves], page 221, for the context names).

\layout {
 \context {
 \StaffGroup
 \RemoveEmptyStaves
 \consists Keep_alive_together_engraver
 }
}
In the following example, staves devoted to wind instruments are removed in the second system; however, the double bass is not, because it is part of the string section, which is playing.
The `keep_alive_together_engraver` internally uses the remove-layer property of a staff’s `VerticalAxisGroup` to decide whether to print it or not when it is considered empty. That property may also be set directly, in which case it acts as a priority index: values closest to zero take precedence over higher numbers, and thus staves whose remove-layer is higher will be masked in favor of staves of a lower number.

This is particularly useful for ‘divisi’ staves, where some individual parts (see Section 1.6.3 [Writing parts], page 240) occasionally need to be expanded to more than one staff. In the following example, two parts are routed to three staves; however, all three staves are never printed at the same time:

- in the first systems, only a single one of them is shown, as the `keepAliveInterfaces` property has been set to an empty list – therefore the other two staves are considered empty and thus hidden, regardless of what they may contain;
- when that property gets unset (and thus reverts to its default setting), it is no longer preventing the two other staves from being printed; however, as their remove-layer setting is lower than the single staff’s, these two staves are now printed in its place.

Such substitutions are applied not just to notes, chords and other musical events that occur immediately after the new setting, but to the whole system where it takes place.

```latex
\layout {
  short-indent = 2\cm
  indent = 3\cm
  \context {
    \Staff
      keepAliveInterfaces = #'()
  }
}

\new \StaffGroup \with { \consists Keep_alive_together_engraver } <<
  \new \Staff \with {
    instrumentName = "Violins"
    shortInstrumentName = "VI & II"
    \override VerticalAxisGroup.remove-layer = 2
  } << \violI \\ \violII >>
  \new \Staff \with {
    instrumentName = "Violin I"
    shortInstrumentName = "V I"
  } \RemoveAllEmptyStaves
```

violI = {
 \repeat unfold 24 { d'4 }
 \once \unset Staff.keepAliveInterfaces
 <d' g''>2
 \repeat unfold 14 { d'4 }
 \bar "|."
}

violII = {
 \repeat unfold 24 { g4 }
 <g d'>2
 \repeat unfold 14 { g4 }
 \bar "|."
}

violIII = {
 \repeat unfold 24 { d'4 }
 \once \unset Staff.keepAliveInterfaces
 <g d'>2
 \repeat unfold 14 { d'4 }
 \bar "|."
}

\override VerticalAxisGroup.remove-layer = 1
}\violin
\new Staff \with {
 instrumentName = "Violin II"
 shortInstrumentName = "V II"
}\RemoveAllEmptyStaves
\override VerticalAxisGroup.remove-layer = 1
}\violinII

\RemoveAllEmptyStaves can also be used to create ossia sections for a staff. For details, see [Ossia staves], page 232.

Predefined commands
\RemoveEmptyStaves, \RemoveAllEmptyStaves.

See also
Music Glossary: Section “Frenched staff” in Music Glossary.

Notation Reference: Section 5.1.5 [Changing context default settings], page 672, [Staff symbol], page 228, [Ossia staves], page 232, [Hidden notes], page 263, [Invisible rests], page 64, Section 5.4.7 [Visibility of objects], page 708, Section A.22 [Context modification identifiers], page 861, [Grouping staves], page 221, Section 5.1.4 [Modifying context plug-ins], page 671.

Installed Files: ly/engraver-init.ly.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “ChordNames” in Internals Reference, Section “FiguredBass” in Internals Reference, Section “Lyrics” in Internals Reference, Section “Staff” in Internals Reference, Section “VerticalAxisGroup” in Internals Reference, Section “Staff_symbol_engraver” in Internals Reference, Section “Axis_group_engraver” in Internals Reference, Section “Keep_alive_together_engraver” in Internals Reference.
Known issues and warnings

Removing Staff_symbol_engraver also hides bar lines. If bar line visibility is forced, formatting errors may occur. In this case, use the following overrides instead of removing the engraver:

\omit StaffSymbol
\override NoteHead.no-ledgers = ##t

For the Known issues and warnings associated with \RemoveEmptyStaves see Section 5.1.5 [Changing context default settings], page 672.

1.6.3 Writing parts

This section explains how to prepare parts for orchestral or ensemble music, which often requires to insert instrument names into the score. Methods to quote other voices and to format cue notes are also described, as well as a way to contract multiple consecutive empty measures in individual parts.

Additionally, a method for printing divisi staves, sometimes used in individual or desk parts, can be found in [Hiding staves], page 235.

Instrument names

Instrument names can be printed on the left side of staves in the Staff, PianoStaff, StaffGroup, GrandStaff and ChoirStaff contexts. The value of instrumentName is used for the first staff, and the value of shortInstrumentName is used for all succeeding staves.

\new Staff \with {
 \instrumentName = "Violin "
 \shortInstrumentName = "Vln. "
} \relative {
 c'4.. g'16 c4.. g'16 \break | c1 |
}

Violin \[diagram\]

Vln. \[diagram\]

\markup can be used to create more complex instrument names:

\new Staff \with {
 \instrumentName = \markup {
 \column { "Clarinetti"
 \line { "in B" \smaller \flat }
 }
} \relative {
 c''4 c,16 d e f g2
}

Clarinetti in B \[diagram\]
When two or more staff contexts are grouped together, the instrument names and short instrument names are centered by default. To center multi-line instrument names, `\center-column` must be used:

```
<<
\new Staff \with {
  instrumentName = "Flute"
} \relative {
  f''2 g4 f
}
\new Staff \with {
  instrumentName = \markup {
    \center-column { "Clarinet" }
    \line { "in B" \smaller \flat }
  }
} \relative { c''4 b c2 }
>>
```

Flute
\begin{music}
\relative c' \f clef\!
\kclef{fsharp}
\startStaff
\note f' \mten\note g' \mten\note f
\stopStaff
\end{music}

Clarinet
\begin{music}
\relative c' \f clef\!
\kclef{bflat}
\startStaff
\note c' \mten\note b \mten\note c
\stopStaff
\end{music}

However, if the instrument names are longer, the instrument names in a staff group may not be centered unless the indent and short-indent settings are increased. For details about these settings, see [\paper variables for shifts and indents], page 612.

```
<<
\new Staff \with {
  instrumentName = "Alto Flute in G"
  shortInstrumentName = "Flt."
} \relative {
  f''2 g4 f \break
  g4 f g2
}
\new Staff \with {
  instrumentName = "Clarinet"
  shortInstrumentName = "Clar."
} \relative {
  c''4 b c2 \break
  c2 b4 c
}
>>
```

\layout {
 indent = 3.0\cm
 short-indent = 1.5\cm
}
To add instrument names to other contexts (such as ChordNames or FiguredBass), \instrument_name_engraver must be added to that context. For details, see Section 5.1.4 [Modifying context plug-ins], page 671.

The \shortInstrumentName may be changed in the middle of a piece, along with other settings as needed for the new instrument. However, only the first instance of \instrumentName will be printed and subsequent changes will be ignored:

\begin{verbatim}
prepPiccolo = <>^\markup \italic \{ muta in Piccolo \}

prepFlute = <>^\markup \italic \{ muta in Flauto \}

setPiccolo = {
 <>^\markup \bold \{ Piccolo \}
 \transposition c''
}

setFlute = {
 <>^\markup \bold \{ Flute \}
 \transposition c'
}

\new \Staff \with {
 \instrumentName = "Flute"
 \shortInstrumentName = "Flt."
}
\relative {
 g'1 g g g \break
 g1 g \prepPiccolo R R \break
 \set \Staff.instrumentName = "Piccolo"
 \set \Staff.shortInstrumentName = "Picc."
 \setPiccolo
 g1 g g g \break
 g1 g \prepFlute R R \break
 \set \Staff.instrumentName = "Flute"
 \set \Staff.shortInstrumentName = "Flt."
 \setFlute
 g1 g g g
}\end{verbatim}
It is very common for one voice to use the same notes as those from another voice. For example, first and second violins playing the same phrase during a particular passage of the music. This is done by letting one voice quote the other, without having to reenter the music all over again for the second voice.

The `\addQuote` command, used in the top level scope, defines a stream of music from which fragments can be quoted.

The `\quoteDuring` command is used to indicate the point where the quotation begins. It is followed by two arguments: the name of the quoted voice, as defined with `\addQuote`, and a music expression for the duration of the quote.

```latex
fluteNotes = \relative { 
    a'4 gis g gis | b4"quoted" r8 ais\p a4( f) }

oboeNotes = \relative { 
    c'4 cis c b \quoteDuring "flute" { s1 } }

\addQuote "flute" { \fluteNotes }

\score { 
    \new Staff \with { instrumentName = "Flute" } \fluteNotes
    \new Staff \with { instrumentName = "Oboe" } \oboeNotes
}
If the music expression used in \quoteDuring contains notes instead of spacer or multi-measure rests then the quote will appear as polyphony and may produce unexpected results.

\begin{verbatim}
fluteNotes = \relative {
    a'4 gis g gis | b4~"quoted" r8 ais\p a4( f)
}

oboeNotes = \relative {
    c''4 cis c b \quoteDuring "flute" { e4 r8 ais b4 a }
}
\end{verbatim}

\addQuote "flute" \{ \fluteNotes \}

\score {
    <<
    \new Staff \with { instrumentName = "Flute" } \fluteNotes
    \new Staff \with { instrumentName = "Oboe" } \oboeNotes
    >>
}

If an \unfoldRepeats command in a music expression is required to be printed when using \quoteDuring, then it too must also contain its own \unfoldRepeats command;

\begin{verbatim}
fluteNotes = \relative {
    \repeat volta 2 { a'4 gis g gis }
}

oboeNotesDW = \relative {
    \repeat volta 2 \quoteDuring "incorrect" { s1 }
}

oboeNotesW = \relative {
    \repeat volta 2 \quoteDuring "correct" { s1 }
}
\end{verbatim}
\addQuote "incorrect" { \fluteNotes }
\addQuote "correct" { \unfoldRepeats \fluteNotes }
\score {
\unfoldRepeats
<<
\new Staff \with { instrumentName = "Flute" } \fluteNotes
\new Staff \with { instrumentName = "Oboe (incorrect)" } \oboeNotesDW
\new Staff \with { instrumentName = "Oboe (correct)" } \oboeNotesW
>>
}

The \quoteDuring command uses the \transposition settings of both quoted and quoting parts to produce notes for the quoting part that have the same sounding pitch as those in the quoted part.

\clarinetNotes = \relative c'' { \transposition bes \key d \major 
  b4 ais a ais | cis4"quoted" r8 bis\p b4(f) }
\oboeNotes = \relative { c''4 cis c b \quoteDuring "clarinet" { s1 } }
\addQuote "clarinet" { \clarinetNotes }
\score {
<<
\new Staff \with { instrumentName = "Clarinet" } \clarinetNotes
\new Staff \with { instrumentName = "Oboe" } \oboeNotes
>>
}
By default quoted music will include all articulations, dynamics, markups, etc., in the quoted expression. It is possible to choose which of these objects from the quoted music are displayed by using the quotedEventTypes context property.

```latex
\begin{verbatim}
fluteNotes = \relative {
 a'2 g2 |
 b4\"quoted" r8 ais a4\f(c->)
}

oboeNotes = \relative {
 c''2. b4 |
 \quoteDuring "flute" { s1 }
}

\addQuote "flute" { \fluteNotes }

\score {
 \set Score.quotedEventTypes = #'(note-event articulation-event
 crescendo-event rest-event
 slur-event dynamic-event)

 \new Staff \with { instrumentName = "Flute" } \fluteNotes

 \new Staff \with { instrumentName = "Oboe" } \oboeNotes

}\end{verbatim}
```

Quotes can also be tagged, see [Using tags], page 573.

**See also**

Notation Reference: [Instrument transpositions], page 27, [Using tags], page 573.

Installed Files: scm/define-event-classes.scm.

Snippets: Section “Staff notation” in Snippets.

Internals Reference: Section “Music classes” in Internals Reference, Section “QuoteMusic” in Internals Reference, Section “Voice” in Internals Reference.
Known issues and warnings

Only the contents of the first Voice occurring in an \addQuote command will be considered for quotation, so if the music expression contains \new or \context Voice statements, their contents will not be quoted. Quoting grace notes is unsupported and may cause LilyPond to crash whereas quoting nested triplets may result in poor notation.

Formatting cue notes

The simplest way to format cue notes is to explicitly create a CueVoice context within the part.

\relative {
  R1
  <<
    { e'2\rest r4. e8 }
  \new CueVoice {
    \stemUp d'8"flute" c d e fis2
  }
  >>
  d,,4 r a r
}

The \cueClef command can also be used with an explicit CueVoice context if a change of clef is required and will print an appropriately sized clef for the cue notes. The \cueClefUnset command can then be used to switch back to the original clef, again with an appropriately sized clef.

\relative {
  \clef "bass"
  R1
  <<
    { e'2\rest r4. \cueClefUnset e,8 }
  \new CueVoice {
    \cueClef "treble" \stemUp d'8"flute" c d e fis2
  }
  >>
  d,,4 r a r
}

The \cueClef and \cueClefUnset command can also be used without a CueVoice if required.

\relative {
  \clef "bass"
  R1
  \cueClef "treble"
  d'8"flute" c d e fis2
  \cueClefUnset
d,,4 r a r
Chapter 1: Musical notation

For more complex cue note placement, e.g. including transposition, or inserting cue notes from multiple music sources, the \cueDuring or \cueDuringWithClef commands can be used. These are more specialized forms of \quoteDuring, see [Quoting other voices], page 243, in the previous section.

The syntax is:
\cueDuring \textit{quotename} \#\textit{direction} \textit{music}

and

\cueDuringWithClef \textit{quotename} \#\textit{direction} \#\textit{clef} \textit{music}

The music from the corresponding measures of the \textit{quote name} is added as a CueVoice context and occurs simultaneously with the \textit{music}, which then creates a polyphonic situation. The \textit{direction} takes the argument \textit{UP} or \textit{DOWN}, and corresponds to the first and second voices respectively, determining how the cue notes are printed in relation to the other voice.

\begin{verbatim}
fluteNotes = \relative {
r2. c''4 | d8 c d e fis2 | g2 d |
}

oboeNotes = \relative c'' {
R1
<>-\markup \tiny { flute }
\cueDuring "flute" #UP { R1 }
g2 c,
}
\addQuote "flute" { \fluteNotes }
\new Staff {
\oboeNotes
}
\end{verbatim}

It is possible to adjust which aspects of the music are quoted with \cueDuring by setting the \textit{quotedCueEventTypes} property. Its default value is '(note-event rest-event tie-event beam-event tuplet-span-event), which means that only notes, rests, ties, beams and tuplets are quoted, but not articulations, dynamic marks, markup, etc.

\textbf{Note:} When a Voice starts with \cueDuring, as in the following example, the Voice context must be explicitly declared, or else the entire music expression would belong to the CueVoice context.

\begin{verbatim}
\begin{verbatim}
oboeNotes = \relative {
r2 r8 d''16(f f e g f a)
g8 g16 g g2.
\end{verbatim}
\end{verbatim}
Chapter 1: Musical notation

```
\addQuote "oboe" { oboeNotes }
\new Voice \relative c'' {
 \set Score.quotedCueEventTypes = #'(note-event rest-event tie-event
 beam-event tuplet-span-event
dynamic-event slur-event)
 \cueDuring "oboe" #UP { R1 }
g2 c,
}
```

Markup can be used to show the name of the quoted instrument. If the cue notes require a change in clef, this can be done manually but the original clef should also be restored manually at the end of the cue notes.

```
fluteNotes = \relative {
 r2. c''4 d8 c d e fis2 g2 d2
}
```

```
bassoonNotes = \relative c {
 \clef bass
 R1
 \clef treble
 <>\markup \tiny { flute }
 \cueDuring "flute" #UP { R1 }
 \clef bass
g4. b8 d2
}
```

```
\addQuote "flute" { fluteNotes }
```

```
\new Staff {
 \bassoonNotes
}
```

```
Alternatively, the \cueDuringWithClef function can be used instead. This command takes an extra argument to specify the change of clef that needs to be printed for the cue notes but will automatically print the original clef once the cue notes have finished.

```
fluteNotes = \relative {
  r2. c''4 d8 c d e fis2 g2 d2
}
```

```
bassoonNotes = \relative c {
  \clef bass
```
Like \quoteDuring, \cueDuring takes instrument transpositions into account. Cue notes are produced at the pitches that would be written for the instrument receiving the cue to produce the sounding pitches of the source instrument.

To transpose cue notes differently, use \transposedCueDuring. This command takes an extra argument to specify (in absolute mode) the printed pitch that you want to represent the sound of a concert middle C. This is useful for taking cues from an instrument in a completely different register.

\begin{verbatim}
\piccoloNotes = \relative c' { \key d \major \transposition bes, d4 r a r \transposedCueDuring "piccolo" #UP d { R1 } d4 r a r }
\end{verbatim}

\addQuote "piccolo" { \piccoloNotes }

<< \new Staff \piccoloNotes \new Staff \bassClarinetNotes >>
The \killCues command removes cue notes from a music expression, so the same music expression can be used to produce the instrument part with cues and the score. The \killCues command removes only the notes and events that were quoted by \cueDuring. Other markup associated with cues, such as clef changes and a label identifying the source instrument, can be tagged for selective inclusion in the score; see [Using tags], page 573.

```latex
fluteNotes = \relative {
    r2. c'4 d8 c d e fis2 g2 d2
}

bassoonNotes = \relative c {
    \clef bass
    \tag #'part {
        \clef treble
        <>\markup \tiny { flute }
    }
    \cueDuring "flute" #UP { R1 }
    \tag #'part \clef bass
g4. b8 d2
}

\addQuote "flute" { \fluteNotes }

\new Staff {
    \fluteNotes
}
\new StaffGroup <<
    \new Staff {
        \fluteNotes
    }
    \new Staff {
        \removeWithTag #'part { \killCues { \bassoonNotes } }
    }
>>
```

See also

Notation Reference: [Quoting other voices], page 243, [Instrument transpositions], page 27, [Instrument names], page 240, [Clef], page 17, [Musical cues], page 362, [Using tags], page 573.

Snippets: Section “Staff notation” in Snippets.
Internals Reference: Section “CueVoice” in Internals Reference, Section “Voice” in Internals Reference.

Known issues and warnings
Collisions can occur with rests, when using \cueduring, between Voice and CueVoice contexts. When using \cueduringwithclef or \transposedcueduring the extra argument required for each case must come after the quote and the direction.

Compressing empty measures
By default, all measures are printed even if they are empty – which can happen if a rhythmic event (such as notes, rests or invisible rests) is so long as to span several measures. This behavior can be changed by contracting all empty measures into a single one, as illustrated here (the second part of this example, with expanded measures, actually reverts back to the default behavior):

\begin{verbatim}
\override Score.BarNumber.break-visibility = ##(#f #t #t)
\time 2/4
\compressEmptyMeasures c'1 d'1. e'\breve
\bar "||"
\expandEmptyMeasures c'1 d'1. e'\breve
\end{verbatim}

Although that notation is syntactically correct, it may be confusing from a musical point of view, as illustrated in the previous example; hence the need for measure numbers to be explicitly printed, using the syntax described in [Using break-visibility], page 710.

Where such a notation may become more useful is when applied to [Full measure rests], page 66. A multi-measure rest will then be shown as a single measure containing a multi-measure rest symbol, with the number of measures of rest printed above the measure:

\begin{verbatim}
% Default behavior
\time 3/4 r2. | R2.*2 |
\time 2/4 R2 |
\time 4/4
% Rest measures contracted to single measure
\compressEmptyMeasures r1 | R1*17 | R1*4 |
\expandEmptyMeasures % Rest measures expanded again
\time 3/4
R2.*2 |
\end{verbatim}
Unlike \compressEmptyMeasures, the music function \compressMMRests will only apply to
rests, leaving any other events uncompressed. As a function rather than a property setting, its
syntax differs slightly in that it must be followed by a music expression:

\compressMMRests {
% Rests are compressed...
R1*7
% ... but notes can still span multiple measures.
g'1 a'1*2 d'1
R1*2
}

All of the commands described in this section actually rely on the \skipBars internal property,
which is set in the Score context, see Section 5.3.2 \set and \unset, page 685.

Predefined commands
\compressEmptyMeasures, \expandEmptyMeasures, \compressMMRests.

Selected Snippets

Numbering single measure rests

Multi measure rests show their length by a number except for single measures. This can be
changed by setting restNumberThreshold.

\{
\compressEmptyMeasures
R1 R1*10 R1*11 \bar "||"
\set restNumberThreshold = 0
R1 R1*10 R1*11 \bar "||"
\set restNumberThreshold = 10
R1 R1*10 R1*11
\}

Changing form of multi-measure rests

If there are ten or fewer measures of rests, a series of longa and breve rests (called in German
“Kirchenpausen” - church rests) is printed within the staff; otherwise a simple line is shown. This
default number of ten may be changed by overriding the expand-limit property.

\relative c' {
\compressMMRests {
R1*2 | R1*5 | R1*9
\override MultiMeasureRest.expand-limit = #3
R1*2 | R1*5 | R1*9
}
See also
Notation Reference: [Using break-visibility], page 710, [Full measure rests], page 66,
Section 5.3.2 \set and \unset, page 685.

Internals Reference: Section “MultiMeasureRest” in Internals Reference, Section “MultiMeasureRestNumber” in Internals Reference, Section “MultiMeasureRestScript” in Internals Reference, Section “MultiMeasureRestText” in Internals Reference.

1.7 Editorial annotations

This section discusses the various ways to change the appearance of notes and add analysis or educational emphasis.

1.7.1 Inside the staff

This section discusses how to add emphasis to elements that are inside the staff.

Selecting notation font size

Note:
For font sizes of text, see [Selecting font and font size], page 297.
For staff size, see Section 4.2.2 [Setting the staff size], page 618.
For cue notes, see [Formatting cue notes], page 247.
For ossia staves, see [Ossia staves], page 232.

To change the size of the notation without changing the staff size, specify a magnification factor with the \magnifyMusic command:

\new Staff <<
\new Voice \relative {
 \voiceOne
 <e' e'>4 <f f'>8. <g g'>16 <f f'>8 <e e'>4 r8
The \override in the example above is a bug workaround. See the “Known issues and warnings” at the end of this section.

If a normal sized note head is merged with a smaller one, the size of the smaller note may need to be reset (with \once \normalsize) so that the stems and accidentals align properly:

```latex
\new Staff <<
\key fis \minor
\mergeDifferentlyDottedOn
\new Voice \relative {
  \voiceOne
  \magnifyMusic 0.63 {
    \override Score.SpacingSpanner.spacing-increment = #(* 1.2 0.63)
    r32 c' a c a c r c a c a c a c r c a c a c a c a c a c
  }
}

\new Voice \relative {
  \voiceTwo
  cis'8. d16 cis8. fis16 fis8. eis16 a8. gis16
}
>>
```

The \magnifyMusic command is not intended for cue notes, grace notes, or ossia staves—there are more appropriate methods of entering each of those constructs. Instead, it is useful
when the notation size changes in a single instrumental part on one staff, and where grace notes are not appropriate, such as in cadenza-like passages or in cases such as the above examples. Setting the \magnifyMusic value to 0.63 duplicates the dimensions of the CueVoice context.

\begin{quote}
\textbf{Note:} The \magnifyMusic command should not be used when also resizing the staff. See Section 4.2.2 \[Setting the staff size\], page 618.
\end{quote}

\section*{Resizing individual layout objects}

An individual layout object can be resized by using the \tweak or \override commands to adjust its font-size property:

\begin{verbatim}
\relative { % resize a note head <f' \tweak font-size -4 b e>-5 % resize a fingering bes-\tweak font-size 0 -3 % resize an accidental \once \override Accidental.font-size = -4 bes!^- % resize an articulation \once \override Script.font-size = 4 bes!^- }
\end{verbatim}

The default font-size value for each layout object is listed in the Internals Reference. The font-size property can only be set for layout objects that support the font-interface layout interface. If font-size is not specified in the object’s ‘Standard settings’ list, its value is 0. See Section “All layout objects” in \textit{Internals Reference}.

\section*{Understanding the fontSize property}

The fontSize context property adjusts the relative size of all glyph-based notational elements in a context:

\begin{verbatim}
\relative { \time 3/4 d'4--5 c8(b a g) | \set fontSize = -6 e'4-- c!8-4(b a g) | \set fontSize = 0 fis4--3 e8(d) fis4 | g2. }
\end{verbatim}

The fontSize value is a number indicating the size relative to the standard size for the current staff height. The default fontSize is 0; adding 6 to any fontSize value doubles the printed size of the glyphs, and subtracting 6 halves the size. Each step increases the size by approximately 12\%.
The scheme function `magnification->font-size` is provided for convenience since the logarithmic units of the `font-size` property are not entirely intuitive. For example, to adjust the musical notation to 75% of the default size, use:

\[
\texttt{\set fontSize = #(magnification->font-size 0.75)}
\]

The scheme function `magstep` does the opposite: it converts a `font-size` value into a magnification factor.

The `fontSize` property will only affect notational elements that are drawn with glyphs, such as note heads, accidentals, scripts, etc. It will not affect the size of the staff itself, nor will it scale stems, beams, or horizontal spacing. To scale stems, beams, and horizontal spacing along with the notation size (without changing the staff size), use the `\magnifyMusic` command discussed above. To scale everything, including the staff size, see Section 4.2.2 [Setting the staff size], page 618.

Whenever the `fontSize` context property is set, its value is added to the value of the `font-size` grob property for individual layout objects, before any glyphs are printed. This can cause confusion when setting individual `font-size` properties while `fontSize` is already set:

\[
\text{\% the default font-size for NoteHead is 0}
\text{\% the default font-size for Fingering is -5}
\text{c''4-3}
\]

\[
\texttt{\set fontSize = -3}
\text{\% the effective font size for NoteHead is now -3}
\text{\% the effective font size for Fingering is now -8}
\text{c''4-3}
\]

\[
\texttt{\override Fingering.font-size = 0}
\text{\% the effective font size for Fingering is now -3}
\text{c''4-3}
\]

The following shorthand commands are also available:

<table>
<thead>
<tr>
<th>Command</th>
<th>Equivalent to</th>
<th>Relative size</th>
</tr>
</thead>
<tbody>
<tr>
<td>\teeny</td>
<td>\set fontSize = -3</td>
<td>71%</td>
</tr>
<tr>
<td>\tiny</td>
<td>\set fontSize = -2</td>
<td>79%</td>
</tr>
<tr>
<td>\small</td>
<td>\set fontSize = -1</td>
<td>89%</td>
</tr>
<tr>
<td>\normalsize</td>
<td>\set fontSize = 0</td>
<td>100%</td>
</tr>
<tr>
<td>\large</td>
<td>\set fontSize = 1</td>
<td>112%</td>
</tr>
<tr>
<td>\huge</td>
<td>\set fontSize = 2</td>
<td>126%</td>
</tr>
</tbody>
</table>

\[
\text{\relative c' {}
\text{\teeny c4.-} d8----3
\text{\tiny c4.-} d8----3
\text{\small c4.-} d8----3
\text{\normalsize c4.-} d8----3
\text{\large c4.-} d8----3
\text{}}
\]
Font size changes are achieved by scaling the design size that is closest to the desired size. The standard font size (for `font-size = 0`) depends on the standard staff height. For a 20 pt staff, an 11 pt font is selected.

Predefined commands

- \magnifyMusic, \teeny, \tiny, \small, \normalsize, \large, \huge.

See also

- Notation Reference: [Selecting font and font size], page 297, Section 4.2.2 [Setting the staff size], page 618, [Formatting cue notes], page 247, [Ossia staves], page 232.
- Snippets: Section “Editorial annotations” in Snippets.
- Internals Reference: Section “font-interface” in Internals Reference.

Known issues and warnings

There are currently two bugs that are preventing proper horizontal spacing when using \magnifyMusic. There is only one available workaround, and it is not guaranteed to work in every case. In the example below, replace the `mag` variable with your own value. You may also try removing one or both of the \newSpacingSection commands, and/or the \override and \revert commands:

```latex
\magnifyMusic mag {
  \newSpacingSection
  \override Score.SpacingSpanner.spacing-increment = #(* 1.2 mag)
  [music]
  \newSpacingSection
  \revert Score.SpacingSpanner.spacing-increment
}
```

Fingering instructions

Fingering instructions can be entered using ‘note-digit’:

```latex
\relative { c'\'4-1 d-2 f-4 e-3 }
```

Markup texts or strings may be used for finger changes.

```latex
\relative {
  c'\'4-1 d-2 f\finger \markup \tied-lyric "4-3" c\finger "2 - 3"
}
```
A thumb fingering can be added (e.g., cello music) to indicate that a note should be played with the thumb.

\relative { <a'_\text{\textbackslash thumb} a'-3>2 <b'_\text{\textbackslash thumb} b'-3> }

Fingerings for chords can also be added to individual notes by adding them after the pitches.

\relative {
 <c''-1 e-2 g-3 b-5>2 <d-1 f-2 a-3 c-5>
}

Fingering instructions may be manually placed above or below the staff, see Section 5.4.1 [Direction and placement], page 698.

Selected Snippets

Controlling the placement of chord fingerings

The placement of fingering numbers can be controlled precisely. For fingering orientation to apply, it must be used within a chord construct $<>$, even for single notes. Orientation for string numbers and right-hand fingerings may be set in a similar way.

\relative c' {
 \set fingeringOrientations = #'(left)
 <c-1 e-3 a-5>4
 \set fingeringOrientations = #'(down)
 <c-1 e-3 a-5>4
 \set fingeringOrientations = #'(down right up)
 <c-1 e-3 a-5>4
 \set fingeringOrientations = #'(up)
 <c-1 e-3 a-5>4
 \set fingeringOrientations = #'(left)
 <c-1>2
 \set fingeringOrientations = #'(down)
 <e-3>2
 \set stringNumberOrientations = #'(up left down)
 <f3 a\textunderscore 2 c\textunderscore 1>1
 \set strokeFingerOrientations = #'(down right up)
 <c\textunderscore rightHandFinger #1 e\textunderscore rightHandFinger #2 c\textunderscore rightHandFinger #4>
}
Allowing fingerings to be printed inside the staff

By default, vertically oriented fingerings are positioned outside the staff; that behavior, however, may be disabled. Attention needs to be paid to situations where fingerings and stems are in the same direction: by default, fingerings will avoid only beamed stems. That setting can be changed to avoid no stems or all stems; the following example demonstrates these two options, as well as how to go back to the default behavior.

```latex
\relative c' {
  \override Fingering.staff-padding = #'()
  <c-1 e-2 g-3 b-5>2
  \override Fingering.add-stem-support = ##f
  a[-1 b]-2 g-0 r
  \override Fingering.add-stem-support = ##t
  a[-1 b]-2 g-0 r
  \override Fingering.add-stem-support = #only-if-beamed
  a[-1 b]-2 g-0 r
}
```

Gliding fingers

For stringed instruments a gliding finger is often indicated by a line connecting the same finger to be used for notes played at different positions on the same string. This line is initiated with \glide entered before a Fingering and ends with the next occurrence of the same finger. The line may be printed in various styles.

```latex
\set fingeringOrientations = #'(right)
<a'\glide-1>2.
\set fingeringOrientations = #'(left)
<d'-1>4
```
If `style` is set to `'bow` the direction of the bow may be adjusted using direction modifiers.

```mus
\override FingerGlideSpanner.style = #'bow
\set fingeringOrientations = #'(down)
\glide-14 \d'-1
\set fingeringOrientations = #'(up)
\glide-2 \c''-2

\set fingeringOrientations = #'(down)
\glide-14 \d'-1
\set fingeringOrientations = #'(up)
\glide-2 \c''-2

\set fingeringOrientations = #'(down)
```
If the Finger_glide_ engraver is moved to Staff context Fingering grobs from different Voice contexts may be connected.

\score {
\new Staff <<
\new Voice {
\voiceOne
\set fingeringOrientations = #'(right)
<e''-\tweak bound-details.left.padding #2.5 \glide-2>
<c''-2>
\bar "||"
}
\new Voice {
\voiceTwo
\set fingeringOrientations = #'(right)
<c''-\tweak bound-details.left.padding #2.5 \glide-2>
<a'-4>
}
>>
\layout {
ragged-right = ##f
\context {
\Voice
\remove Finger_glide_ engraver
}
\context {
\Staff
\consists Finger_glide_ engraver
}
}

See also
Notation Reference: Section 5.4.1 [Direction and placement], page 698.
Internals Reference: Section “FingeringGlideEvent” in Internals Reference, Section “fingering-glide-event” in Internals Reference, Section “Finger_glide_ engraver” in Internals Ref-
erence, Section “finger-glide-interface” in Internals Reference, Section “FingerGlideSpanner” in Internals Reference.

Known issues and warnings

Multiple glides with the same finger are not supported and lead to unexpected results. A workaround is to use different fingers and to use \tweak text.

```
\clef "G\_8"
\tweak text "1"-2\glide-1 cis'\glide-1 >2 <bes-1 d'-1>
\tweak text "1"-2\glide-1 cis'\glide-\tweak text "1"-2
```

Hidden notes

Hidden (or invisible or transparent) notes can be useful in preparing theory or composition exercises.

```
\relative {  
c' '4 d  
\hideNotes  
e4 f  
\unHideNotes  
g a  
\hideNotes  
b  
\unHideNotes  
c  
}
```

Note heads, stems, and flags, and rests are invisible. Beams are invisible if they start on a hidden note. Objects that are attached to invisible notes are still visible.

```
\relative c' {  
e8(\p f g a)--  
\hideNotes  
e8(\p f g a)--  
}
```

Predefined commands

\hideNotes, \unHideNotes.
See also

Notation Reference: [Invisible rests], page 64, Section 5.4.7 [Visibility of objects], page 708, [Hiding staves], page 235.

Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “Note_spacing_engraver” in Internals Reference, Section “NoteSpacing” in Internals Reference.

Coloring objects

Individual objects may be assigned colors. Valid color names are listed in the Section A.7 [List of colors], page 738.

\override NoteHead.color = #red
c''4 c''
\override NoteHead.color = #(x11-color 'SlateGrey)
d''
\override Stem.color = "deepskyblue"
e''

\new \Staff \with {
 instrumentName = \markup {
 \with-color #(x11-color 'SlateGrey) "Clarinet"
 }

In addition to a limited set of simple colors available as predefined variables (see ‘Normal colors’ in Section A.7 [List of colors], page 738), any color may be entered as a string. That string may be either a CSS (https://www.w3.org/Style/CSS/)-style predefined color name, or a hexadecimal color code prefixed by the # character (inside the double quotes):

\override NoteHead.color = "lightsalmon"
\override Flag.color = "#E30074"
\override Beam.color = "#5e45ad"
\override Rest.color = "#3058"
g'8 \huge r4 a'16 f'

If that color code includes an alpha channel for semi-transparency, by using an eight-character code "#RRGGBBAA" or its shorthand form "#RGBA", it will be used in SVG output but not in PostScript/PDF output. In the previous example, the rest can be seen through only if the code is compiled with the SVG backend, as explained in Section 3.5.3 [Alternative output formats], page 587.

In a different way, the full range of colors defined for X11 (https://en.wikipedia.org/wiki/X11_color_names) can be accessed by using the Scheme function x11-color. That function takes one argument, which can be a symbol, such as 'DarkSeaGreen4, or a string, such as "DarkSeaGreen4". The first form is quicker to write and slightly more efficient; however, the second form also makes it possible to specify X11 colors as multiple words: in this instance, "dark sea green 4".

If x11-color cannot make sense of the parameter, then the color returned defaults to black.

\new \Staff \with {
 instrumentName = \markup {
 \with-color #(x11-color 'SlateGrey) "Clarinet"
LilyPond also supports a set of eight color names (https://jfly.uni-koeln.de/color) that is unambiguous to both color-blind and non-color-blind people. Use universal-color to access them.

\markup \with-color \#(universal-color 'vermillion) vermillion

vermillion

Exact RGB colors can be specified using the Scheme function rgb-color. This function takes three arguments used respectively for the red, green and blue channels, and an optional alpha number for semi-transparency. (All values must be numbers from 0 to 1.) Again, transparency is only supported in SVG output; for example, in the following fragment the staff’s clef can be seen through when rendered in SVG.

\new Staff \with {
 instrumentName = \markup {
 \with-color \#(x11-color 'red) "Clarinet"
 }
 \override Clef.color = \#(rgb-color 0 0 0 0.5)
}
\relative c' {
 \override Staff.StaffSymbol.color = \#(x11-color 'SlateBlue2)
 gis8 a
 \override Beam.color = \#(x11-color "medium turquoise")
 gis a
 \override Accidental.color = \#(x11-color 'orange)
 gis a
 \override NoteHead.color = \#(x11-color "LimeGreen")
 gis a
 \% this is deliberate nonsense; note that the stems remain black
 \override Stem.color = \#(x11-color 'Boggle)
 b2 cis
}
See also

Notation Reference: Section A.7 [List of colors], page 738, Section 5.3.6 \tweak and \single, page 689.

Snippets: Section “Editorial annotations” in Snippets.

Known issues and warnings

An X11 color is not necessarily exactly the same shade as a similarly named normal color.

Not all X11 colors are distinguishable in a web browser, i.e., a web browser might not display a difference between LimeGreen and ForestGreen. For web use CSS colors are recommended, as detailed in Section A.7 [List of colors], page 738.

Notes in a chord cannot be separately colored with \override; use \tweak or the equivalent \single\override before the respective note instead, see Section 5.3.6 \tweak and \single, page 689.

Staff highlights

For analytical or pedagogical purposes, it may be useful to “highlight” musical passages, for example in order to show local tonality. This can be done using the \staffHighlight command, which expects a color. For all ways to enter colors, see [Coloring objects], page 264. The highlight is terminated using \stopStaffHighlight.

\relative {\time 2/4
c'4 4
\staffHighlight "lightsteelblue"
g'8(fis g4)-.
\stopStaffHighlight
c2}

If there are consecutive highlights, it is not necessary to write \stopStaffHighlight, as \staffHighlight also implicitly terminates the current highlight, if any. Similarly, it is not necessary to add \stopStaffHighlight at the end of the piece. This is particularly handy if every measure is to be highlighted.

\relative {\time 2/4
\staffHighlight "lightpink"
c'4 4
\staffHighlight "lightsteelblue"
g'8(fis g4)-.
\staffHighlight "lightpink"
c2}

By default, staves are highlighted separately.

music = {

\time 2/4
\staffHighlight "lightpink"
c'4 4
\staffHighlight "lightsteelblue"
g'8 (fis g4)-.
\staffHighlight "lightpink"
c2
}

<<
\new Staff \music
\new Staff \music
>>

However, several staves can be highlighted together by moving \staff_highlight_engraver to a higher context than Staff (or RhythmicStaff, or similar). This is done using the \consists and \remove commands; See Section 5.1.4 [Modifying context plug-ins], page 671, for more information. For example, if the engraver is moved to Score, the highlights are shared by all staves.

\layout {
 \context {
 \Staff
 \remove \staff_highlight_engraver
 }
 \context {
 \Score
 \consists \staff_highlight_engraver
 }
}

\music = {
 \time 2/4
 \staffHighlight "lightpink"
c'4 4
 \staffHighlight "lightsteelblue"
g'8 (fis g4)-.
 \staffHighlight "lightpink"
c2
}

<<
\new Staff \music
\new Staff \music
The StaffHighlight::shorten-pair property may be used to tweak the horizontal start and end of the highlight span.

{
c'1
 \once \override Staff.StaffHighlight::shorten-pair = #'(1.0 . 1.0)
 \staffHighlight lightsteelblue
 c'1
}
Predefined commands
\staffHighlight, \stopStaffHighlight.

See also
Notation Reference: [Coloring objects], page 264, Section 5.1.4 [Modifying context plug-ins], page 671.

Internals Reference: Section “StaffHighlight” in Internals Reference, Section “staff-highlight-interface” in Internals Reference, Section “Staff_highlight_engraver” in Internals Reference, Section “StaffHighlightEvent” in Internals Reference, Section “staff-highlight-event” in Internals Reference.

Known issues and warnings
The behavior of highlights may not be what is expected at start repeat bar lines. The shorten-pair property demonstrated above can be used to work around this issue.

```
{ 
  \staffHighlight "lightsteelblue" 
  c'1 
  \stopStaffHighlight 
  \repeat volta 2 { c'1 } 
  c'1 
}
```

Parentheses
Objects may be parenthesized by prefixing \parenthesize to the music event. When prefixed to a chord, it parenthesizes every note. Individual notes inside a chord may also be parenthesized.

```
\relative { 
  c''2 \parenthesize d 
  c2 \parenthesize <c e g> 
  c2 <c \parenthesize e g> 
}
```

Non-note objects may be parenthesized as well. For articulations, a hyphen is needed before the \parenthesize command.

```
\relative { 
  c''2-\parenthesize -. d 
  c2 \parenthesize r 
}
```
When \parenthesize applies to a chord, all of its notes are enclosed in the parentheses.

\relative c' {
 \parenthesize <e f>
}

To parenthesize only certain notes in a chord, use a parallel music construct \<< ... >>.

\new Voice \relative c {
 \<<
 {\tweak Parentheses.font-size 0 \parenthesize <ces des> }
 {\parenthesize ees' }
 {\tweak Parentheses.font-size -2 \parenthesize <c' e> }
 \>>
}

A second form of the \parenthesize command involves a grob path: either \parenthesize ContextName.GrobName or just \parenthesize GrobName (the latter implying the bottommost context, typically Voice). This should be added before the musical moment, like a \once \override. This form makes it possible to parenthesize grobs that are only caused indirectly by events.

\new Staff \relative <<
 {\parenthesize NoteHead c'1}
\new CueVoice {
 s2 \voiceOne
 \once \override Staff.Parentheses.font-size = 3
 \parenthesize Staff.CueClef \cueClef treble
e'8 f a g
}
\>>

See also
Snippets: Section “Editorial annotations” in Snippets.
Internals Reference: Section “Parenthesis_ engraver” in Internals Reference, Section “Parentheses” in Internals Reference, Section “parentheses-interface” in Internals Reference.
Known issues and warnings

Currently, the \font-size property of the Parentheses grob has to be adjusted manually to obtain correctly sized parentheses on chords and some other objects.

Stems

Whenever a note is found, a Stem object is created automatically. For whole notes and rests, they are also created but made invisible.

Stems may be manually placed to point up or down; see Section 5.4.1 [Direction and placement], page 698.

Predefined commands

\stemUp, \stemDown, \stemNeutral.

Selected Snippets

Default direction of stems on the center line of the staff

The default direction of stems on the center line of the staff is set by the Stem property neutral-direction.

\relative c' {
a4 b c b
\override Stem.neutral-direction = #up
a4 b c b
\override Stem.neutral-direction = #down
a4 b c b
}

Automatically changing the stem direction of the middle note based on the melody

LilyPond can alter the stem direction of the middle note on a staff so that it follows the melody, by adding the Melody_engraver to the Voice context.

The context property suspendMelodyDecisions may be used to turn off this behavior locally.

\relative c' {
\time 3/4
a8 b g f b g |
\set suspendMelodyDecisions = ##t
a b g f b g |
\unset suspendMelodyDecisions
c b d c b c |
}

\layout {
\context {
\Voice
\consists "Melody_engraver"
\autoBeamOff
}
}
See also
Notation Reference: Section 5.4.1 [Direction and placement], page 698.
Snippets: Section “Editorial annotations” in Snippets.
Internals Reference: Section “Stem engraver” in Internals Reference, Section “Stem” in Internals Reference, Section “stem-interface” in Internals Reference.

1.7.2 Outside the staff
This section discusses how to add emphasis to elements in the staff from outside of the staff.

Note names
Note names can be printed as text, by using the NoteNames context. When used simultaneously with a regular staff, that makes it possible to synchronize each note with its name, printed above or below the Staff.

```
\language "italiano"
melody = \relative do'' {
    fad2 si,8 dod re mi fad4. re8 fad2
}
<<
\new NoteNames \melody
\new Staff { \key si \minor \melody }
\new NoteNames {
    \set printNotesLanguage = "deutsch"
    \set printAccidentalNames = ##f
    \melody
}
>>
fa# si do# remi fa# re fa#

```

By default, note names are printed in the same language used for music entry; however, the printNotesLanguage property allows to select any other language available (see [Note names in other languages], page 8). Whether accidentals should be printed or not is determined through the printAccidentalNames property.

By setting both that property to a symbol and printOctaveNames to #t, note names can be obtained that closely resemble LilyPond entry syntax. If a more general result is desired, 'scientific' octave names may also be obtained.

```
melody = \relative c'' {
    fis2 b,8 cis d e fis4. d8 fis2
}
```
The noteNameSeparator property defines how chords will be printed. Other formatting functions may be defined as noteNameFunction; such a function must expect a pitch and a context argument, even if one of these can then be ignored.

```latex
\new NoteNames
\set noteNameSeparator = "+
\somechords
\new Staff \key b \minor \melody
\new NoteNames
\set noteNameFunction =
#(\lambda (pitch ctx)
(alteration->text-accidental-markup
(ly:pitch-alteration pitch)))
\somechords
\new Staff \key b \minor \somechords
\new NoteNames
\set noteNameFunction =
#(\lambda (pitch ctx)
(alteration->text-accidental-markup
(ly:pitch-alteration pitch)))
\somechords
\new Staff \key b \minor \somechords
\new NoteNames
\set noteNameSeparator = "+
\somechords
```

See also

Notation Reference: [Note names in other languages], page 8.

Internals Reference: Section “NoteName” in Internals Reference, Section “NoteNames” in Internals Reference, Section “Note_name_engraver” in Internals Reference.
Chapter 1: Musical notation

Balloon help

Elements of notation can be marked and named with the help of a square balloon. The primary purpose of this feature is to explain notation.

\new Voice \with { \consists Balloon_ engraver }
\relative c' { \balloonGrobText #'Stem #'(3 . 4) \markup { "I'm a Stem" }
a8 \balloonGrobText #'Rest #'(4 . 4) \markup { "I'm a rest" }
r <c, g'\balloonText #'(4 . 4) \markup { "I'm a note head" } c>2. }

I'm a Stem
I'm a note head
I'm a rest

There are two music functions, \balloonGrobText and \balloonText; the former is used like \once \override to attach text to any grob, and the latter is used like \tweak, typically within chords, to attach text to an individual note.

Balloon text does not influence note spacing, but this can be altered:

\new Voice \with { \consists Balloon_ engraver }
\relative c' { \balloonGrobText #'Stem #'(3 . 4) \markup { "I'm a Stem" }
a8 \balloonGrobText #'Rest #'(4 . 4) \markup { "I'm a rest" }
r \balloonLengthOn <c, g'\balloonText #'(4 . 4) \markup { "I'm a note head" } c>2. }

I'm a Stem
I'm a note head
I'm a rest

The default behavior for the attachment point of the line on the frame and the alignment of the balloon text is demonstrated below.

\new Voice \with {

The default calculation of the attachment point can be overruled using the X-attachment and Y-attachment properties, which take values between -1 and 1, with the limits corresponding to the left (resp. bottom) and right (resp. top) of the frame. Alignment of the text is controlled by text-alignment-X and text-alignment-Y, which have a similar form.
The grid lines can be drawn between staves synchronized with the notes.

The `Grid_point_engraver` must be used to create the end points of the lines, while the `Grid_line_span_engraver` must be used to actually draw the lines. By default this centers grid lines horizontally below and to the left side of each note head. Grid lines extend from the middle lines of each staff. The `gridInterval` must specify the duration between the grid lines.

```latex
\layout {
  \context {
    \Staff
    \consists Grid_point_engraver
    gridInterval = \musicLength 4
  }
  \context {
    \Score
    \consists Grid_line_span_engraver
  }
}

\score {
  \new ChoirStaff <<
    \new Staff \relative {\stemUp}
    c'\'4. d8 e8 f g4
  }
  \new Staff \relative {\stemDown}
    c4 g' f e
}```
Selected Snippets

**Grid lines: changing their appearance**

The appearance of grid lines can be changed by overriding some of their properties.

```lilypond
\score {
 \new ChoirStaff <<
 \new Staff {
 \relative c'' {
 \stemUp
c'4. d8 e8 f g4
 }
 }
 \new Staff {
 \relative c {
 % this moves them up one staff space from the default position
 \override Score/GridLine.extra-offset = #(0.0 . 1.0)
 \stemDown
 \clef bass
 \once \override Score/GridLine.thickness = #5.0
c4
 \once \override Score/GridLine.thickness = #1.0
g'4
 \once \override Score/GridLine.thickness = #3.0
 f4
 \once \override Score/GridLine.thickness = #5.0
e4
 }
 }
 }
}

\layout {
 \context {
 \Staff
 % set up grids
 \consists "Grid_point_ engraver"
 % set the grid interval to one quarter note
 gridInterval = \musicLength 4
 }
 \context {
 \Score
 \consists "Grid_line_span_ engraver"
 % this moves them to the right half a staff space
 }
```
\override NoteColumn.X-offset = #-0.5

Analysis brackets

Brackets are used in musical analysis to indicate structure in musical pieces. Simple horizontal brackets are supported.

\layout {
  \context {
    \Voice
    \consists Horizontal_bracket_engraver
  }
  \relative {
    c'\'2\startGroup
d\stopGroup
  }
}

Analysis brackets may be nested.

\layout {
  \context {
    \Voice
    \consists Horizontal_bracket_engraver
  }
  \relative {
    c'\'4\startGroup\startGroup
d4\stopGroup
    e4\startGroup
d4\stopGroup\stopGroup
  }
}

See also

Snippets: Section “Editorial annotations” in Snippets.

Internals Reference: Section “Grid_line_span_engraver” in Internals Reference, Section “Grid_point_engraver” in Internals Reference, Section “GridLine” in Internals Reference, Section “grid-line-interface” in Internals Reference.
Selected Snippets

**Analysis brackets above the staff**

Simple horizontal analysis brackets are added below the staff by default. The following example shows a way to place them above the staff instead.

```
\layout {
 \context {
 \Voice
 \consists "Horizontal_bracket_engraver"
 }
}
\relative c'' {
 \once \override HorizontalBracket.direction = #UP
 c2\startGroup
 d2\stopGroup
}
```

**Analysis brackets with labels**

Text markup may be added to analysis brackets through the `text` property of the `HorizontalBracketText` grob. Adding different texts to brackets beginning at the same time requires the `\tweak` command.

Bracket text will be parenthesized after a line break.

```
\paper { tagline = ##f }
\layout {
 \context {
 \Voice
 \consists "Horizontal_bracket_engraver"
 \override HorizontalBracket.direction = #UP
 }
}
{\once\override HorizontalBracketText.text = "a"
 c''\startGroup d''\stopGroup
 \once\override HorizontalBracketText.text = "a"
 e''\startGroup d''\stopGroup |
 c''-\tweak HorizontalBracketText.text
 \markup \bold \huge "b" \startGroup
 -\tweak HorizontalBracketText.text "a" \startGroup
```
Measure spanner

Measure spanners are an alternate way to print annotated brackets. As opposed to horizontal brackets, they extend between two bar lines rather than two notes. The text is displayed in the center of the bracket.

\paper { tagline = ##f }

\layout {
  \context {
    \Staff
      \consists Measure_spanner_engraver
  }
}

<<
\new Staff \relative c' {
  \key d \minor
  R1*2
  \tweak text "Answer"
  \startMeasureSpanner
  \tuplet 3/2 8 {  
a16[ b c] d[ c b] c[ d e] f[ e d]
  }
  e8 a gis g
  fis f e d~ d c b e
  \stopMeasureSpanner
}
\new Staff \relative c' {
  \key d \minor
  \tweak text "Subject"
  \tweak direction #DOWN
  \startMeasureSpanner
  \tuplet 3/2 8 {  
d16[ e f] g[ f e] f[ g a] bes[ a g]
  }
Chapter 1: Musical notation

}\a8 d cis c
|b bes a g- g f e a
\stopMeasureSpanner
\tweak text "Counter-subject"
\tweak direction #DOWN
\startMeasureSpanner
f8 e a r16 b, c d e fis g e
a gis a b c fis, b a gis e a4 g8
\stopMeasureSpanner
\>

See also

1.8 Text

Moderato cantabile molto espressivo

This section explains how to include text (with various formatting) in music scores.

1.8.1 Writing text

This section introduces different ways of adding text to a score.

Note: To write accented and special text (such as characters from other languages), simply insert the characters directly into the LilyPond file. The file must be saved as UTF-8. For more information, see [Text encoding], page 583.

Text objects overview

Simple text objects are entered as strings between double quotes (these are optional for a single word). The markup mode is a richer tool that can accept a variety of advanced text formatting and graphical enhancements, as detailed in Section 1.8.2 [Formatting text], page 293.

As such, markup blocks may be used:
- in any TextScript object (attached to notes with −, ^ or _); see [Text scripts], page 283;
- as ‘spanners’, when some indications are prolonged over several beats or bars; see [Text spanners], page 284;
- in any mark printed above the score, such as RehearsalMark or MetronomeMark objects respectively introduced with the \mark or \tempo keywords; see [Text marks], page 287;
• as stand-alone text blocks, entered at the top level outside of any \score block (in this specific case the \markup or \markuplist command is mandatory, and cannot be omitted in favor of a simple text string between double quotes); see [Separate text], page 291;
• in any definition inside the \header block (e.g., title, subtitle, composer), or in specific elements defined inside the \paper block such as evenHeaderMarkup for page numbers. This is explained in Section 3.3 [Titles and headers], page 544.

Many other text-based objects may be entered as markup blocks, even if that is not their primary use.
• Fingerings may easily be replaced with markup blocks, if introduced with the \finger command; see [Fingering instructions], page 258.
• Lyric syllables may be formatted through the \markup command; see Section 2.1.1 [Common notation for vocal music], page 314.
• Chord names are in fact defined as markup blocks, and therefore may be redefined in the same way for customizing chord modifiers or chord exceptions; see Section 2.7.2 [Displaying chords], page 474.
• Dynamics are usually entered in a simple way; however it is possible to define [New dynamic marks], page 151, as markup objects. Some dynamics such as crescendo are printed as spanners and may be redefined through properties such as crescendoText; see [Dynamics], page 143.
• Less common objects are also made of markup blocks, such as [Balloon help], page 274, indications.

In fact, it is possible to use \markup to customize the appearance of virtually any graphical object (or ‘grob’), by overriding either its text property if it has one, or its stencil property. Some of the logic that makes this a possibility is explained in Section “Flexible architecture” in Essay.

The following example illustrates the ubiquity of markup blocks, not only as some of the objects listed above, but also by replacing musical objects with text objects through various methods.

\header { title = \markup "Header" }

\new ChordNames
\with { majorSevenSymbol = \markup "majorSevenSymbol" }
\chordmode { c1:maj7 }
\new Staff {
\tempo \markup "MetronomeMark"
\textMark "TextMark"
\once \override TupletNumber.text = \markup "TupletNumber"
\tuplet 3/2 {
\once \override NoteHead.stencil =
Text scripts

Simple “quoted text” indications may be added to a score, as demonstrated in the following example. Such indications may be manually placed above or below the staff, using the syntax described in Section 5.4.1 [Direction and placement], page 698.

\relative { \a'8^"pizz.\" g f e a4-"scherz.\" f }
This syntax is actually a shorthand; more complex text formatting may be added to a note by explicitly using a `\markup` block, as described in Section 1.8.2 [Formatting text], page 293.

\relative {
    a'8^"pizz." g f e
    a4 "scherzando" f
}

By default, text indications do not influence the note spacing. However, their widths can be taken into account: in the following example, the first text string does not affect spacing, whereas the second one does.

\relative {
    a'8^"pizz." g f e
    \textLengthOn
    a4 "scherzando" f
}

In addition to text scripts, articulations can be attached to notes. For more information, see [Articulations and ornamentations], page 140.

For more information about the relative ordering of text scripts and articulations, see Section “Placement of objects” in Learning Manual.

**Predefined commands**
\textLengthOn, \textLengthOff.

**See also**

Notation Reference: Section 1.8.2 [Formatting text], page 293, Section 5.4.1 [Direction and placement], page 698, [Articulations and ornamentations], page 140.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “TextScript” in Internals Reference.

**Known issues and warnings**
Checking to make sure that text scripts and lyrics are within the margins requires additional calculations. In cases where slightly faster performance is desired, use

\override Score.PaperColumn.keep-inside-line = ##f

**Text spanners**
Some performance indications, e.g., rallentando or accelerando, are written as text and are extended over multiple notes with dotted lines. Such objects, called “spanners”, may be created from one note to another using the following syntax:

\relative {
    \override TextSpanner.bound-details.left.text = "rit."
    b'\!\startTextSpan
The string to be printed is set through object properties. By default it is printed in italic characters, but different formatting can be obtained using \markup blocks, as described in Section 1.8.2 [Formatting text], page 293.

\relative {
    \override TextSpanner.bound-details.left.text = \markup { \upright "rit." }
    b'1 \startTextSpan c e, \stopTextSpan
}

The line style, as well as the text string, can be defined as an object property. This syntax is described in Section 5.4.5 [Line styles], page 705.

**Predefined commands**
\textSpannerUp, \textSpannerDown, \textSpannerNeutral.

**Known issues and warnings**
LilyPond is only able to handle one text spanner per voice.

The texts at the bounds of a text spanner may collide.

{\once \override TextSpanner.bound-details.left.text = "The text is"
\once \override TextSpanner.bound-details.right.text = "too long"
    c'2 \startTextSpan d'2 \stopTextSpan
}

Workarounds can be found in Section 4.5 [Horizontal spacing], page 644.

**Selected Snippets**

**Dynamics text spanner postfix**
Custom text spanners can be defined and used with hairpin and text crescendos. \< and \> produce hairpins by default, \cresc etc. produce text spanners by default.

% Some sample text dynamic spanners, to be used as postfix operators
crptoc = #(make-music 'CrescendoEvent
    'span-direction START
    'span-type 'text
Postfix functions for custom crescendo text spanners. The spanners should start on the first note of the measure. One has to use ~\mycresc, otherwise the spanner start will rather be assigned to the next note.

% Two functions for (de)crescendo spanners where you can explicitly
give the spanner text.
mycresc =
#{(define-music-function (mymarkup) (markup?))
  (make-music 'CrescendoEvent
    'span-direction START
    'span-type 'text
    'span-text mymarkup))
mydecresc =
#{(define-music-function (mymarkup) (markup?))
  (make-music 'DecrescendoEvent
    'span-direction START
    'span-type 'text
    'span-text mymarkup))

Dynamics custom text spanner postfix

See also
Notation Reference: Section 5.4.5 [Line styles], page 705, [Dynamics], page 143, Section 1.8.2 [Formatting text], page 293.

Snippets: Section “Text” in Snippets, Section “Expressive marks” in Snippets.

Internals Reference: Section “TextSpanner” in Internals Reference.
Section labels

The \sectionLabel command marks the beginning of a named passage. It is well suited for use at a section division created with \section, but it does not imply \section and may be used alone.

\fixed c' {
  \sectionLabel "Verse"
  c2 g
  \sectionLabel "Chorus"
  g2 c
  \bar "|.
}

Chorus

Verse

See also

Notation Reference: Section 1.8.2 [Formatting text], page 293, [Rehearsal marks], page 127, [Section divisions], page 132.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “SectionLabel” in Internals Reference, Section “SectionLabel-Event” in Internals Reference.

Text marks

Text marks are textual objects that, unlike text scripts (see [Text scripts], page 283), are not printed over notes but between notes, often aligned to a bar line.

Note: Older LilyPond versions used the \mark command for text marks, even though it is primarily intended for rehearsal marks (see [Rehearsal marks], page 127). The \textMark and \textEndMark commands are better suited for text marks with regard to their default settings as well as the ability to have several text marks at the same moment. It is therefore recommended to use \textMark and \textEndMark instead of \mark "Text" or \mark \markup .... Note that if converting code that uses \mark for text marks, overrides using RehearsalMark should be changed to TextMark.

Before using text marks, it is recommended to seek a more specific command, if available. For text that identifies a section, use \sectionLabel (see [Section labels], page 287). For jump instructions, use \jump (see [Manual repeat marks], page 186). These commands have different default layout settings, and they create separate objects which can be styled differently from generic text marks in style sheets.

A text mark is entered using either \textMark or \textEndMark. The \textMark command draws a left-aligned mark.

\fixed c' {
  \textMark "Fl. 1 solo"
  c4 e g2
  \textMark "A due"
If a line break occurs at the point \textMark is used, the text appears on the next system.

\fixed c' { 
  \textMark "Fl. 1 solo"
  c4 e g2
  \break
  \textMark "A due"
  e4 g c'2
}

Unlike \textMark, \textEndMark creates a right-aligned mark. If it occurs on a line break, it is printed on the preceding system.

\fixed c' { 
  \repeat volta 2 { 
    c4 e8 f g2 
    e4 f8 g c'2 
    \textEndMark "ad lib"
  }
  \break
  c'4 8 8 4 8 8 
  c'1
}

Complex text formatting may be added using a \markup block (see Section 1.8.2 [Formatting text], page 293).

\relative { 
  <c' e>1 
  \textMark \markup { \italic { colla parte } } 
  <d f>2 <e g> 
  <c f aes>1
The \markLengthOn and \markLengthOff commands (see [Metronome marks], page 77) can also be used on text marks.

\{\mark \default
c'2 2
\textEndMark "long mark text"
\markLengthOn
2 2
\mark \default
2 2
\textEndMark "long mark text"
}\}

Text marks may be printed below the staff.
\{\fixed
c'4 g c'8 b c4 e' c' c2
c4 g c'8 b c4 e' c' g2
e'4 c' c'8 b c'4
g4 c' c2- c1
\tweak direction #DOWN
\tweak font-size #-1
\textEndMark "Composed on November 13th, 2020"
\}

There can be several text marks at the same moment. Their stacking order can be overridden using the outside-staff-priority property (see Section 4.4.3 [Vertical collision avoidance], page 643). Alternatively, a single text mark with \markup \column { ... } can achieve the same effect.
\{\fixed
\repeat volta 2 {
c4 g c'8 b c4 e' c' c2
\textEndMark "ad lib."
\tweak outside-staff-priority 1200
\tweak font-size -1
\textEndMark "2nd time a due"
}\}
The alignment of a text mark can be changed.

```
\textMark \markup \column {
 \line { Left-aligned mark }
 \line { (default for \concat { \typewriter "\textMark" }) }
}
d'8 8 8 8 8 8 8 8

{
 c'8 8 8 8 8 8 8 8
 \tweak self-alignment-X #CENTER
 \textMark "Centered mark"
 d'8 8 8 8 8 8 8 8
}

{
 c'8 8 8 8 8 8 8 8
 \tweak self-alignment-X #RIGHT
 \textMark \markup \right-column {
 \line { Right-aligned mark }
 \line { (default for \concat { \typewriter "\textEndMark" }) }
 }
 d'8 8 8 8 8 8 8 8
}
```

Predefined commands
\textMark, \textEndMark, \markLengthOn, \markLengthOff.

Selected Snippets
**Printing marks on every staff**

Although text marks are normally only printed above the topmost staff, they may also be printed on every staff.

```latex
\score {
<<
\new Staff { \mark \default c''1 \textMark "molto" c'' }
\new Staff { \mark \default c'1 \textMark "molto" c' }
>>
\context {
\Score
\remove Mark_engraver
\remove Text_mark_engraver
\remove Staff_collecting_engraver
}
\context {
\Staff
\consists Mark_engraver
\consists Text_mark_engraver
\consists Staff_collecting_engraver
}
}
```

See also

Notation Reference: [Metronome marks], page 77, [Rehearsal marks], page 127, [Section labels], page 287, Section 1.8.2 [Formatting text], page 293, [Music notation inside markup], page 307, Section A.8 [The Emmentaler font], page 743.

Snippets: Section “Text” in Snippets.


**Separate text**

A `\markup` or `\markuplist` block can exist by itself, outside of any `\score` block, as a “top-level expression”. This syntax is described in Section 3.2.5 [File structure], page 542.

```latex
\markup {
 Tomorrow, and tomorrow, and tomorrow...
}
```

This allows printing text separately from the music, which is particularly useful when the input file contains several music pieces, as described in Section 3.2.2 [Multiple scores in a book], page 539.
Using \markuptext, separate text blocks can be spread over multiple pages, making it possible to print text documents or books entirely within LilyPond. For a description of this feature and the specific syntax it requires, see [Text markup introduction], page 293.

**Predefined commands**

\markup, \markuptext.

**Selected Snippets**

**Stand-alone two-column markup**

Stand-alone text may be arranged in several columns using \markup commands:

\markup {
  \fill-line {
    \hspace #1
    \column {
      \line { O sacrum convivium }
      \line { in quo Christus sumitur, }
      \line { recolitur memoria passionis ejus, }
      \line { mens impletur gratia, }
      \line { futurae gloriae nobis pignus datur. }
      \line { Amen. }
    }
  }
  \hspace #2
  \column \italic {
    \line { O sacred feast }
    \line { in which Christ is received, }
    \line { the memory of His Passion is renewed, }
    \line { the mind is filled with grace, }
    \line { and a pledge of future glory is given to us. }
    \line { Amen. }
  }
  \hspace #1
}
O sacrum convivium in quo Christus sumitur, recolitur memoria passionis ejus, mens impletur gratia, futurae gloriae nobis pignus datur. Amen.  

O sacred feast in which Christ is received, the memory of His Passion is renewed, the mind is filled with grace, and a pledge of future glory is given to us. Amen.

See also

Notation Reference: Section 1.8.2 [Formatting text], page 293, Section 3.2.5 [File structure], page 542, Section 3.2.2 [Multiple scores in a book], page 539.

Snippets: Section “Text” in Snippets.

Internals Reference: Section “TextScript” in Internals Reference.

1.8.2 Formatting text

This section presents basic and advanced text formatting, using the markup mode specific syntax.

Text markup introduction

A \markup or \markuplist block is used to typeset text with an extensible syntax called “markup mode”. Such blocks can be used in many contexts (see [Text objects overview], page 281).

In markup mode, words are written as-is. A single word does not need any quotes.

\markup intenso

intenso

Several words can be grouped together by enclosing them in quotes.

\markup "molto intenso"

molto intenso

Apart from grouping, quoting also allows writing special characters such as ‘\’ and ‘#’ without affecting the formatting of the text. Double quotation marks themselves may be printed by preceding them with backslashes.

\relative { 
  a'1"italic markup..."
  a\_markup { \italic "... prints \"italic\" letters!" } 
  a a 
}

\italic markup...

... prints “italic” letters!

Formatting is achieved through markup commands. Their name is written preceded by a backslash. They expect a number of arguments specific to the command. For an exhaustive list of \markup-specific commands, see Section A.12 [Text markup commands], page 763.

\markup italic "string. assai"
\markup \with-color "red" intenso

\textit{string. assai}

\textit{intenso}

Markup commands can be nested. The markup block ends when all commands have received their arguments.

\markup \with-color "red" \textit{intenso}

\textit{intenso}

Several markup expressions can be grouped together within braces to form a so-called markup list. Without further formatting, the elements of a markup list are typeset in a row.

\markup \{ \textit{molto} \textit{intenso} \}

\textit{molto intenso}

Some commands do not expect a markup but a markup list, allowing for more complex text arrangements than printing in a row.

\markup \center-column \{ \textbf{"Des Simplicius Simplicissimus Jugend"} "Karl Amadeus Hartmann" \}

\textbf{Des Simplicius Simplicissimus Jugend}

\textbf{Karl Amadeus Hartmann}

Also, some commands do not return a markup but a markup list. The result can then be used where a markup list is expected. For a list of these commands, see Section A.13 [Text markup list commands], page 829.

\markup \texttt{string-lines}

"Twinkle, twinkle, little star,
How I wonder what you are!"

\texttt{Twinkle, twinkle, little star, How I wonder what you are!}

\markup \center-column \texttt{string-lines}

"Twinkle, twinkle, little star,
How I wonder what you are!"

\texttt{Twinkle, twinkle, little star,}
\texttt{How I wonder what you are!}

Elements of a nested markup list are simply treated as elements of the main markup list.

\markup \center-column \{ \textbf{"Des Simplicius Simplicissimus Jugend"} \texttt{Karl Amadeus} \texttt{Hartmann} \}

\textbf{Des Simplicius Simplicissimus Jugend}

\textbf{Karl Amadeus Hartmann}

HARTMANN
To group elements of a nested markup list in a row, apply the `\line` command to the markup list. This stacks elements from the markup list horizontally into a single markup.

\markup \center-column {
  \bold "Des Simplicius Simplicissimus Jugend"
  \line { Karl Amadeus \smallCaps Hartmann }
}

**Des Simplicius Simplicissimus Jugend**

_Karl Amadeus HARTMANN_

A special feature is the handling of commands taking markups when applied to markup lists. When a command expects a markup as its last argument, and a markup list is given for this argument, the markup command is applied to each of the individual markups in the list.

\markup \box { Karl Amadeus \smallCaps Hartmann }

In this case, the result is in turn a markup list, which can be passed to a command expecting a markup list, or to one expecting a markup, with again the mapping behavior described above in the latter case.

\markup \center-column \box { Karl Amadeus \smallCaps Hartmann }
\markup \rotate #30 \box { Karl Amadeus \smallCaps Hartmann }

Apply `\line` to a markup list in order to make it treated as a single markup argument.

\markup \box { Karl Amadeus \smallCaps Hartmann }
\markup \box \line { Karl Amadeus \smallCaps Hartmann }

When the entire content of a `\markup` expression is a markup list, it is implicitly typeset using the `\line` command. Thus, elements are stacked horizontally and grouped as a single, unbreakable text block. The `\markuplist` command acts differently: it expects a markup list, and prints the individual markups on the page, stacking them vertically, and allowing page breaks. The following example illustrates this difference.

\markup \box \wordwrap {
  Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
}

\markuplist \box \wordwrap-lines {
Markups can be stored in variables, to be reused in any context where a markup is accepted. For example, such a variable can be directly attached to notes:

```
allegro = \markup \bold \large Allegro
```

```
{
 \allegro
 d'8.\allegro
 d'16 d'4 r2
}
```

The `\etc` syntax allows to define custom shorthands usable as markup commands.

```
\markup reddish = \markup \with-color "tomato" \etc
```

```
\markup { molto \reddish intenso }
```

```
molto intenso
```

The inner workings of markup commands and how to implement more complex ones is explained in Section “Markup functions” in *Extending*.

**See also**

Notation Reference: [Text objects overview], page 281, Section A.12 [Text markup commands], page 763, Section A.13 [Text markup list commands], page 829.

Extending LilyPond: Section “Markup functions” in *Extending*.

Installed Files: `scm/markup.scm`, `scm/define-markup-commands.scm`.

Snippets: Section “Text” in *Snippets*.

Internals Reference: Section “TextScript” in *Internals Reference*. 

---

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. 

Markups can be stored in variables, to be reused in any context where a markup is accepted. For example, such a variable can be directly attached to notes:

```
allegro = \markup \bold \large Allegro
```

```
{
 \allegro
 d'8.\allegro
 d'16 d'4 r2
}
```

The `\etc` syntax allows to define custom shorthands usable as markup commands.

```
\markup reddish = \markup \with-color "tomato" \etc
```

```
\markup { molto \reddish intenso }
```

```
molto intenso
```

The inner workings of markup commands and how to implement more complex ones is explained in Section “Markup functions” in *Extending*.

**See also**

Notation Reference: [Text objects overview], page 281, Section A.12 [Text markup commands], page 763, Section A.13 [Text markup list commands], page 829.

Extending LilyPond: Section “Markup functions” in *Extending*.

Installed Files: `scm/markup.scm`, `scm/define-markup-commands.scm`.

Snippets: Section “Text” in *Snippets*.

Internals Reference: Section “TextScript” in *Internals Reference*. 

---
Known issues and warnings

Syntax error messages for markup mode can be confusing.

Selecting font and font size

Basic font switching is supported in markup mode:

\relative {
    d''1\markup {
        \bold { Più mosso }
        \italic { non troppo \underline Vivo }
    }
    r2 r4 r8
    d, _\markup { \italic quasi \smallCaps Tromba }
    f1 d2 r
}

\score {
    \layout { text-font-size = 10 }
}

\score {
    \layout { text-font-size = 20 }
}

The global text size to be used in markups can be set with the text-font-size paper variable. This is useful to adjust to a different main font that might appear smaller or larger despite of having the same nominal font sizes.

The font size can be altered, relative to the global text size, in a number of different ways. It can be set to predefined size.
It can be set relative to its previous value.

\relative b' {
    b1\_markup { \larger Sinfonia }
    b1\~markup { \smaller da }
    b1\~markup { \magnify #0.6 camera }
}

\relative b' {
    b1\_markup { \fontsize #-2 Sinfonia }
    b1\~markup { \fontsize #1 da }
    b1\~markup { \fontsize #3 camera }
}

\relative b' {
    b1\_markup { \abs-fontsize #20 Sinfonia }
    b1\~markup { \abs-fontsize #8 da }
    b1\~markup { \abs-fontsize #14 camera }
}

If the text includes spaces, then it is best to put it all inside quote marks, so that the size of each space is appropriate for the size of the other characters.

\markup { \fontsize #6 \bold { Sinfonia da camera } }
\markup { \fontsize #6 \bold { "Sinfonia da camera" } }

**Sinfonia da camera**

**Sinfonia da camera**

Text may be printed as subscript or superscript. By default these are printed in a smaller size, but a normal size can be used as well:

\markup {
    \column {
        \line { 1 \super st movement }
        \line { 1 \normal-size-super st movement
            \sub { (part two) } }
    }
}
1st movement

The markup mode provides an easy way to select alternate font families. A serif font is selected by default unless specified otherwise; on the last line of the following example, there is no difference between the first and the second word.

\markup{
  \column{
    \line{ Act \number 1 } \\
    \line{ \sans { Scene I. } } \\
    \line{ \typewriter { Verona. An open place. } } \\
    \line{ Enter \serif Valentine and Proteus. } 
  }
}

Act 1
Scene I.
Verona. An open place.

Enter Valentine and Proteus.

Some of these font families, used for specific items such as numbers or dynamics, do not provide all characters, as mentioned in [New dynamic marks], page 151, and [Manual repeat marks], page 186.

When used inside a word, some font-switching or formatting commands may produce an unwanted blank space. This can easily be solved by concatenating the text elements together:

\markup{
  \column{
    \line{ \concat{ 1 \super st } movement } \\
    \line{ \concat{ \dynamic p , } \italic{ con dolce espressione } } 
  }
}

1st movement
\textit{p, con dolce espressione}

An exhaustive list of font switching commands and custom font usage commands can be found in Section A.12.1 [Font markup], page 763.

Defining custom font sets is also possible, as explained in Section 1.8.3 [Fonts], page 309.

Predefined commands
\texttt{\textbackslash teeny, \textbackslash tiny, \textbackslash small, \textbackslash normalsize, \textbackslash large, \textbackslash huge, \textbackslash smaller, \textbackslash larger}.

See also
Notation Reference: Section A.12.1 [Font markup], page 763, [New dynamic marks], page 151, [Manual repeat marks], page 186, Section 1.8.3 [Fonts], page 309.
Known issues and warnings

Using the font sizing commands `\teeny`, `\tiny`, `\small`, `\normalsize`, `\large`, and `\huge` will lead to inconsistent line spacing compared to using `\fontsize`.

Text alignment

This subsection discusses how to place text in markup mode. Markup objects can also be moved as a whole, using the syntax described in Section “Moving objects” in *Learning Manual*.

Markup objects may be aligned in different ways. By default, a text indication is aligned on its left edge: in the following example, there is no difference between the first and the second markup. That example also demonstrates various syntactically correct ways of placing the alignment commands:

```
\relative {
 d''1\-\markup { poco } \quad f
 d\-\markup { \left-align poco } \quad f
 d\-\markup { \center-align { poco } } \quad f
 d\-\markup \right-align { poco }
}
```

Horizontal alignment may be fine-tuned using a numeric value:

```
\relative {
 a'1\-\markup { \halign #-1 poco } \quad e'
 a,\-\markup { \halign #0 poco } \quad e'
 a,\-\markup { \halign #0.5 poco } \quad e'
 a,\-\markup { \halign #2 poco }
}
```

Lastly, words and any other objects may be moved by preceding them with padding. Negative padding is also supported, and will move any objects that follow in the opposite direction. Although padding is normally invisible, in the following example some commands have been added to make it appear more clearly:

```
\relative {
 d''1\-\markup { poco } \quad f
}
```
Some objects may have alignment procedures of their own, and therefore are not affected by these commands. It is possible to move such markup objects as a whole, as shown for instance in [Text marks], page 287.

Vertical alignment can be set in a similar way. As stated above, markup objects can be moved as a whole; however, it is also possible to move specific elements inside a markup block.

```
\relative {
 d'2\markup {
 Acte I
 \raise #2 { Scène 1 }
 }
 a'
 g\markup {
 \lower #4 \bold { Très modéré }
 }
 a
 d,\markup \raise #4 \italic {
 Une forêt.
 }
 a'4 a g2 a
}
```

Très modéré

Some commands can affect both the horizontal and vertical alignment of text objects in markup mode:

```
\relative {
 d'2\markup {
 Acte I
 \translate #'(−1 . 2) "Scène 1"
 }
 a'
 g\markup {
 \general-align #Y #3.2 \bold "Très modéré"
 }
 a
 d,\markup \translate-scaled #'(−1 . 2) \teeny {
 "Une forêt."
```
Here again, padding (either positive or negative) is a convenient way of positioning objects vertically, when inserted into markup columns:

```latex
\relative {
 d'2 \markup {
 Acte I
 \column {
 \with-color #darkred \box \vspace #-1
 "Scène 1"
 }
 }
 a'
 g \markup \column {
 \with-color #darkred \box \vspace #1
 "Très modéré"
 }
 a
 d, \markup \column {
 "Une forêt."
 \with-color #darkred \box \vspace #2
 }
 a'4 a g2 a }
```

A markup object may include several lines of text. In the following example, each element or expression is placed on its own line, either left-aligned or centered:

```latex
\markup {
 \column {
 a
 "b c"
 \line { d e f }
 }
 \hspace #10
 \center-column {
 a
 }
```
Similarly, a list of elements or expressions may be spread to fill the entire horizontal line width (if there is only one element, it will be centered on the page). These expressions can, in turn, include multi-line text or any other markup expression:

```
\markup {
 \fill-line {
 \line { William S. Gilbert }
 \center-column {
 \huge \smallCaps "The Mikado"
 or
 \smallCaps "The Town of Titipu"
 }
 \line { Sir Arthur Sullivan }
 }
}
\fill-line { 1885 }
```

William S. Gilbert  THE MIKADO  Sir Arthur Sullivan  
or  
THE TOWN OF TITIPU  

1885

Elements may be spread to fill any specified width by overriding the line-width property. By default it is set to \#f which indicates the entire line:

```
\markup {
 \column {
 \fill-line { left center right }
 \null
 \override #'(line-width . 30)
 \fill-line { left center right }
 }
}
```

left  center  right

left  center  right

Long text indications can also be automatically wrapped accordingly to the given line width. These will be either left-aligned or justified, as shown in the following example.

```
\markup {
 \column {
 \line \smallCaps { La vida breve }
 }
}
```

"b c"
\line { d e f }
}
}
a a
b c b c
d e f d e f

"b c"
\line { d e f }
}
}
a a
b c b c
d e f d e f

"b c"
\line { d e f }
}
}
a a
b c b c
d e f d e f

"b c"
\line { d e f }
}
}
a a
b c b c
d e f d e f

LA VIDA BREVE

Acto I

(La escena representa el corral de una casa de gitanos en el Albaicín de Granada. Al fondo una puerta por la que se ve el negro interior de una Fragua, iluminado por los rojos resplandores del fuego.)

Acto II

(Calle de Granada. Fachada de la casa de Carmela y su hermano Manuel con grandes ventanas abiertas a través de las que se ve el patio donde se celebra una alegre fiesta)

An exhaustive list of text alignment commands can be found in Section A.12.2 [Markup for text alignment], page 775.

See also

Notation Reference: Section A.12.2 [Markup for text alignment], page 775, [Text marks], page 287.
Installed Files: scm/define-markup-commands.scm.
Snippets: Section “Text” in Snippets.
Internals Reference: Section “TextScript” in Internals Reference.

Graphic notation inside markup

Various graphic objects may be added to a score, using markup commands.

Some markup commands allow decoration of text elements with graphics, as demonstrated in the following example.

\markup \fill-line {
    \center-column {
        \line \bold { Acto I } 
        \wordwrap \italic {
             (La escena representa el corral de una casa de gitanos en el Albaicín de Granada. Al fondo una puerta por la que se ve el negro interior de una Fragua, iluminado por los rojos resplandores del fuego.)
        }
    
    \hspace #0
    
    \line \bold { Acto II } . \override #'(line-width . 50) \justify \italic {
        (Calle de Granada. Fachada de la casa de Carmela y su hermano Manuel con grandes ventanas abiertas a través de las que se ve el patio donde se celebra una alegre fiesta)
    }
}

Chapter 1: Musical notation

\circle Jack
\box "in the box"
\null
\line {
Erik Satie
\hspace #3
\bracket "1866 - 1925"
}
\null
\rounded-box \bold Prelude
}
}

Jack
in the box

Erik Satie [1866 - 1925]

Prelude

Some commands may require an increase in the padding around the text; this is achieved with some markup commands exhaustively described in Section A.12.2 [Markup for text alignment], page 775.

\markup \fill-line {
\center-column {
\box "Charles Ives (1874 - 1954)"
\null
\box \pad-markup #2 "THE UNANSWERED QUESTION"
\box \pad-x #8 "A Cosmic Landscape"
\null
}
}
\markup \column {
\line {
\hspace #10
\box \pad-to-box #'(5 20) #'(0 5)
\bold "Largo to Presto"
}
\box \pad-around #3 "String quartet keeps very even time."
}

Charles Ives (1874 - 1954)

THE UNANSWERED QUESTION

A Cosmic Landscape
Chapter 1: Musical notation

Largo to Presto

String quartet keeps very even time.

Other graphic elements or symbols may be printed without requiring any text. As with any markup expression, such objects can be combined.

\markup {
\combine
  \draw-circle #4 #0.4 ##f
  \filled-box #'(-4 . 4) #'(-0.5 . 0.5) #1
  \hspace #5
\center-column {
  \triangle ##t
  \combine
    \draw-line #'(0 . 4)
    \arrow-head #Y #DOWN ##f
  }
}

Advanced graphic features include the ability to include external image files converted to the Encapsulated PostScript format (eps), or to directly embed graphics into the input file, using native PostScript code. In such a case, it may be useful to explicitly specify the size of the drawing, as demonstrated below:

c'1^\markup {
  \combine
  \epsfile #X #10 "./context-example.eps"
  \with-dimensions #'(0 . 6) #'(0 . 10)
  \postscript "
    -2 3 translate
    2.7 2 scale
    newpath
    2 -1 moveto
    4 -2 4 1 1 arct
    4 2 3 3 1 arct
    0 4 0 3 1 arct
    0 0 1 -1 1 arct
    closepath
    stroke"
}
c'
Music notation inside markup

Various musical notation elements may be added to a score, inside a markup object.

Notes and accidentals can be entered using markup commands:

\begin{verbatim}
a'2 a' \markup {
  \note {4} #1
  \note-by-number #1 #1 #1.5
} 
b'1 \markup {
  \natural \semiflat \flat
  \sesquiflat \doubleflat
}
\glissando
a'1 \markup {
  \natural \semisharp \sharp
  \sesquisharp \doublesharp
}
\glissando b'
\end{verbatim}

Other notation objects may also be printed in markup mode:

\begin{verbatim}
\relative {
  \g \bes
  \ees \finger \markup \tied-lyric "4\~1"
  \fis \markup { \dynamic rf }
  \bes \markup {
    \beam #8 #0.1 #0.5
}\end{verbatim}
More generally, any available musical symbol may be included separately in a markup object, as demonstrated below; an exhaustive list of these symbols and their names can be found in Section A.8 [The Emmentaler font], page 743.

The markup mode also supports diagrams for specific instruments:

\relative {c'4\markup { \musicglyph "eight" }
c,4\markup { \left-brace #40 }
c,8\markup { \musicglyph "clefs.G_change" }
c16
c2\markup { \musicglyph "timesig.neomensural194" }
}
Such diagrams are documented in Section A.12.6 [Instrument-specific markup], page 810.
A whole score can even be nested inside a markup object:

\relative {
    c'4 d"\markup {
        \score {
            \relative { c'4 d e f } 
        }
    } e f |
    c d e f 
}

An exhaustive list of music notation related commands can be found in Section A.12.4 [Markup for music and musical symbols], page 801.

See also
Notation Reference: Section A.12.4 [Markup for music and musical symbols], page 801, Section A.8 [The Emmentaler font], page 743.

Installed Files: scm/define-markup-commands.scm, scm/fret-diagrams.scm, scm/harp-pedals.scm.
Snippets: Section “Text” in Snippets.
Internals Reference: Section “TextScript” in Internals Reference.

Known issues and warnings
Vertical spacing of a \score inside a markup object is controlled by baseline-skip. Any \paper settings are ignored.

1.8.3 Fonts
Fonts in LilyPond are handled by several libraries; two of them are of relevance to the user: FontConfig (https://fontconfig.org) is used to detect available fonts, and selected fonts are then rendered by Pango (https://pango.org) to display text strings.

This section shows how to access fonts in LilyPond, and how to change them in scores.

Finding fonts
In addition to any font already installed on the operating system, more fonts may be added to the ones detected by FontConfig (and thus available in LilyPond scores) by the following commands:

#(ly:font-config-add-font "path/to/font-file")
#(ly:font-config-add-directory "path/to/directory/")
Both commands accept either absolute or relative paths, which makes it possible to compile a score on any system by simply distributing the relevant font files together with the LilyPond input files.

To verify that the desired fonts are found by FontConfig, use the command 
#(ly:font-config-display-fonts), which prints the complete list of available fonts to the console log. It also shows the actual font names to be used with LilyPond; these may differ from the file names themselves. Alternatively, running lilypond -dshow-available-fonts in a terminal has the same effect.

Font families

Three generic aliases for text font families\(^1\) are available: ‘serif’, ‘sans’, and ‘typewriter’. Depending on the backend, these families get mapped to different font family aliases.

For the svg backend:

<table>
<thead>
<tr>
<th>generic family</th>
<th>SVG font family</th>
</tr>
</thead>
<tbody>
<tr>
<td>serif</td>
<td>serif</td>
</tr>
<tr>
<td>sans</td>
<td>sans-serif</td>
</tr>
<tr>
<td>typewriter</td>
<td>monospace</td>
</tr>
</tbody>
</table>

‘serif’, ‘sans-serif’, and ‘monospace’ are ‘generic-family’ in SVG and CSS specifications.

For other backends:

<table>
<thead>
<tr>
<th>generic family</th>
<th>default font family alias</th>
<th>font families contained in alias</th>
</tr>
</thead>
<tbody>
<tr>
<td>serif</td>
<td>LilyPond Serif</td>
<td>C059, Century SchoolBook URW, Century Schoolbook L, TeX Gyre Schola, DejaVu Serif, . . . , serif</td>
</tr>
<tr>
<td>sans</td>
<td>LilyPond Sans Serif</td>
<td>Nimbus Sans, Nimbus Sans L, TeX Gyre Heros, DejaVu Sans, . . . , sans-serif</td>
</tr>
<tr>
<td>typewriter</td>
<td>LilyPond Monospace</td>
<td>Nimbus Mono PS, Nimbus Mono, Nimbus Mono L, TeX Gyre Cursor, DejaVu Sans Mono, . . . , monospace</td>
</tr>
</tbody>
</table>

If a character does not exist in the appropriate font of the first listed family, the appropriate font of the next listed family gets used instead for that character.

Note that the URW font families distributed with LilyPond (‘C059’, ‘Nimbus Sans’, and ‘Nimbus Mono PS’) have a peculiarity: By default, in addition to the standard ligatures like ‘fl’ or ‘ffi’, they substitute the string ‘Nr.’ with the Numero Sign (U+2116) if the ‘latn’ script is selected. To circumvent this locally, insert a zero-width non-joiner character (ZWNJ, U+200C) between the ‘N’ and ‘r’ characters. To circumvent this globally, use the following code to make LilyPond always insert a ZWNJ character.

```latex
\paper {
 #(add-text-replacements!
 `(("Nr." . ,(format #f "N-ar." (ly:wide-char->utf-8 #x200C)))))
}
```

‘LilyPond Serif’, ‘LilyPond Sans Serif’, and ‘LilyPond Monospace’ are font family aliases defined in the additional FontConfig configuration file 00-lilypond-fonts.conf, which can be usually found in directory /usr/local/share/lilypond/2.25.10/fonts, and which is used exclusively by LilyPond.

Each font family may include different shapes and series. The following example demonstrates that, including code to also change the size. The value supplied to font-size is taken relative to the default font size.

\(^1\) In its simplest form, a font family usually contains fonts in roman, italic, bold, and bold italic styles.
A similar syntax may be used in markup mode; however, in most cases it is preferable to use the simpler syntax explained in [Selecting font and font size], page 297:

\markup { 
  \column { 
    \line { 
      \override #'(font-shape . italic) (font-size . 4) Idomeneo, 
    } 
    \line { 
      \override #'(font-family . typewriter) { 
        \override #'(font-series . bold) re 
      } 
      \override #'(font-family . sans) Creta 
    } 
  } 
}

\textMark "Ouverture"
\underline{\textMark "Allegro"}
\underline{\textMark "smaller"
\underline{\textMark "normal style: Hello HELLO"
\underline{\textMark \caps "small caps: Hello"
\underline{\textMark \override #'(font-features . ("smcp")) "true small caps: Hello"
\underline{\textMark "normal number style: 0123456789"

Font features
When using OpenType fonts, font features can be used. Note that not all OpenType fonts have all features. If you request a feature that does not exist in the chosen font, the feature is simply ignored. The example below uses the font ‘TeX Gyre Schola’ (this is, the roman style of the family).

\paper { 
  \property-defaults.fonts.serif = "TeX Gyre Schola" 
}

\textMark "normal style: Hello HELLO"
\textMark \caps "small caps: Hello"
\textMark \override #'(font-features . ("smcp")) "true small caps: Hello"
\textMark "normal number style: 0123456789"

\[ Selecting OpenType font scripts and languages is not supported yet. \]
\markup {\override #'(font-features . ("onum"))
  "old number style: 0123456789"

\markup {\override #'(font-features . ("salt 0"))
  "stylistic alternate 0: ϵϕπρθ"

\markup {\override #'(font-features . ("salt 1"))
  "stylistic alternate 1: ϵϕπρθ"

\markup {\override #'(font-features . ("onum" "smcp" "salt 1"))
  "multiple features: Hello 0123456789 ϵϕπρθ"

  normal style: Hello HELLO
  SMALL CAPS: HELLO
  true caps: HELLO
  normal small caps: Hello
  normal number style: 0123456789
  old number style: 0123456789
  stylistic alternate 0: ϵϕπρθ
  stylistic alternate 1: ϵϕωρδ

  multiple features: Hello 0123456789 ϵϕωρδ

For the full OpenType font feature list see https://www.microsoft.com/typography/otspec/featurelist.htm; for identifying features of OpenType fonts see https://lists.gnu.org/archive/html/lilypond-devel/2017-08/msg00004.html.

See also
Notation Reference: Section A.8 [The Emmentaler font], page 743, [Music notation inside markup], page 307, Section 5.4.8 [Rotating objects], page 714, [Selecting font and font size], page 297, Section A.12.1 [Font markup], page 763.

See also
Notation Reference: [Finding fonts], page 309, [Font families], page 310, [Changing fonts], page 312.

Snippets: Section “Text” in Snippets.

Changing fonts
It is possible to change the fonts used in LilyPond’s default font families.

\paper {
  property-defaults.fonts.serif = "Linux Libertine O"
  property-defaults.fonts.sans = "DejaVu Sans"
  property-defaults.fonts.typewriter = "DejaVu Sans Mono"
}
\relative c' { 
  c1-\markup { 
    serif, 
    \sans sans, 
    \typewriter typewriter. } 
}

The same syntax can be used to change the music font; see Section 3.5.5 [Replacing the notation font], page 588.

To change the fonts used for one specific grob, or one specific part of a markup, override the fonts property. The following example changes the font for normal tablature “note heads” (which use the serif family) while keeping the default font for those that are drawn as a cross (which use the music family).

\layout { 
  \override TabVoice.TabNoteHead.fonts serif = "Linux Libertine O" 
}

\new TabStaff { c' d' e' \deadNote c' }

Below is an example for overriding fonts in markup:
\markup \override #'(fonts . ((serif . "Linux Libertine O") 
  (typewriter . "DejaVu Sans Mono"))) { 
  Copyright © John Doe \typewriter john@doe.org 
}

Copyright © John Doe john@doe.org

See also

Notation Reference: [Finding fonts], page 309, [Font families], page 310, [Selecting font and font size], page 297, Section A.12.1 [Font markup], page 763, Section 3.5.5 [Replacing the notation font], page 588.
2 Specialist notation

This chapter explains how to create musical notation for specific types of instrument or in specific styles.

Orchestral and ensemble music is not addressed in a separate section; however, several notions commonly useful in orchestral scores are found in [References for opera and stage musicals], page 360.

2.1 Vocal music

This section explains how to typeset vocal music, and make sure that the lyrics will be aligned with the notes of their melody.

2.1.1 Common notation for vocal music

This section discusses issues common to most types of vocal music.

References for vocal music

This section indicates where to find details of notation issues that may arise in any type of vocal music.

- Most styles of vocal music use written text as lyrics. An introduction to this notation is to be found in Section “Setting simple songs” in Learning Manual.
- Vocal music is likely to require the use of markup mode, either for lyrics or for other text elements (characters’ names, etc.). This syntax is described in [Text markup introduction], page 293.
- Ambitus may be added at the beginning of vocal staves, as explained in [Ambitus], page 37.
- Dynamic markings by default are placed below the staff, but in choral music they are usually placed above the staff in order to avoid the lyrics, as explained in [Score layouts for choral], page 357.
**See also**


Notation Reference: [Text markup introduction], page 293, [Ambitus], page 37, [Score layouts for choral], page 357.

Snippets: Section “Vocal music” in *Snippets.*

**Entering lyrics**

Lyrics are entered in a special input mode, which can be introduced by the keyword `\lyricmode`, or by using `\addlyrics` or `\lyricsto`. In this special input mode, the input `d` is not parsed as the pitch `D`, but rather as a one-letter syllable of text. In other words, syllables are entered like notes but with pitches replaced by text.

For example:

```
\lyricmode { Three4 blind mice,2 three4 blind mice2 }
```

There are two main methods for specifying the horizontal placement of the syllables, either by specifying the duration of each syllable explicitly, as in the example above, or by leaving the lyrics to be aligned automatically to a melody or other voice of music, using `\addlyrics` or `\lyricsto`. The former method is described below in [Manual syllable durations], page 320. The latter method is described in [Automatic syllable durations], page 318.

A word or syllable of lyrics begins with an alphabetic character (plus some other characters, see below) and is terminated by any white space or a digit. Later characters in the syllable can be any character that is not a digit or white space.

Because any character that is not a digit or white space is regarded as part of the syllable, a word is valid even if it ends with `}`, which often leads to the following mistake:

```
\lyricmode { lah lah lah)
```

In this example, the `}` is included in the final syllable, so the opening brace is not balanced and the input file will probably not compile. Instead, braces should always be surrounded with white space:

```
\lyricmode { lah lah lah }
```

Punctuation, lyrics with accented characters, characters from non-English languages, or special characters (such as the heart symbol or slanted quotes), may simply be inserted directly into the input file, providing it is saved with UTF-8 encoding. For more information, see Section 3.4.4 [Special characters], page 583.

```
\relative { d''8 c16 a bes8 f ees' d c4 }
\addlyrics { "/x12 "Schad' um das schöne grüne Band, }
```

Normal quotes may be used in lyrics, but they have to be preceded with a backslash character and the whole syllable has to be enclosed between additional quotes. For example,

```
\relative { d'3/4 e'4 e4. e8 d4 e d c4. }
\addlyrics { """I" am so lonely -- "ly","" said she }
```

"I am so lonely," said she
The full definition of a word start in lyrics mode is somewhat more complex. A word in lyrics mode is one that begins with an alphabetic character, _, ?, !, :, ', the control characters ^A through ^F, ^Q through ^W, ^Y, ^^, any 8-bit character with an ASCII code over 127, or a two-character combination of a backslash followed by one of `, ', " or ".

Great control over the appearance of lyrics comes from using \markup inside the lyrics themselves. For explanation of many options, see Section 1.8.2 [Formatting text], page 293.

Selected Snippets

**Formatting lyrics syllables**

Markup mode may be used to format individual syllables in lyrics.

```latex
mel = \relative c' { c4 c c c }
lyr = \lyricmode {
 Lyrics \markup { \italic can } \markup { \with-color #red contain }
 \markup { \fontsize #8 \bold Markup! }
}

<<
 \new Voice = melody \mel
 \new Lyrics \lyricsto melody \lyr
>>
```

Lyrics can contain Markup!

**See also**


Notation Reference: [Automatic syllable durations], page 318, Section 1.8.3 [Fonts], page 309, Section 1.8.2 [Formatting text], page 293, Section 3.1 [Input modes], page 537, [Manual syllable durations], page 320, Section 3.4.4 [Special characters], page 583.

Internals Reference: Section “LyricText” in *Internals Reference*.

Snippets: Section “Text” in *Snippets*.

**Aligning lyrics to a melody**

Lyrics are interpreted in \lyricmode and printed in a Lyrics context, see Section 5.1.1 [Contexts explained], page 663.

```latex
\new Lyrics \lyricmode { ... }
```

Two variants of \lyricmode additionally set an associated context used to synchronize the lyric syllables to music. The more convenient \addlyrics immediately follows the musical content of the Voice context with which it should be synchronized, implicitly creating a Lyrics context of its own. The more versatile \lyricsto requires both specifying the associated Voice context by name and explicitly creating a containing Lyrics context. For details see [Automatic syllable durations], page 318.

Lyrics can be aligned with melodies in two main ways:

- Lyrics can be aligned automatically, with the durations of the syllables being taken from another voice of music or (in special circumstances) an associated melody, using \addlyrics,
\lyricsto, or by setting the associatedVoice property. For more details, see [Automatic syllable durations], page 318.

\begin{verbatim}
\new Staff <<
  \time 2/4
  \new Voice = "one" \relative {
    \voiceOne
    c''4 b8. a16 g4. r8 a4 ( b ) c2
  }
  \new Voice = "two" \relative {
    \voiceTwo
    s2 s4. f'8 e4 d c2
  }
>>

% takes durations and alignment from notes in "one"
\new Lyrics \lyricsto "one" {
  Life is __ _ love, live __ life.
}

% takes durations and alignment from notes in "one" initially
% then switches to "two"
\new Lyrics \lyricsto "one" {
  No more let
  \set associatedVoice = "two" % must be set one syllable early
  sins and sor -- rows grow.
}
\end{verbatim}

The first stanza shows the normal way of entering lyrics.
The second stanza shows how the voice from which the lyric durations are taken can be changed. This is useful if the words to different stanzas fit the notes in different ways and all the durations are available in Voice contexts. For more details, see Section 2.1.3 [Stanzas], page 347.

• Lyrics can be aligned independently of the duration of any notes if the durations of the syllables are specified explicitly, and entered with \lyricmode.

\begin{verbatim}
\new Voice = "one" \relative {
  \time 2/4
  c''4 b8. a16 g4. f8 e4 d c2
}

% uses previous explicit duration of 2;
\new Lyrics \lyricmode {
  Joy to the earth!
}
\end{verbatim}
% explicit durations, set to a different rhythm
\new Lyrics \lyricmode {
    Life4 is love,2. live4 life.2
}

The first stanza is not aligned with the notes because the durations were not specified, and the previous value of 2 is used for each word.

The second stanza shows how the words can be aligned quite independently from the notes. This is useful if the words to different stanzas fit the notes in different ways and the required durations are not available in a music context. For more details see [Manual syllable durations], page 320. This technique is also useful when setting dialogue over music; for examples showing this, see [Dialogue over music], page 366.

See also
Notation Reference: Section 5.1.1 [Contexts explained], page 663, [Automatic syllable durations], page 318, Section 2.1.3 [Stanzas], page 347, [Manual syllable durations], page 320, [Dialogue over music], page 366, [Manual syllable durations], page 320.
Internals Reference: Section “Lyrics” in Internals Reference.

Automatic syllable durations
Lyrics can be automatically aligned to the notes of a melody in three ways:
- by specifying the named Voice context containing the melody with \lyricsto,
- by introducing the lyrics with \addlyrics and placing them immediately after the Voice context containing the melody,
- by setting the associatedVoice property, the alignment of the lyrics may be switched to a different named Voice context at any musical moment.

In all three methods hyphens can be drawn between the syllables of a word and extender lines can be drawn beyond the end of a word. For details, see [Extenders and hyphens], page 326.

The Voice context containing the melody to which the lyrics are being aligned must not have “died”, or the lyrics after that point will be lost. This can happen if there are periods when that voice has nothing to do. For methods of keeping contexts alive, see Section 5.1.3 [Keeping contexts alive], page 668.

Using \lyricsto
Lyrics can be aligned under a melody automatically by specifying the named Voice context containing the melody with \lyricsto:

\new Voice = "melody" \relative {a'1 a4. a8 a2}
\new Lyrics \lyricsto "melody" {
  These are the words
}

These are the words

This aligns the lyrics to the notes of the named Voice context, which must already exist. Therefore normally the Voice context is specified first, followed by the Lyrics context. The lyrics themselves follow the \lyricsto command. The \lyricsto command invokes lyric mode automatically. By default, the lyrics are placed underneath the notes. For other placements, see [Placing lyrics vertically], page 328.

Using \addlyrics

The \addlyrics command is just a convenient shortcut that can sometimes be used instead of having to set up the lyrics through a more complicated LilyPond structure.

{ MUSIC }
\addlyrics { LYRICS }

is the same as

\new Voice = "blah" { MUSIC }
\new Lyrics \lyricsto "blah" { LYRICS }

Here is an example,

{ 
  \time 3/4
  \relative { c'2 e4 g2. }
  \addlyrics { play the game }
}

play the game

More stanzas can be added by adding more \addlyrics sections:

{ 
  \time 3/4
  \relative { c'2 e4 g2. }
  \addlyrics { play the game }
  \addlyrics { speel het spel }
  \addlyrics { joue le jeu }
}

play the game
  speel het spel
  joue le jeu

The command \addlyrics cannot handle polyphonic settings. Also, it cannot be used to associate lyrics to a TabVoice. For these cases one should use \lyricsto.
Using \texttt{associatedVoice}

The melody to which the lyrics are being aligned can be changed by setting the \texttt{associatedVoice} property.

\begin{verbatim}
\set associatedVoice = "lala"
\end{verbatim}

The value of the property (here: "lala") should be the name of a \texttt{Voice} context. For technical reasons, the \texttt{\set} command must be placed one syllable before the one to which the change in voice is to apply.

Here is an example demonstrating its use:

\begin{verbatim}
<<\new Staff \\
\time 2/4
\new Voice = "one" \relative { \\
 voiceOne \\
 c''4 b8. a16 g4. r8 a4 ( b ) c2 \\
} \\
\new Voice = "two" \relative { \\
 voiceTwo \\
 s2 s4. f'8 e8 d4. c2 \\
} \\
% takes durations and alignment from notes in "one" initially \\
% then switches to "two" \\
\new Lyrics \lyricsto "one" { \\
 No more let \\
 \set associatedVoice = "two" % must be set one syllable early \\
 sins and sor -- rows grow. \\
} \\
>>&
\end{verbatim}

\texttt{\set associatedVoice = "two"} % must be set one syllable early
sins and sor -- rows grow.

See also

Notation Reference: [Extenders and hyphens], page 326, Section 5.1.3 [Keeping contexts alive], page 668, [Placing lyrics vertically], page 328.

Manual syllable durations

In some complex vocal music, it may be desirable to place lyrics completely independently of notes. In this case do not use \texttt{\lyricsto} or \texttt{\addlyrics} and do not set \texttt{associatedVoice}. Syllables are entered like notes – but with pitches replaced by text – and the duration of each syllable is entered explicitly after the syllable.

Hyphenated lines may be drawn between syllables as usual, but extender lines cannot be drawn when there is no associated voice.

Here are two examples:

\begin{verbatim}
<<
\new Voice = "melody" \relative { \\
 c''2 a f f e e
\end{verbatim}
This technique is useful when writing dialogue over music, see [Dialogue over music], page 366.

To change syllable alignment, simply override the self-alignment-X property:
Multiple syllables to one note

In order to assign more than one syllable to a single note with spaces between the syllables, you can surround the phrase with quotes or use a _ character. Alternatively, you can use the tilde symbol (~) to get a lyric tie.

```
\relative {
 \autoBeamOff
 r8 b' c fis, fis c' b e,
}
\addlyrics
{
 % Ensure hyphens are visible
 \override LyricHyphen.minimum-distance = #1.0
 Che in ques -- ta_e_in quel -- l'al -- tr'on -- da
}
\addlyrics { "Che in" ques -- "ta e in" quel -- l'al -- tr'on -- da }
\addlyrics { Che-in ques -- ta-e-in quel -- l'al -- tr'on -- da }
```

**See also**

Internals Reference: Section “LyricCombineMusic” in *Internals Reference*.

Multiple notes to one syllable

Sometimes, particularly in Medieval and baroque music, several notes are sung on one syllable; this is called melisma, see Section “melisma” in *Music Glossary*. The syllable to a melisma is usually left-aligned with the first note of the melisma.

When a melisma occurs on a syllable other than the last one in a word, that syllable is usually joined to the following one with a hyphenated line. This is indicated by placing a double hyphen, --, immediately after the syllable.

Alternatively, when a melisma occurs on the last or only syllable in a word an extender line is usually drawn from the end of the syllable to the last note of the melisma. This is indicated by placing a double underscore, __, immediately after the word.
There are five ways in which melismata can be indicated:

- Melismata are created automatically over notes which are tied together:

```
\new Voice = "melody" \relative {
 \time 3/4
 f''4 g2 ~ |
 4 e2 ~ |
 8
}
\new Lyrics \lyricsto "melody" {
 Ky -- ri -- e ___
}
```

- Melismata can be created automatically from the music by placing slurs over the notes of each melisma. This is the usual way of entering lyrics:

```
\new Voice = "melody" \relative {
 \time 3/4
 f''4 g8 (f e f)
 e8 (d e2)
}
\new Lyrics \lyricsto "melody" {
 Ky -- ri -- e ___
}
```

Note that phrasing slurs do not affect the creation of melismata.

- Notes are considered a melisma if they are manually beamed, providing automatic beaming is switched off. See [Setting automatic beam behavior], page 95.

```
\new Voice = "melody" \relative {
 \time 3/4
 \autoBeamOff
 f''4 g8 [f e f]
 e2.
}
\new Lyrics \lyricsto "melody" {
 Ky -- ri -- e
}
```
Clearly this is not suited to melismata over notes which are longer than eighth notes.

- An unslurred group of notes will be treated as a melisma if they are bracketed between \melisma and \melismaEnd.

\begin{verbatim}
<< \new Voice = "melody" \relative {
\time 3/4
f''4 g8 \melisma f e f \melismaEnd
e2.
}
\new Lyrics \lyricsto "melody" {
Ky -- ri -- e
}
>>
\end{verbatim}

- A melisma can be defined entirely in the lyrics by entering a single underscore character, _, for every extra note that has to be added to the melisma.

\begin{verbatim}
<< \new Voice = "melody" \relative {
\time 3/4
f''4 g8 f e f
e8 d e2
}
\new Lyrics \lyricsto "melody" {
Ky -- ri -- _ _ _ e _ _ _
}
>>
\end{verbatim}

It is possible to have ties, slurs and manual beams in the melody without their indicating melismata. To do this, set melismaBusyProperties:

\begin{verbatim}
<< \new Voice = "melody" \relative {
\time 3/4
\set melismaBusyProperties = #'()
c'4 d ( e )
g8 [ f ] f4 - 4
\end{verbatim}
Other settings for `melismaBusyProperties` can be used to selectively include or exclude ties, slurs, and beams from the automatic detection of melismata; see `melismaBusyProperties` in Section “Tunable context properties” in Internals Reference.

Alternatively, if all melismata indications are to be ignored, `ignoreMelismata` may be set true; see [Stanzas with different rhythms], page 350.

If a melisma is required during a passage in which `melismaBusyProperties` is active, it may be indicated by placing a single underscore in the lyrics for each note which should be included in the melisma:

```latex
<<
\new Voice = "melody" \relative {
\time 3/4
\set melismaBusyProperties = #'()
c'4 d (e)
g8 [f] ~ 4 ~ f }
\new Lyrics \lyricsto "melody" {
Ky -- ri -- e -- le -- i -- son }
>>

\begin{music}
\newVoiceD {
\relative c' {
\time 3/4
\set melismaBusyProperties = #'()
c'4 d (e)
g8 [f] ~ 4 ~ f }
\lyricsto {Ky -- ri -- e -- le -- i -- son}
}
\end{music}
```

**Predefined commands**

`\autoBeamOff`, `\autoBeamOn`, `\melisma`, `\melismaEnd`.

**See also**


Notation Reference: [Aligning lyrics to a melody], page 316, [Automatic syllable durations], page 318, [Setting automatic beam behavior], page 95, [Stanzas with different rhythms], page 350.

Internals Reference: Section “Tunable context properties” in Internals Reference.

**Known issues and warnings**

Extender lines under melismata are not created automatically; they must be inserted manually with a double underscore.
Extenders and hyphens

In the last syllable of a word, melismata are sometimes indicated with a long horizontal line starting in the melisma syllable, and ending in the next one. Such a line is called an extender line, and it is entered as ‘__’ (note the spaces before and after the two underscore characters).

Note: Melismata are indicated in the score with extender lines, which are entered as one double underscore; but short melismata can also be entered by skipping individual notes, which are entered as single underscore characters; these do not make an extender line to be typeset by default.

Centered hyphens are entered as ‘--’ between syllables of a same word (note the spaces before and after the two hyphen characters). The hyphen will be centered between the syllables, and its length will be adjusted depending on the space between the syllables.

In tightly engraved music, hyphens can be removed. Whether this happens can be controlled with the minimum-distance (minimum distance between two syllables) and the minimum-length (threshold below which hyphens are removed) properties of LyricHyphen.

By default a hyphen is not repeated after a system break when the next line begins with a new syllable. Setting the after-line-breaking property to #t allows hyphens to be drawn in such situations.

See also

Internals Reference: Section “LyricExtender” in Internals Reference, Section “LyricHyphen” in Internals Reference.

Gradual changes of vowel

Vowel transitions (gradual changes of vowel or sustained consonant), which may be indicated by arrows between syllables, are entered with the command \vowelTransition (see Gould pp. 452–453). The arrow shows the length of the transition, and it is by default always drawn (space is added if necessary in tightly engraved music). Ties between notes of unchanged pitch or slurs show that there is no new articulation, despite a change of vowel. The minimum length of the arrows may be adjusted with the minimum-length property of VowelTransition.

```latex
{
 c'2 c'
 \set melismaBusyProperties = #'()
 c'2 - c'
 \time 3/2
 d'4(e' f' e' f'2
 e'2.)
}
\addlyrics
{
 Ah \vowelTransition oh,
 ah \vowelTransition oh,
 ah \vowelTransition __ __ __
 oh.
}
```
2.1.2 Techniques specific to lyrics

Working with lyrics and variables

Variables containing lyrics can be created, but the lyrics must be entered in lyric mode:

```latex
musicOne = \relative {
 c''4 b8. a16 g4. f8 e4 d c2
}
verseOne = \lyricmode {
 Joy to the world, the Lord is come.
}
\score {
 \new Voice = "one" {
 \time 2/4
 \musicOne
 }
 \new Lyrics \lyricsto "one" {
 \verseOne
 }
}
```

Joy to the world, the Lord is come.

Durations do not need to be added if the variable is to be invoked with `\addlyrics` or `\lyricsto`.

For different or more complex orderings, the best way is to define the music and lyric variables first, then set up the hierarchy of staves and lyrics, omitting the lyrics themselves, and then add the lyrics using `\context` underneath. This ensures that the voices referenced by `\lyricsto` have always been defined earlier. For example:

```latex
sopranoMusic = \relative { c'' c c c }
contraltoMusic = \relative { a' a a a }
sopranoWords = \lyricmode { Sop -- ra -- no words }
contraltoWords = \lyricmode { Con -- tral -- to words }
\score {
 \new ChoirStaff <<
 \new Staff {
 \new Voice = "sopranos" {
```
Placing lyrics vertically

Depending on the type of music, lyrics may be positioned above the staff, below the staff, or between staves. Placing lyrics below the associated staff is the easiest, and can be achieved by simply defining the Lyrics context below the Staff context:

```
\score {
 <<
 \new Staff {
 \new Voice = "melody" {
 \relative { c''4 c c c }
 }
 }
 \new Lyrics {
 \lyricsto "melody" {
 Here are the words
 }
 }
 }
>>
```

See also

Notation Reference: [Placing lyrics vertically], page 328.
Lyrics may be positioned above the staff using one of two methods. The simplest (and preferred) method is to use the same syntax as above and explicitly specify the position of the lyrics:

\score {
  \new Staff = "staff" { 
    \new Voice = "melody" { 
      \relative { c''4 c c c } 
    } 
  } 
  \new Lyrics \with { \alignAboveContext = "staff" } { 
    \lyricsto "melody" { 
      Here are the words 
    } 
  } 
}
Here are the words

When there are two voices on separate staves the lyrics may be placed between the staves using either of these methods. Here is an example of the second method:

\score {  
\new ChoirStaff <<  
\new Staff {  
  \new Voice = "sopranos" {  
    \relative { c''4 c c c }  
  }  
}  
\new Lyrics = "sopranos"  
\new Lyrics = "contraltos" \with {  
  \override VerticalAxisGroup.staff-affinity = #DOWN  
}  
\new Staff {  
  \new Voice = "contraltos" {  
    \relative { a'4 a a a }  
  }  
}  
\context Lyrics = "sopranos" {  
  \lyricsto "sopranos" {  
    Sop -- ra -- no words  
  }  
}  
\context Lyrics = "contraltos" {  
  \lyricsto "contraltos" {  
    Con -- tral -- to words  
  }  
}  
}  
>>  
}

Other combinations of lyrics and staves may be generated by elaborating these examples, or by examining the templates in the Learning Manual, see Section “Vocal ensembles templates” in Learning Manual.

Selected Snippets
Arranging separate lyrics on a single line

Sometimes you may want to put lyrics for different performers on a single line: where there is rapidly alternating text, for example. This snippet shows how this can be done with \override VerticalAxisGroup.nonstaff-nonstaff-spacing.minimum-distance = ##f.

\header { tagline = ##f }
\layout {
\context {
\Lyrics
\override VerticalAxisGroup.nonstaff-nonstaff-spacing.minimum-distance = ##f
}
}
aliceSings = \markup { \smallCaps "Alice" }
eveSings = \markup { \smallCaps "Eve" }

<<
\new Staff << "alice" {
\new Voice = "alice" {
    f'4\aliceSings g' r2 |
    s1 |
    f'4\aliceSings g' r2 |
    s1 | \break
% ...

\voiceOne
s2 a'8\aliceSings a' b'4 |
\oneVoice
g'1
}
\new Voice = "eve" {
    s1 |
    a'2\eveSings g' |
    s1 |
    a'2\eveSings g' |
% ...

\voiceTwo
f'4\eveSings a'8 g' f'4 e' |
\oneVoice
s1
}
>>
\new Lyrics \lyricsto "alice" {
    may -- be
    sec -- ond
% ...
    Shut up, you fool!
}
\new Lyrics \lyricsto "eve" {
    that the
words are
\%
...
...and then I was like--
}

>>

\begin{music}
\header{\tagline=##f}
global = {
  \key d \major
  \time 3/4
}
sopMusic = \relative c' {
  \% VERSE ONE
  fis4 fis fis | \break
  fis4. e8 e4
}

altoMusic = \relative c' {
  \% VERSE ONE
  d4 d d |
  d4. b8 b4 |
}

tenorMusic = \relative c' {
  a4 a a |
  b4. g8 g4 |
}

bassMusic = \relative c {
  d4 d d |
  g,4. g8 g4 |
}\end{music}

Obtaining 2.12 lyrics spacing in newer versions
The vertical spacing engine changed since version 2.14. This can cause lyrics to be spaced differently.

It is possible to set properties for Lyric and Staff contexts to get the spacing engine to behave as it did in version 2.12.
words = \lyricmode {
  Great is Thy faith -- ful -- ness,
}

\score {
  \new ChoirStaff <<
    \new Lyrics = sopranos
    \new Staff = women <<
      \new Voice = "sopranos" {
        \voiceOne
          \global \sopMusic
      }
    \new Voice = "altos" {
        \voiceTwo
          \global \altoMusic
    }
  >>
  \new Lyrics = "altos"
  \new Lyrics = "tenors"
  \new Staff = men <<
    \clef bass
    \new Voice = "tenors" {
        \voiceOne
          \global \tenorMusic
      }
    \new Voice = "basses" {
        \voiceTwo \global \bassMusic
    }
  >>
  \new Lyrics = basses
  \context Lyrics = sopranos \lyricsto sopranos \words
  \context Lyrics = altos \lyricsto altos \words
  \context Lyrics = tenors \lyricsto tenors \words
  \context Lyrics = basses \lyricsto basses \words

  >>layout {
    \context {
      \Lyrics
        \override VerticalAxisGroup.staff-affinity = ##f
        \override VerticalAxisGroup.staff-staff-spacing = #'((basic-distance . 0)
          (minimum-distance . 2)
          (padding . 2))
    }
    \context {
      \Staff
        \override VerticalAxisGroup.staff-staff-spacing = #'((basic-distance . 0)
          (minimum-distance . 2)
          (padding . 2))
    }
  }
}
See also


Notation Reference: Section 5.1.7 [Context layout order], page 680, Section 5.1.2 [Creating and referencing contexts], page 665.

Placing syllables horizontally

To increase the spacing between lyrics, set the minimum-distance property of LyricSpace.

\relative c' {
    c c c c
    \override Lyrics.LyricSpace.minimum-distance = #1.0
    c c c c
} \addlyrics {
    longtext longtext longtext longtext
    longtext longtext longtext longtext
}

longtext longtext longtext longtext
To make this change for all lyrics in the score, set the property in the `\layout` block.

\score {  
  \relative {  
    c' c c c  
    c c c c  
  }  
  \addlyrics {  
    longtext longtext longtext longtext  
    longtext longtext longtext longtext  
  }  
  \layout {  
    \context {  
      \Lyrics  
      \override LyricSpace.minimum-distance = #1.0  
    }  
  }  
}

Selected Snippets

**Lyrics alignment**

Horizontal alignment for lyrics can be set by overriding the `self-alignment-X` property of the `LyricText` object. `-1` is left, `0` is center and `1` is right; however, you can use `#LEFT`, `#CENTER` and `#RIGHT` as well.

\layout {  
  ragged-right = ##f  
}

\relative c'' {  
  c1  
  c1  
}

\addlyrics {  
  \once \override LyricText.self-alignment-X = #LEFT  
  "This is left-aligned"  
  \once \override LyricText.self-alignment-X = #CENTER  
  "This is centered"  
  \once \override LyricText.self-alignment-X = #1  
}
Known issues and warnings

Checking to make sure that text scripts and lyrics are within the margins requires additional calculations. To speed up processing slightly, this feature can be disabled:

\override Score.PaperColumn.keep-inside-line = ##f

To make lyrics avoid bar lines as well, use

\layout {
\context {
\Lyrics
\consists Bar_engraver
\consists Separating_line_group_engraver
\hide BarLine
}
}

Lyrics and repeats

Simple repeats

Repeats in music are fully described elsewhere; see Section 1.4 [Repeats], page 171. This section explains how to add lyrics to repeated sections of music.

Lyrics to a section of music that is repeated should be surrounded by exactly the same repeat construct as the music, if the words are unchanged.

\score {
<<
\new Staff {
\new Voice = "melody" {
\relative {
 a'4 a a a
 \repeat volta 2 { b4 b b b }
}
}
}
\new Lyrics {
\lyricsto "melody" {
 Not re -- peat -- ed.
 \repeat volta 2 { Re -- peat -- ed twice. }
}
}
>>
}
The words will then be correctly expanded if the repeats are unfolded.

\score {
  \unfoldRepeats {
    <<
      \new Staff {
        \new Voice = "melody" {
          \relative {
            a'4 a a a
          }
          \repeat volta 2 { b4 b b b }
        }
      }
    }
    \new Lyrics {
      \lyricsto "melody" {
        Not re--peat--ed.
      }
    }
  }
}

\new Staff {
  \new Voice = "melody" {
    \relative {
      a'4 a a a
    }
    \repeat unfold 2 { b4 b b b }
  }
}
\new Lyrics {
  \lyricsto "melody" {
    Not re--peat--ed.
    The first time words.
    Sec--ond time words.
  }
}
}


If the repeated section is to be unfolded and has different words, simply enter all the words:

\score {
  <<
    \new Staff {
      \new Voice = "melody" {
        \relative {
          a'4 a a a
        }
        \repeat unfold 2 { b4 b b b }
      }
    }
    \new Lyrics {
      \lyricsto "melody" {
        Not re--peat--ed.
        The first time words.
        Sec--ond time words.
      }
    }
  }
}

Not repeated. The first time words. Second time words.
When the words to a repeated volta section are different, the words to each repeat must be entered in separate Lyrics contexts, correctly nested in parallel sections:

\score {
<<
\new Staff {
  \new Voice = "melody" {
    \relative {
      a'4 a a a
      \repeat volta 2 { b4 b b b }
    }
  }
}
\new Lyrics \lyricsto "melody" {
  Not re-peat-ed.
<<
}
}

\new Lyrics {
  \set associatedVoice = "melody"
  Sec-ond time words.
}
}
\new Lyrics \lyricsto "singleVoice" {
  Not re-peat-ed.
<<
}

More verses may be added in a similar way:

\score {
<<
\new Staff {
  \new Voice = "singleVoice" {
    \relative {
      a'4 a a a
      \repeat volta 3 { b4 b b b }
    c4 c c c
    }
  }
}
\new Lyrics \lyricsto "singleVoice" {
  Not re-peat-ed.
<<
  { The first time words. }
}
\new Lyrics {
\set associatedVoice = "singleVoice"
Sec -- ond time words.
}

\new Lyrics {
\set associatedVoice = "singleVoice"
The third time words.
}

>>

The end sec -- tion.

} >>

Not repeated. The first time words. The end section.
Sec-ond time words.
The third time words.

However, if this construct is embedded within a multi-staff context such as a ChoirStaff the lyrics of the second and third verses will appear beneath the bottom staff.

To position them correctly use alignBelowContext:

\score {
<<
\new Staff {
\new Voice = "melody" {
\relative { 
a'4 a a a
\repeat volta 3 { b4 b b b }
c4 c c c
}
}
\new Lyrics = "firstVerse" \lyricsto "melody" {
Not re -- peat -- ed.
<<
{ The first time words. }
}

\new Lyrics = "secondVerse"
\with { alignBelowContext = "firstVerse" } {
\set associatedVoice = "melody"
Sec -- ond time words.
}

}\new Lyrics = "thirdVerse"
Repeats with alternative endings

If the words of the repeated section are the same, and none of the \alternative blocks start with a rest, exactly the same structure can be used for both the lyrics and music. This has the advantage that \unfoldRepeats will expand both music and lyrics correctly.

\score {
  \new Staff {
    \time 2/4
    \new Voice = "melody" {
      \relative {
        a'4 a a a
        \repeat volta 2 { b4 b }
        \alternative {
          \volta 1 { b b }
          \volta 2 { b c }
        }
      }
    }
  }
  \new Lyrics {
    \lyricsto "melody" {
      Not repeat ed.
      \repeat volta 2 { Repeat }
      \alternative {
        \volta 1 { ed twice. }
        \volta 2 { ed twice. }
      }
    }
  }
}
But when the repeated section has different words, or when one of the \alternative blocks starts with a rest, a repeat construct cannot be used around the words and \skip commands have to be inserted manually to skip over the notes in the alternative sections which do not apply.

Note: do not use an underscore, \_, to skip notes – an underscore indicates a melisma, causing the preceding syllable to be left-aligned.

\begin{Verbatim}
% Not repeated. Repeated twice. ed twice.
\end{Verbatim}

\begin{quote}
\textbf{Note:} The \texttt{\skip} command must be followed by a number, but this number is ignored in lyrics which derive their durations from the notes in an associated melody through \texttt{\addlyrics} or \texttt{\lyricsto}. Each \texttt{\skip} skips a single note of any value, irrespective of the value of the following number.
\end{quote}

\begin{verbatim}
\score {
  \new \Staff {
    \-time 2/4
    \new \Voice = "melody" {
      \relative 
      \repeat volta 2 { b'4 b }
      \alternative {
        \volta 1 { b b }
        \volta 2 { b c }
      }
      c4 c
    }
  }

  \new \Lyrics {
    \lyricsto "melody" {
      The first time words.
      \repeat unfold 2 { \skip 1 }
      End here.
    }
  }

  \new \Lyrics {
    \lyricsto "melody" {
      Sec -- ond
      \repeat unfold 2 { \skip 1 }
      time words.
    }
  }
}
\end{verbatim}
When a note is tied over into two or more alternative endings a tie is used to carry the note into the first alternative ending and a \repeatTie is used in the second and subsequent endings. This structure causes difficult alignment problems when lyrics are involved and increasing the length of the alternative sections so the tied notes are contained wholly within them may give a more acceptable result.

The tie creates a melisma into the first alternative, but not into the second and subsequent alternatives, so to align the lyrics correctly it is necessary to disable the automatic creation of melismata over the volta section and insert manual skips.

\score {
  \new Staff {
    \time 2/4
    \new Voice = "melody" {
      \relative {
        \set melismaBusyProperties = #'()
        \repeat volta 2 { b'4 b ~}
        \alternative {
          \volta 1 { b b }
          \volta 2 { b \repeatTie c }
        }
        \unset melismaBusyProperties
        c4 c
      }
    }
    \new Lyrics {
      \lyricsto "melody" {
        \repeat volta 2 { Here's a ___ }
        \alternative {
          \volta 1 { \skip 1 verse }
          \volta 2 { \skip 1 sec }
        }
        \text{End one.}
      }
    }
  }
}

The first time words.  End here.
Second time words.
Here's a verse second one.

Note that if \unfoldRepeats is used around a section containing \repeatTie, the \repeatTie should be removed to avoid both types of tie being printed.

When the repeated section has different words a \repeat cannot be used around the lyrics and \skip commands need to be inserted manually, as before.

\score {
  <<
    \new Staff {
      \time 2/4
      \new Voice = "melody" {
        \relative {
          \repeat volta 2 { b'4 b ~ }
          \alternative {
            \volta 1 { b b }
            \volta 2 { b \repeatTie c }
          }
          c4 c
        }
      }
    }
    \new Lyrics {
      \lyricsto "melody" {
        Here's a __ verse.
        \repeat unfold 2 { \skip 1 }
      }
    }
    \new Lyrics {
      \lyricsto "melody" {
        Here's one
        \repeat unfold 2 { \skip 1 }
        more to sing.
      }
    }
  >>
}

Here's a verse. Here's one more to sing.

If you wish to show extenders and hyphens into and out of alternative sections these must be inserted manually.

\score {
  <<
    \new Staff {

\time 2/4
\new Voice = "melody" {
  \relative {
    \repeat volta 2 { b'4 b -}
    \alternative {
      \volta 1 { b b }
      \volta 2 { b \repeatTie c }
    }
    c4 c
  }
}
\new Lyrics {
  \lyricsto "melody" {
    Here's a _ _ verse.
  }
}
\new Lyrics {
  \lyricsto "melody" {
    Here's "a_"
    \skip 1
    "_" sec -- ond one.
  }
}
>>

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{dots.dot}
\caption{Example music notation with divisi lyrics.}
\end{figure}

Here's a__verse.
Here's a_ second one.

See also

Notation Reference: Section 5.1.3 [Keeping contexts alive], page 668, Section 1.4 [Repeats], page 171.

Divisi lyrics

When just the words and rhythms of the two parts differ with the pitches remaining the same, temporarily turning off the automatic detection of melismata and indicating the melisma in the lyrics may be the appropriate method to use:

\begin{verbatim}
\score {
  \new Voice = "melody" {
    \relative c' {
      \set melismaBusyProperties = #'()
      \slurDown
      \slurDashed
e4 e8 ( e ) c4 c |
      \unset melismaBusyProperties
    }
  }

\end{verbatim}
Chapter 2: Specialist notation

When both music and words differ it may be better to display the differing music and lyrics by naming voice contexts and attaching lyrics to those specific contexts:

\score{
  \relative C\clef { "melody"
    e'4 e8 e
    "splitpart"
    c4 c |}

\new Lyrics "melody" {
  They shall not o-ver--come
}
\new Lyrics "splitpart" {
  We will
}
}
Chapter 2: Specialist notation

It is common in choral music to have a voice part split for several measures. The `<< {...} \ {...} >>` construct, where the two (or more) musical expressions are separated by double backslashes, might seem the proper way to set the split voices. This construct, however, will assign all the expressions within it to NEW Voice contexts which will result in no lyrics being set for them since the lyrics will be set to the original voice context – not, typically, what one wants. The temporary polyphonic passage is the proper construct to use, see section Temporary polyphonic passages in [Single-staff polyphony], page 201.

Polyphony with shared lyrics

When two voices with different rhythms share the same lyrics, aligning the lyrics to one of the voices may lead to problems in the other voice. For example, the second lyric extender below is too short, since the lyrics are aligned only to the top voice:

```
soprano = \relative { b'8(c d c) d2 }
alto = \relative { g'2 b8(a g a) }
words = \lyricmode { la __ la __ }
```

```
\new Staff <<
\new Voice = "sopranoVoice" { \voiceOne \soprano }
\new Voice { \voiceTwo \alto }
\new Lyrics \lyricsto "sopranoVoice" \words
>>
```

To get the desired result, align the lyrics to a new NullVoice context containing a suitable combination of the two voices. The notes of the NullVoice context do not appear on the printed page, but can be used to align the lyrics appropriately:

```
soprano = \relative { b'8(c d c) d2 }
alto = \relative { g'2 b8(a g a) }
aligner = \relative { b'8(c d c) b(a g a) }
words = \lyricmode { la __ la __ }
```

```
\new Staff <<
\new Voice { \voiceOne \soprano }
\new Voice { \voiceTwo \alto }
\new NullVoice = "aligner" \aligner
\new Lyrics \lyricsto "aligner" \words
>>
```
This method also can be used with the `\partCombine` function, which does not allow lyrics on its own:

```latex
\begin{align*}
\text{soprano} &= \relative { b'8(c d c) d2 } \\
\text{alto} &= \relative { g'2 b8(a g a) } \\
\text{aligner} &= \relative { b'8(c d c) b(a g a) } \\
\text{words} &= \lyricmode { la _{_} la _{_} } \\
\end{align*}
```

\begin{verbatim}
\new Staff <<
  \new Voice \partCombine \soprano \alto
  \new NullVoice = "aligner" \aligner
  \new Lyrics \lyricsto "aligner" \words
>>
\end{verbatim}

Known issues and warnings

The `\addlyrics` function only works with `Voice` lyrics and so cannot be used with `NullVoice`. The `\partCombine` function is described in [Automatic part combining], page 212.

Lastly, this method can be used even when the voices are in different staves, and is not limited to only two voices:

```latex
\begin{align*}
\text{soprano} &= \relative { b'8(c d c) d2 } \\
\text{altoOne} &= \relative { g'2 b8(a b4) } \\
\text{altoTwo} &= \relative { d'2 g4(fis8 g) } \\
\text{aligner} &= \relative { b'8(c d c) d(d d d) } \\
\text{words} &= \lyricmode { la _{_} la _{_} } \\
\end{align*}
```

\begin{verbatim}
\new ChoirStaff \with {\accepts NullVoice} <<
  \new Staff \soprano
  \new NullVoice = "aligner" \aligner
  \new Lyrics \lyricsto "aligner" \words
  \new Staff \partCombine \altoOne \altoTwo
>>
\end{verbatim}

2.1.3 Stanzas
Adding stanza numbers

Stanza numbers can be added by setting stanza, e.g.,

\new Voice \relative { 
  \time 3/4 g'2 e4 a2 f4 g2. 
} \addlyrics { 
  \set stanza = "1." 
  Hi, my name is Bert. 
} \addlyrics { 
  \set stanza = "2." 
  Oh, chè - ri, je t'aime 
}

These numbers are put just before the start of the first syllable. Two lines of a stanza can also be grouped together, for example in case of a repeat with different lyrics:

\stanzaOneOne = \lyricmode { 
  \set stanza = \markup { 
    \column { 
      \vspace #.2 
      \line { "1." \left-brace #30 } 
    } 
  } 
  Child, you’re mine and I love you. 
  Lend thine ear to what I say. 
}

\stanzaOneThree = \lyricmode { 
  Child, I have no great -- er joy 
  Than to have you walk in truth. 
}

\new Voice { 
  \repeat volta 2 { 
    c'8 c' c' c' c' c'4 
    c'8 c' c' c' c' c'4 
  } 
} \addlyrics { \stanzaOneOne } \addlyrics { \stanzaOneThree }

1. Child, you’re mine and I love you. 
   Child, I have no greater joy
Adding dynamics marks to stanzas

Stanzas differing in loudness may be indicated by putting a dynamics mark before each stanza. In LilyPond, everything coming in front of a stanza goes into the \StanzaNumber object; dynamics marks are no different. For technical reasons, you have to set the stanza outside \lyricmode:

```latex
\text {text = { \\
\set stanza = \markup{ \dynamic "ff" "1. " } \\
\lyricmode { \\
 Big bang \\
}\lyricmode } \\
}
```

```
<< \new Voice = "tune" { \\
 \time 3/4 \\
 g'4 c'2 \\
}\new Lyrics \lyricsto "tune" \text >>
```

Adding singers’ names to stanzas

Names of singers can also be added. They are printed at the start of the line, just like instrument names. They are created by setting \vocalName. A short version may be entered as \shortVocalName.

```latex
\new Voice \relative { \\
 \time 3/4 g'2 e4 a2 f4 g2. \\
}\addlyrics { \\
 \set vocalName = "Bert " \\
 Hi, my name is Bert. \\
}\addlyrics { \\
 \set vocalName = "Ernie " \\
 Oh, ché -- ri, je t'aime \\
}
```

```
Bert Hi, my name is Bert.
Ernie Oh, ché - ri, je t'aime
```
Stanzas with different rhythms

Often, different stanzas of one song are put to one melody in slightly differing ways. Such variations can still be captured with \lyricsto.

Ignoring melismata

One possibility is that the text has a melisma in one stanza, but multiple syllables in another. One solution is to make the faster voice ignore the melisma. This is done by setting ignoreMelismata in the Lyrics context.

```
relative \new Voice = "lahlah" {
 \set Staff.autoBeamining = ##f
 c'4
 \slurDotted
 f8.[(g16)]
 a4
}
\new Lyrics \lyricsto "lahlah" {
 more slow -- ly
}
\new Lyrics \lyricsto "lahlah" {
 go
 \set ignoreMelismata = ##t
 fas -- ter
 \unset ignoreMelismata
 still
}
```

Known issues and warnings

Unlike most \set commands, \set ignoreMelismata does not work if prefixed with \once. It is necessary to use \set and \unset to bracket the lyrics where melismata are to be ignored.

Adding syllables to grace notes

By default, grace notes (e.g., via \grace) do not get assigned syllables when using \lyricsto, but this behavior can be changed:

```
<<
new Voice = melody \relative {
 f'4 \appoggiatura a32 b4
 \grace { f16 a16 } b2
 \afterGrace b2 { f16[a16] }
 \appoggiatura a32 b4
 \acciaccatura a8 b4
}
\new Lyrics
\lyricsto melody {
```

\new Voice = melody \relative {
  f'4 \appoggiatura a32 b4
  \grace { f16 a16 } b2
  \afterGrace b2 { f16[ a16] }
  \appoggiatura a32 b4
  \acciaccatura a8 b4
}
\new Lyrics
\lyricsto melody {

``
\new Voice = melody \relative {
  f'4 \appoggiatura a32 b4
  \grace { f16 a16 } b2
  \afterGrace b2 { f16[ a16] }
  \appoggiatura a32 b4
  \acciaccatura a8 b4
}
\new Lyrics
\lyricsto melody {

``

```
\relative \new Voice = "lahlah" {
 \set Staff.autoBeamining = ##f
 c'4
 \slurDotted
 f8.[(g16)]
 a4
}
```
Known issues and warnings

Like \assVo, \inclGrace needs to be set at latest one syllable before the one which is to be put under a grace note. In the case of a grace note at the very beginning of a piece of music, using a \with, or a \context block within \layout, is recommended:

\begin{verbatim}
<< \new Voice = melody \relative c' { 
  \grace { c16( d e f }) 
  g1} f 
\new Lyrics \with { \inclGrace = ##t }
\lyricsto melody {
  Ah __ fa
} >>
\end{verbatim}

Switching to an alternative melody

More complex variations in setting lyrics to music are possible. The melody to which the lyrics are being set can be changed from within the lyrics by setting the \assVo property:

\begin{verbatim}
<< \relative \new Voice = "lahlah" { 
  \set Staff.autoBeam = ##f 
  c'4}
  \set Staff.autoBeam = ##f 
<< \new Voice = "alternative" { 
  \voiceOne
  \tuplet 3/2 {
    % show associations clearly.
    \override NoteColumn.force-hshift = #-3 
    f8 f g
  }
}
\end{verbatim}
The text for the first stanza is set to the melody called ‘lahlah’ in the usual way, but the second stanza is set initially to the "lahlah" context and is then switched to the alternative melody for the syllables ‘ran’ to ‘sau’ by the lines:

\set associatedVoice = "alternative" % applies to "ran"
Ty --
ran --
no --
\set associatedVoice = "lahlah" % applies to "rus"
sau -- rus Rex
} >>

The text for the first stanza is set to the melody called ‘lahlah’ in the usual way, but the second stanza is set initially to the "lahlah" context and is then switched to the alternative melody for the syllables ‘ran’ to ‘sau’ by the lines:

\set associatedVoice = "alternative" % applies to "ran"
Ty --
ran --
no --
\set associatedVoice = "lahlah" % applies to "rus"
sau -- rus Rex

Here, alternative is the name of the Voice context containing the triplet.

Note the placement of the \set associatedVoice command – it appears to be one syllable too early, but this is correct.

Note: The \set associatedVoice command must be placed one syllable before the one at which the switch to the new voice is to occur. In other words, changing the associated Voice happens one syllable later than expected. This is for technical reasons, and it is not a bug.

Printing stanzas at the end

Sometimes it is appropriate to have one stanza set to the music, and the rest added in verse form at the end of the piece. This can be accomplished by adding the extra verses into a \markup section outside of the main score block. Notice that there are several different ways to force line breaks when using \markup. For inputting a whole string you may use \string-lines
with manually inserted \n or automatic line breaks as entered or \wordwrap-string. If inner formatting code is used a combination of \line and \column is recommended.

```
melody = \relative {
 e' d c d | e e e e |
 d d e d | c1 |
}

text = \lyricmode {
 \set stanza = "1."
 Mary had a little lamb,
 its fleece was white as snow. }

\score { <<
 \new Voice = "one" { \melody }
 \new Lyrics \lyricsto "one" \text
>> }

\markup \column \string-lines
 "Verse 2. \n Everywhere that Mary went \n The lamb was sure to go."

\markup \column \string-lines
 "Verse 3.
 All the children laughed and played,
 To see a lamb at school."

\markup \column {
 \line \italic { Verse 4. }
 \line { And so the teacher turned it out, }
 \line { But still it lingered near. }
}

\markup \wordwrap-string "
Verse 5.
Mary took it home again,
It was against the rule."
```

1. Mary had a little lamb, its fleece was white as snow.

Verse 2.
Everywhere that Mary went
The lamb was sure to go.
Verse 3.
All the children laughed and played,
To see a lamb at school.
Verse 4.
And so the teacher turned it out,
But still it lingered near.
Verse 5.
Mary took it home again,
It was against the rule.

**Printing stanzas at the end in multiple columns**

When a piece of music has many verses, they are often printed in multiple columns across the page. An outdented verse number often introduces each verse. The following example shows how to produce such output in LilyPond.

```
melody = \relative {c'4 c c c | d d d d}

text = \lyricmode {\set stanza = "1." This is verse one.
It has two lines.}

\score {\score {
 \new Voice = "one" {\melody }
 \new Lyrics \lyricsto "one" \text
 >> \layout { }
}

\markup {
 \fill-line {
 % moves the column off the left margin;
 % can be removed if space on the page is tight
 \hspace #0.1
 \column {
 \line { \bold "2." }
 \column {
 "This is verse two."
 "It has two lines."
 }
 }
 }
 % adds vertical spacing between verses
 \combine \null \vspace #0.1
 \line { \bold "3." }
 \column {
 "This is verse three."
 "It has two lines."
 }
}
% adds horizontal spacing between columns
\hspace #0.1
\column {
 \line { \bold "4." }
 \column {
```
"This is verse four."
"It has two lines."

% adds vertical spacing between verses
\combine \null \vspace #0.1
\line { \bold "5."
\column {
 "This is verse five."
 "It has two lines."
}
}
%
% gives some extra space on the right margin;
% can be removed if page space is tight
\hspace #0.1
%

1. This is verse one. It has two lines.

2. This is verse two.
   It has two lines.
3. This is verse three.
   It has two lines.
4. This is verse four.
   It has two lines.
5. This is verse five.
   It has two lines.

See also
Internals Reference: Section “LyricText” in Internals Reference, Section “StanzaNumber” in Internals Reference.

2.1.4 Songs

References for songs

Songs are usually written on three staves with the melody for the singer on the top staff and two staves of piano accompaniment at the bottom. The lyrics of the first stanza are printed immediately underneath the top staff. If there are just a small number of further stanzas these can be printed immediately under the first one, but if there are more stanzas than can be easily accommodated there the second and subsequent stanzas are printed after the music as stand-alone text.

All the notational elements needed to write songs are fully described elsewhere:
- For constructing the staff layout, see Section 1.6.1 [Displaying staves], page 220.
- For writing piano music, see Section 2.2 [Keyboard and other multi-staff instruments], page 380.
- For writing the lyrics to a melody line, see Section 2.1.1 [Common notation for vocal music], page 314.
- For placing the lyrics, see [Placing lyrics vertically], page 328.
- For entering stanzas, see Section 2.1.3 [Stanzas], page 347.
• Songs are frequently printed with the chording indicated by chord names above the staves. This is described in Section 2.7.2 [Displaying chords], page 474.
• To print fret diagrams of the chords for guitar accompaniment or accompaniment by other fretted instruments, see “Fret diagram markups” in Section 2.4.1 [Common notation for fretted strings], page 395.

See also
Notation Reference: Section 2.1.1 [Common notation for vocal music], page 314, Section 2.7.2 [Displaying chords], page 474, Section 1.6.1 [Displaying staves], page 220, Section 2.2 [Keyboard and other multi-staff instruments], page 380, [Placing lyrics vertically], page 328, Section 2.1.3 [Stanzas], page 347.
Snippets: Section “Vocal music” in Snippets.

Lead sheets
Lead sheets may be printed by combining vocal parts and ‘chord mode’; this syntax is explained in Section 2.7 [Chord notation], page 469.

Selected Snippets

Simple lead sheet
When put together, chord names, a melody, and lyrics form a lead sheet:

```
<<
\chords { c2 g:sus4 f e }
\new Staff \relative c'' {
 a4 e c8 e r4
 b2 c4(d)
}
\addlyrics { One day this shall be free __ }
>>
```

![Simple lead sheet example]

One day this shall be free

See also
Notation Reference: Section 2.7 [Chord notation], page 469.

2.1.5 Choral
This section discusses notation issues that relate most directly to choral music. This includes anthems, part songs, oratorio, etc.

References for choral
Choral music is usually notated on two, three or four staves within a ChoirStaff group. Accompaniment, if required, is placed beneath in a PianoStaff group, which is usually reduced in size for rehearsal of a cappella choral works. The notes for each vocal part are placed in a Voice context, with each staff being given either a single vocal part (i.e., one Voice) or a pair of vocal parts (i.e., two Voices).
Words are placed in Lyrics contexts, either underneath each corresponding music staff, or one above and one below the music staff if this contains the music for two parts.

Several common topics in choral music are described fully elsewhere:

- An introduction to creating an SATB vocal score can be found in the Learning Manual, see Section “Four-part SATB vocal score” in Learning Manual. There is also a built-in template which simplifies the entry of SATB vocal music, see Section “Built-in templates” in Learning Manual.
- Several templates suitable for various styles of choral music can also be found in the Learning Manual, see Section “Vocal ensembles templates” in Learning Manual.
- For information about ChoirStaff and PianoStaff see [Grouping staves], page 221.
- Shape note heads, as used in Sacred Harp and similar notation, are described in [Shape note heads], page 44.
- When two vocal parts share a staff the stems, ties, slurs, etc., of the higher part will be directed up and those of the lower part down. To do this, use \voiceOne and \voiceTwo. See [Single-staff polyphony], page 201.
- When a vocal part temporarily splits, you should use Temporary polyphonic passages (see [Single-staff polyphony], page 201).

Predefined commands
\oneVoice, \voiceOne, \voiceTwo.

See also

Notation Reference: Section 5.1.7 [Context layout order], page 680, [Grouping staves], page 221, [Shape note heads], page 44, [Single-staff polyphony], page 201.
Snippets: Section “Vocal music” in Snippets.
Internals Reference: Section “ChoirStaff” in Internals Reference, Section “Lyrics” in Internals Reference, Section “PianoStaff” in Internals Reference.

Score layouts for choral
Choral music containing four staves, with or without piano accompaniment, is usually laid out with two systems per page. Depending on the page size, achieving this may require changes to several default settings. The following settings should be considered:

- The global staff size can be modified to change the overall size of the elements of the score. See Section 4.2.2 [Setting the staff size], page 618.
- The distances between the systems, the staves and the lyrics can all be adjusted independently. See Section 4.4 [Vertical spacing], page 628.
- The dimensions of the vertical layout variables can be displayed as an aid to adjusting the vertical spacing. This and other possibilities for fitting the music onto fewer pages are described in Section 4.6 [Fitting music onto fewer pages], page 659.
- If the number of systems per page changes from one to two it is customary to indicate this with a system separator mark between the two systems. See [Separating systems], page 227.
- For details of other page formatting properties, see Section 4.1 [Page layout], page 605.

Dynamic markings by default are placed below the staff, but in choral music they are usually placed above the staff in order to avoid the lyrics. The predefined command \dynamicUp does this for the dynamic markings in a single Voice context. If there are many Voice contexts this predefined command would have to be placed in every one. Alternatively its expanded form can
be used to place all dynamic markings in the entire score above their respective staves, as shown here:

\score {
\new ChoirStaff <<
\new Staff {
\new Voice {
   \relative { g'4\f g g g }
}
}
\new Staff {
\new Voice {
   \relative { d'4 d d\p d }
}
}
>>
\layout {
   \context {
      \Score
      \override DynamicText.direction = #UP
      \override DynamicLineSpanner.direction = #UP
   }
}
}

\include "english.ly"

Predefined commands
\dynamicUp, \dynamicDown, \dynamicNeutral.

See also
Notation Reference: Section 4.6.2 [Changing spacing], page 660, Section 4.6.1 [Displaying spacing], page 659, Section 4.6 [Fitting music onto fewer pages], page 659, Section 4.1 [Page layout], page 605, Section 4.2 [Score layout], page 616, [Separating systems], page 227, Section 4.2.2 [Setting the staff size], page 618, Section 4.3 [Breaks], page 621, Section 4.4 [Vertical spacing], page 628.

Internals Reference: Section “VerticalAxisGroup” in Internals Reference, Section “Staff-Grouper” in Internals Reference.

Selected Snippets

Using arpeggioBracket to make divisi more visible

The arpeggioBracket can be used to indicate the division of voices where there are no stems to provide the information. This is often seen in choral music.

\include "english.ly"
2.1.6 Opera and stage musicals

The music, lyrics and dialogue to opera and stage musicals are usually set out in one or more of the following forms:

- A *Conductors’ Score* containing the full orchestral and vocal parts, together with libretto cues if there are spoken passages.
- *Orchestral Parts* containing the music for the individual instruments of the orchestra or band.
- A *Vocal Score* containing all vocal parts with piano accompaniment. The accompaniment is usually an orchestral reduction, and if so the name of the original orchestral instrument is often indicated. Vocal scores sometimes includes stage directions and libretto cues.
- A *Vocal Book* containing just the vocal parts (no accompaniment), sometimes combined with the libretto.
- A *Libretto* containing the extended passages of spoken dialogue usually found in musicals, together with the words to the sung parts. Stage directions are usually included. LilyPond can be used to typeset libretti but as they contain no music alternative methods may be preferable.
Chapter 2: Specialist notation

The sections in the LilyPond documentation which cover the topics needed to create scores in the styles commonly found in opera and musicals are indicated in the References below. This is followed by sections covering those techniques which are peculiar to typesetting opera and musical scores.

References for opera and stage musicals

In addition to vocal and stage ensembles, most of the following notions may apply to nearly any orchestral and ensemble music:

- A conductors’ score contains many grouped staves and lyrics. Ways of grouping staves is shown in [Grouping staves], page 221. To nest groups of staves see [Nested staff groups], page 226.
- The printing of empty staves in conductors’ scores and vocal scores is often suppressed. To create such a “Frenched score” see [Hiding staves], page 235.
- Writing orchestral parts is covered in Section 1.6.3 [Writing parts], page 240. Other sections in the Specialist notation chapter may be relevant, depending on the orchestration used. Many instruments are transposing instruments, see [Instrument transpositions], page 27.
- If the number of systems per page changes from page to page it is customary to separate the systems with a system separator mark. See [Separating systems], page 227.
- For details of other page formatting properties, see Section 4.1 [Page layout], page 605.
- Dialogue cues, stage directions and footnotes can be inserted, see Section 3.3.4 [Creating footnotes], page 557, and Section 1.8 [Text], page 281. Extensive stage directions can also be added with a section of stand-alone markups between two \score blocks, see [Separate text], page 291.

See also


Notation Reference: Section 3.3.4 [Creating footnotes], page 557, [Grouping staves], page 221, [Hiding staves], page 235, [Instrument transpositions], page 27, [Nested staff groups], page 226, Section 4.1 [Page layout], page 605, [Separating systems], page 227, [Transpose], page 11, Section 1.6.3 [Writing parts], page 240, Section 1.8.1 [Writing text], page 281.

Snippets: Section “Vocal music” in Snippets.

Character names

Character names are usually shown to the left of the staff when the staff is dedicated to that character alone:

\score {
  \new Staff {
    \set Staff.vocalName = \markup \smallCaps Kaspar
    \set Staff.shortVocalName = \markup \smallCaps Kas.
    \relative {
      \clef "G_8"
      c'4 c c c
      \break
      c4 c c c
      c'4 c c c
    }
  }
  \new Staff {

When two or more characters share a staff the character’s name is usually printed above the staff at the start of every section applying to that character. This can be done with markup. Often a specific font is used for this purpose.

```
\relative c' {
 \clef "G_8"
 c4 ^\markup \fontsize #1 \smallCaps Kaspar
 c c c
 \clef "bass"
 a4 ^\markup \fontsize #1 \smallCaps Melchior
 a a a
 \clef "G_8"
 c4 ^\markup \fontsize #1 \smallCaps Kaspar
 c c c
}
```

Alternatively, if there are many character changes, it may be easier to set up variables to hold the definitions for each character so that the switch of characters can be indicated easily and concisely.

```
kaspar = {
 \clef "G_8"
 \set Staff.shortVocalName = "Kas."
 \set Staff.midiInstrument = "voice oohs"
 <> ^\markup \smallCaps "Kaspar"
```
See also


Notation Reference: Section 1.8 [Text], page 281, Section A.12 [Text markup commands], page 763.

Musical cues

Musical cues can be inserted in Vocal Scores, Vocal Books and Orchestral Parts to indicate what music in another part immediately precedes an entry. Also, cues are often inserted in the piano reduction in Vocal Scores to indicate what each orchestral instrument is playing. This aids the conductor when a full Conductors’ Score is not available.

The basic mechanism for inserting cues is fully explained in the main text, see [Quoting other voices], page 243, and [Formatting cue notes], page 247. But when many cues have to be inserted, for example, as an aid to a conductor in a vocal score, the instrument name must be positioned carefully just before and close to the start of the cue notes. The following example shows how this is done.

\addQuote "flute" \relative {
  s4 s4 e'' g
}

\pianoRH = \relative {
  c''4. g8
  \markup { \right-align \tiny "Flute" }
  \cueDuring "flute" #UP { g4 bes4 }
}

\pianoLH = \relative { c4 <c' e> e, <g c> }
If a transposing instrument is being quoted the instrument part should specify its key so the conversion of its cue notes will be done automatically. The example below shows this transposition for a B-flat clarinet. The notes in this example are low on the staff so DOWN is specified in \cueDuring (so the stems are down) and the instrument name is positioned below the staff.

\score {  
\new PianoStaff <<  
\new Staff {  
  \pianoRH  
}  
\new Staff {  
  \clef "bass"  
  \pianoLH  
}  
}  

\addQuote "clarinet" { \clarinet }

\pianoRH = \relative c' {  
  \transposition c'  
  \% position name of cue-ing instrument below the staff  
  \cw \markup { \right-align \tiny "Clar." }  
  \cueDuring "clarinet" #DOWN { c4. g8 }  
  g4 bes4  
}

\pianoLH = \relative { c4 <c' e> e, <g c> }

\score {  
<<  
  \new PianoStaff <<  
  \new Staff {  
    \new Voice {  
      \pianoRH  
    }  
  }  
  \new Staff {  
    \clef "bass"  
    \pianoLH  
  }  
}  
}
From these two examples it is clear that inserting many cues in a Vocal Score would be tedious, and the notes of the piano part would become obscured. However, as the following snippet shows, it is possible to define a music function to reduce the amount of typing and to make the piano notes clearer.

**Selected Snippets**

**Adding orchestral cues to a vocal score**

This shows one approach to simplify adding many orchestral cues to the piano reduction in a vocal score. The music function `\cueWhile` takes four arguments: the music from which the cue is to be taken, as defined by `\addQuote`, the name to be inserted before the cue notes, then either `#UP` or `#DOWN` to specify either `\voiceOne` with the name above the staff or `\voiceTwo` with the name below the staff, and finally the piano music in parallel with which the cue notes are to appear. The name of the cued instrument is positioned to the left of the cued notes. Many passages can be cued, but they cannot overlap each other in time.

```latex
\cueWhile =
 #(define-music-function
 (instrument name dir music)
 (string? string? ly:dir? ly:music?)
)#
 \cueDuring $instrument #dir {
 \once \override TextScript.self-alignment-X = #RIGHT
 \once \override TextScript.direction = $dir
 <>\markup { \tiny #name }
 $music
 }

flute = \relative c' '{
 \transposition c'
 s4 s4 e g
}
\addQuote "flute" { \flute }

clarinet = \relative c' {
 \transposition bes
 fis4 d d c
}
\addQuote "clarinet" { \clarinet }

singer = \relative c'' { c4. g8 g4 bes4 }
words = \lyricmode { here's the lyr -- ics }
```
pianoRH = \relative c' \{ 
  \transposition c' \cuesWhile "clarinet" "Clar." \down { c4 g8 } 
  \cuesWhile "flute" "Flute" \up { g4 bes4 } 
}\pianoLH = \relative c \{ c4 \<c' e> e, \<g c> \}

\score { << 
  \new Staff { 
    \new Voice = "singer" { 
      \singer 
    } 
  } 
  \new Lyrics { 
    \lyricsto "singer" 
    \words 
  } 
  \new PianoStaff << 
    \new Staff { 
      \new Voice { 
        \pianoRH 
      } 
    } 
  \new Staff { 
    \clef "bass" 
    \pianoLH 
  } 
  >> >> }

See also


Notation Reference: Section 5.4.9 [Aligning objects], page 715, Section 5.4.1 [Direction and placement], page 698, [Formatting cue notes], page 247, [Quoting other voices], page 243, Section 3.4.3 [Using music functions], page 578.

Snippets: Section “Vocal music” in Snippets.

Internals Reference: Section “CueVoice” in Internals Reference.
Known issues and warnings
\cueduring automatically inserts a CueVoice context and all cue notes are placed in that context. This means it is not possible to have two overlapping sequences of cue notes by this technique. Overlapping sequences could be entered by explicitly declaring separate CueVoice contexts and using \cueduring to extract and insert the cue notes.

Spoken music
Such effects as ‘parlato’ or ‘Sprechgesang’ require performers to speak without pitch but still with rhythm; these are notated by cross note heads, as demonstrated in [Special note heads], page 41.

Dialogue over music
Dialogue over music is usually printed over the staves in an italic font, with the start of each phrase keyed in to a particular music moment.

For short interjections a simple markup suffices.

\relative
\repeat unfold 3 { a'4 a a a a4 a a \markup \smallCaps { Alex } \italic { He's gone } a a a a4 a a }

For longer phrases it may be necessary to expand the music to make the words fit neatly. There is no provision in LilyPond to do this fully automatically, and some manual intervention to layout the page will be necessary.

For long phrases or for passages with a lot of closely packed dialogue, using a Lyrics context will give better results. The Lyrics context should not be associated with a music Voice; instead each section of dialogue should be given an explicit duration. If there is a gap in the dialogue, the final word should be separated from the rest and the duration split between them so that the underlying music spaces out smoothly.

If the dialogue extends for more than one line it will be necessary to manually insert \breaks and adjust the placing of the dialogue to avoid running into the right margin. The final word of the last measure on a line should also be separated out, as above.

Here is an example illustrating how this might be done.

\relative
\repeat unfold 3 { a'4 a a a }

\lyricmode
\markup
\fontsize #1 \upright \smallCaps Abe: "Say this over measures one and"
4*7 "two"4 |
\break
"and this over measure"4*3
"three"4 |

ALEX - He's gone  BETHAN - Where?
2.1.7 Chants psalms and hymns

The music and words for chants, psalms and hymns usually follow a well-established format in any particular church. Although the formats may differ from church to church the typesetting problems which arise are broadly similar, and are covered in this section.

References for chants and psalms

Typesetting Gregorian chant in various styles of ancient notation is described in Section 2.9 [Ancient notation], page 495.

See also

Notation reference: Section 2.9 [Ancient notation], page 495.

Snippets: Section “Vocal music” in Snippets.

Setting a chant

Modern chant settings use modern notation with varying numbers of elements taken from ancient notation. Some of the elements and methods to consider are shown here.

Chants often use quarter notes without stems to indicate the pitch, with the rhythm being taken from the spoken rhythm of the words.

\stemOff = { \hide Staff.Stem }

\relative c' { 
\stemOff
Chants often omit measure bar lines or use shortened or dotted bar lines to indicate pauses in the music. To set a chant with no musical meter, see [Unmetered music], page 82. To retain all the effects of a time signature but disable automatic measure bar lines, set measureBarType to '()'. Without regular bar lines, you might need to take steps to control horizontal spacing; see Section 4.3.1 [Line breaking], page 621.

\score {
   \new StaffGroup <<
   \new Staff {
      \relative {
         a'4 b c2 |
         a4 b c2 | \section
         a4 b c2 |
      }
   }
   \new Staff {
      \relative {
         a'4 b c2 |
         a4 b c2 | \section
         a4 b c2 |
      }
   }
   >>
   \layout {
      \context {
         \Staff
         measureBarType = #'()
         forbidBreakBetweenBarLines = ##f
      }
   }
}

Measure bar lines can also be modified on a staff-by-staff basis; see Section 5.1.4 [Modifying context plug-ins], page 671.

Rests or pauses in chants can be indicated by modified bar lines.

\relative a' {
   a4
   \cadenzaOn
   b c2
}
Alternatively, the notation used in Gregorian chant for pauses or rests is sometimes used even though the rest of the notation is modern.

\begin{verbatim}
\score {
  \relative {g'2 a4 g}
  \divisioMinima {g2 a4 g}
  \divisioMaior {g2 a4 g}
  \divisioMaxima {g2 a4 g}
  \finalis
}
\end{verbatim}

Chants usually omit the time signature and often omit the clef too.

\begin{verbatim}
\score {
  \relative {g'2 a4 g}
  \divisioMinima {g2 a4 g}
  \divisioMaior {g2 a4 g}
  \divisioMaxima {g2 a4 g}
  \finalis
}
\end{verbatim}
Chants for psalms in the Anglican tradition are usually either single, with 7 bars of music, or double, with two lots of 7 bars. Each group of 7 bars is divided into two halves, corresponding to the two halves of each verse, usually separated by a double bar line. Only whole and half notes are used. The 1st bar in each half always contains a single chord of whole notes. This is the “reciting note”. Chants are usually centered on the page.

\begin{Verbatim}
\new Staff {
  \relative {
    a'4 b c2 |
    a4 b c2 |
    a4 b c2 |
  }
}
\layout {
  \context {
    \Staff
    \remove Time_signature_engraver
    \remove Clef_engraver
    measureBarType = #'()
    forbidBreakBetweenBarLines = ##f
  }
}
\end{Verbatim}

Chants for psalms in the Anglican tradition are usually either single, with 7 bars of music, or double, with two lots of 7 bars. Each group of 7 bars is divided into two halves, corresponding to the two halves of each verse, usually separated by a double bar line. Only whole and half notes are used. The 1st bar in each half always contains a single chord of whole notes. This is the “reciting note”. Chants are usually centered on the page.

\begin{Verbatim}
SopranoMusic = \relative {
  g'1 | c2 b | a1 |
  a1 | d2 c | c b | c1 |
}

AltoMusic = \relative {
  e'1 | g2 g | f1 |
  f1 | f2 e | d d | e1 |
}

TenorMusic = \relative {
  c'1 | c2 c | c1 |
  d1 | g,2 g | g g | g1 |
}

BassMusic = \relative {
  c1 | e2 e | f1 |
  d1 | b2 c | g' g | c,1 |
}

global = {
  \time 2/2
  \skip 1*3 \section
  \skip 1*4 \fine
}
\end{Verbatim}
% Use markup to center the chant on the page
\markup {
  \fill-line {
    \score { % centered
      \new ChoirStaff <<
      \new Staff <<
      \global
      \clef "treble"
      \new Voice = "Soprano" <<
      \voiceOne
      \SopranoMusic
      
      \new Voice = "Alto" <<
      \voiceTwo
      \AltoMusic
      
      \new Staff <<
      \clef "bass"
      \global
      \new Voice = "Tenor" <<
      \voiceOne
      \TenorMusic
      
      \new Voice = "Bass" <<
      \voiceTwo
      \BassMusic
      
      \layout {
        \context {\Score {
          \override SpacingSpanner.base-shortest-duration = \musicLength 2
          \fineBarType = "||"}
        \context {\Staff {
          \remove Time_signature_engraver}
        }
        } % End score
      }
    } % End score
  }
} % End markup
Some other approaches to setting such a chant are shown in the first of the following snippets.

**Selected Snippets**

*Chant or psalms notation*

This form of notation is used for Psalm chant, where verses aren’t always the same length.

```plaintext
stemOff = \hide Staff.Stem
stemOn = \undo \stemOff
\score {
 \new Staff \with { \remove "Time_signature_engraver" }
 {
 \key g \minor
 \cadenzaOn
 \stemOff a'\breve bes'4 g'4
 \stemOn a'2 \section
 \stemOff a'\breve g'4 a'4
 \stemOn f'2 \section
 \stemOff a'\breve g'4 \markup { \italic flexe }
 \stemOn g'2 \fine
 }
}
```

![Chant notation example](image)

Canticles and other liturgical texts may be set more freely, and may use notational elements from ancient music. Often the words are shown underneath and aligned with the notes. If so, the notes are spaced in accordance with the syllables rather than the notes’ durations.

**Ancient notation template – modern transcription of gregorian music**

This example demonstrates how to do modern transcription of Gregorian music. Gregorian music has no measure, no stems; it uses only half and quarter note heads, and special marks, indicating rests of different length.

```plaintext
chant = \relative c' {
 \set Score.timing = ##f
 f4 a2 \divisioMinima
 g4 b a2 f2 \divisioMaior
 g4(f) f(g) a2 \finalis
}

verba = \lyricmode {
```

![Ancient notation example](image)
Pointing a psalm

The words to an Anglican psalm are usually printed in separate verses centered underneath the chant.

Single chants (with 7 bars) are repeated for every verse. Double chants (with 14 bars) are repeated for every pair of verses. Marks are inserted in the words to show how they should be fitted to the chant. Each verse is divided into two halves. A colon is usually used to indicate this division. This corresponds to the double bar line in the music. The words before the colon are sung to the first three bars of music; the words after the colon are sung to the last four bars.

Single bar lines (or in some psalters an inverted comma or similar symbol) are inserted between words to indicate where the bar lines in the music fall. In markup mode a single bar line can be entered with the bar check symbol, \|.

\markup {
  \fill-line {
    \column {
      \left-align {
        \line { O come let us sing | unto the | Lord : let }
        \line { us heartily rejoice in the | strength of | our }
        \line { sal- | -vation. }
      }
    }
  }
}

O come let us sing | unto the | Lord : let
us heartily rejoice in the | strength of | our
sal- | -vation.

Other symbols may require glyphs from the \texttt{fetaMusic} fonts. For details, see Section 1.8.3 [Fonts], page 309.

tick = \markup {
O come let us sing unto the Lord: let us heartily rejoice in the strength of our salvation.

Where there is one whole note in a bar all the words corresponding to that bar are recited on that one note in speech rhythm. Where there are two notes in a bar there will usually be only one or two corresponding syllables. If there are more than two syllables a dot is usually inserted to indicate where the change in note occurs.

\begin{verbatim}
O come let us sing unto the Lord: let us heartily rejoice in the strength of our salvation.
\end{verbatim}

In some psalters an asterisk is used to indicate a break in a recited section instead of a comma, and stressed or slightly lengthened syllables are indicated in bold text.

\begin{verbatim}
O come let us sing unto the Lord: let us heartily rejoice in the strength of our salvation.
\end{verbatim}
Chapter 2: Specialist notation

\raise #0.7 \musicglyph "dots.dot"

\tick = \markup {
  \raise #1 \fontsize #-5 \musicglyph "scripts.rvarcomma"
}
\markup {
  \fill-line {
    \column {
      \left-align {
        \line { Today if ye will hear his voice * }
        \line {
          \concat { \bold hard en }
          not your | hearts : as in the pro-
        }
        \line { vocation * and as in the \bold day of tempt- | }
        \line { -ation | in the | wilderness. }
      }
    }
  }
}

Today if ye will hear his voice *

\textbf{harden} | not your | hearts : as in the pro-
vocation * and as in the \textbf{day} of tempt-
-ation | in the | wilderness.

In other psalters an accent is placed over the syllable to indicate stress.

\tick = \markup {
  \raise #2 \fontsize #-5 \musicglyph "scripts.rvarcomma"
}
\markup {
  \fill-line {
    \column {
      \left-align {
        \line {
          O come let us \concat { 
            si \combine \tick ng
          }
          unto the | Lord : let
        }
        \line {
          us heartily \concat { 
            rejo \combine \tick ice
          }
          in the | strength of | our
        }
        \line { sal- | -vation. }
      }
    }
  }
}

O come let us sing unto the Lord: let us heartily rejoice in the strength of our salvation.

The use of markup to center text, and arrange lines in columns is described in Section 1.8.2 [Formatting text], page 293.

Most of these elements are shown in one or other of the two verses in the template, see Section “Psalms” in Learning Manual.

See also


Notation Reference: Section 1.8.3 [Fonts], page 309, Section 1.8.2 [Formatting text], page 293.

Phrase bar lines in hymn tunes

The `\caesura` command can be configured to create phrase bar lines that interact well with other automatic bar lines (see [Automatic bar lines], page 117).

In the following examples, the source code for the tune in `old-hundredth-example.ly` uses `\caesura` between poetic lines and `\fine` at the end. There are no `\fermata` or `\bar` commands; those symbols appear in the output because of the `caesura` configuration.

The Boston Handel and Haydn Society Collection of Church Music (1830) has a thick bar after each phrase. For this tune, it also has fermatas over the bar lines:

\begin{verbatim}
\layout {
  \context {\Score
    caesuraType = #'((bar-line . ".")
      (scripts . (fermata)))
    fineBarType = "."}
}
\include "old-hundredth-example.ly"
\end{verbatim}

Genevan Psalter rhythm

Simplified rhythm

J.S. James’ Original Sacred Harp (1911) has a thick bar when a line is broken in mid-measure at the end of a phrase.

\begin{verbatim}
\layout {
\end{verbatim}
Partial measures in hymn tunes

Hymn tunes frequently start and end every line of music with partial measures so that each line of music corresponds exactly with a line of text. This requires a \partial command at the start of the music and a bar line at the end of each line.

**Hymn template**

This code shows one way of setting out a hymn tune when each line starts and ends with a partial measure. It also shows how to add the verses as stand-alone text under the music.

```
Timeline = {
 \time 4/4
 \tempo 4=96
 \partial 2
 s2 | s1 | s2 \breathe s2 | s1 | s2 \caesura \break
 s2 | s1 | s2 \breathe s2 | s1 | s2 \fine
}

SopranoMusic = \relative g' {
 g4 g | g g g g | g g g g | g2
 g4 g | g g g g | g g g g | g2
}

AltoMusic = \relative c' {
 d4 d | d d d d | d d d d | d2
 d4 d | d d d d | d d d d | d2
}

TenorMusic = \relative a {
 b4 b | b b b b | b b b b | b2
 b b b b | b2
```
\begin{music}
    \relative g \g4 g | g g g g | g g g g | g g g g | g2
    \g4 g | g g g g | g g g g | g g g g | g2

    \global = {
        \key g \major
    }

    \score {
        \relative c' {
            \new PianoStaff << % Start pianostaff
            \new Staff << % Start Staff = RH
                \global
                \clef "treble"
                \new Voice = "Soprano" << % Start Voice = "Soprano"
                    \Timeline
                    \voiceOne
                    \SopranoMusic
                >> % End Voice = "Soprano"
                \new Voice = "Alto" << % Start Voice = "Alto"
                    \Timeline
                    \voiceTwo
                    \AltoMusic
                >> % End Voice = "Alto"
            >> % End Staff = RH
            \new Staff << % Start Staff = LH
                \global
                \clef "bass"
                \new Voice = "Tenor" << % Start Voice = "Tenor"
                    \Timeline
                    \voiceOne
                    \TenorMusic
                >> % End Voice = "Tenor"
                \new Voice = "Bass" << % Start Voice = "Bass"
                    \Timeline
                    \voiceTwo
                    \BassMusic
                >> % End Voice = "Bass"
            >> % End Staff = LH
            >> % End pianostaff
        }
    }
\end{music}
2.1.8 Ancient vocal music

Ancient vocal music is supported, as explained in Section 2.9 [Ancient notation], page 495.

See also

Notation Reference: Section 2.9 [Ancient notation], page 495.
2.2 Keyboard and other multi-staff instruments

This section discusses several aspects of music notation that are unique to keyboard instruments and other instruments notated on many staves, such as harps and vibraphones. For the purposes of this section this entire group of multi-staff instruments is called “keyboards” for short, even though some of them do not have a keyboard.

2.2.1 Common notation for keyboards

This section discusses notation issues that may arise for most keyboard instruments.

References for keyboards

Keyboard instruments are usually notated with Piano staves. These are two or more normal staves coupled with a brace. The same notation is also used for other keyed instruments. Organ music is normally written with two staves inside a PianoStaff group and third, normal staff for the pedals.
The staves in keyboard music are largely independent, but sometimes voices can cross between the two staves. This section discusses notation techniques particular to keyboard music.

Several common issues in keyboard music are covered elsewhere:

- Keyboard music usually contains multiple voices and the number of voices may change regularly; this is described in [Collision resolution], page 206.
- Keyboard music can be written in parallel, as described in [Writing music in parallel], page 217.
- Dynamics may be placed in a Dynamics context, between the two Staff contexts to align the dynamic marks on a horizontal line centered between the staves; see [Dynamics], page 143.
- Fingerings are indicated with [Fingering instructions], page 258.
- Organ pedal indications are inserted as articulations, see Section A.15 [List of articulations], page 833.
- Vertical grid lines can be shown with [Grid lines], page 275.
- Keyboard music often contains Laissez vibrer ties as well as ties on arpeggios and tremolos, described in [Ties], page 58.
- Placing arpeggios across multiple voices and staves is covered in [Arpeggio], page 165.
- Tremolo marks are described in [Tremolo repeats], page 193.
- Several of the tweaks that can occur in keyboard music are demonstrated in Section “Real music example” in Learning Manual.
- Hidden notes can be used to produce ties that cross voices, as shown in Section “Other uses for tweaks” in Learning Manual.

See also


Notation Reference: [Grouping staves], page 221, [Instrument names], page 240, [Collision resolution], page 206, [Writing music in parallel], page 217, [Fingering instructions], page 258, Section A.15 [List of articulations], page 833, [Grid lines], page 275, [Ties], page 58, [Arpeggio], page 165, [Tremolo repeats], page 193.

Internals Reference: Section “PianoStaff” in Internals Reference.

Snippets: Section “Keyboards” in Snippets.

Changing staff manually

Voices can be switched between staves manually, using the command

```
\change Staff = staffname
```

The string `staffname` is the name of the staff. It switches the current voice from its current staff to the staff called `staffname`. Typical values for `staffname` are "up" and "down", or "RH" and "LH".

The staff to which the voice is being switched must exist at the time of the switch. If necessary, staves should be “kept alive”, see Section 5.1.3 [Keeping contexts alive], page 668, or explicitly instantiated, for example by using the empty chord, <>, see [Chorded notes], page 195.

```
\new PianoStaff <<
\new Staff = "up" {
 % enforce creation of all contexts at this point of time
 <>
 \change Staff = "down" c2
 \change Staff = "up" c'2
```
Cross-staff notes are beamed automatically:

\new PianoStaff <<
\new Staff = "up" {
  <e' c'>8
  \change Staff = "down"
  g8 fis g
  \change Staff = "up"
  <g'' c''>8
  \change Staff = "down"
  e8 dis e
  \change Staff = "up"
}
\new Staff = "down" {
  \clef bass
  % keep staff alive
  s1
}
>>

If the beaming needs to be tweaked, make any changes to the stem directions first. The beam positions are then measured from the center of the staff that is closest to the beam. For a simple example of beam tweaking, see Section “Fixing overlapping notation” in Learning Manual.

Overlapping notation can result when voices cross staves:

\new PianoStaff <<
\new Staff = "up" {
  \voiceOne
  % Make space for fingering in the cross-staff voice
  \once\override DynamicLineSpanner.staff-padding = #4
  e''2\p\< d'\>
  c''1!
}

}
The stem and slur overlap the intervening line of dynamics because automatic collision resolution is suspended for beams, slurs and other spanners that connect notes on different staves, as well as for stems and articulations if their placement is affected by a cross-staff spanner. The resulting collisions must be resolved manually, where necessary, using the methods in Section “Fixing overlapping notation” in Learning Manual.

See also

Notation Reference: [Stems], page 271, [Automatic beams], page 92, Section 5.1.3 [Keeping contexts alive], page 668.
Snippets: Section “Keyboards” in Snippets.

Known issues and warnings
Beam collision avoidance does not work for automatic beams that end right before a change in staff. In this case use manual beams.

Changing staff automatically
Voices can be made to switch automatically between the top and the bottom staff. The syntax for this is
\autoChange ...music...
This will create two staves inside the current staff group (usually a PianoStaff), called "up" and "down". The lower staff will be in the bass clef by default. The auto-changer switches on the basis of the pitch (middle C is the turning point), and it looks ahead skipping over rests to switch in advance.
\new PianoStaff {
  \autoChange {
  { ...\autoChange ...
  }
}
It is possible to specify other pitches for the turning point. If the staves are not instantiated explicitly, other clefs may be used.

```latex
music = {
 \g8 b a c' \b8 d' c'8 e'
 \d'8 r f' g' a'2
}
```

\autoChange d' \music
\autoChange b \with { \clef soprano } \music
\autoChange d' \with { \clef alto } \with { \clef tenor } \music

A `\relative` section that is outside of `\autoChange` has no effect on the pitches of the music, so if necessary, put `\relative` inside `\autoChange`.

If additional control is needed over the individual staves, they can be created manually with the names "up" and "down". The `\autoChange` command will then switch its voice between the existing staves.

**Note:** If staves are created manually, they must be named "up" and "down".
For example, staves must be created manually in order to place a key signature in the lower staff:

\new PianoStaff <<
\new Staff = "up" {
  \new Voice = "melOne" {
    \key g \major
    \autoChange \relative {
      g8 b a c b d c e
d8 r fis, g a2
    }
  }
}
\new Staff = "down" {
  \key g \major
  \clef bass
}
>>

See also
Notation Reference: [Changing staff manually], page 381.
  Snippets: Section “Keyboards” in Snippets.

Known issues and warnings
The staff switches may not end up in optimal places. For high quality output, staff switches should be specified manually.

Chords will not be split across the staves; they will be assigned to a staff based on the first note named in the chord construct.

Staff-change lines
Whenever a voice switches to another staff, a line connecting the notes can be printed automatically:

\new PianoStaff <<
\new Staff = "one" {
  \showStaffSwitch
  c'1
  \change Staff = "two"
  b2 a
}
\new Staff = "two" {
  \clef bass
  s1*2
}
>>
A staff-change line between chords connects the chords’ “last notes” as written in the source file; this can be used to quickly adjust the line’s vertical start and end positions.

\new PianoStaff <<
\new Staff = "one" {
  <c’ e’ g’>1
  \showStaffSwitch
  \change Staff = "two"
  <a c’ f>1
  \hideStaffSwitch
  \change Staff = "one"
  <e’ g’ c’>1
  \showStaffSwitch
  \change Staff = "two"
  <f a c’>1
}
\new Staff = "two" {
  \clef bass
  s1*4
}
>>

Predefined commands

\showStaffSwitch, \hideStaffSwitch.

See also

Snippets: Section “Keyboards” in Snippets.

Internals Reference: Section “Note_head_line_engraver” in Internals Reference, Section “VoiceFollower” in Internals Reference.

Selected Snippets

Cross staff stems

This snippet shows the use of the \span_engraver and \crossStaff to connect stems across staves automatically.

  The stem length need not be specified, as the variable distance between noteheads and staves is calculated automatically.

\layout {
  \context {
Indicating cross-staff chords with arpeggio bracket

An arpeggio bracket can indicate that notes on two different staves are to be played with the same hand. In order to do this, the PianoStaff must be set to accept cross-staff arpeggios and the arpeggios must be set to the bracket shape in the PianoStaff context.

(Debussy, *Les collines d’Anacapri*, m. 65)

\new PianoStaff <<
\set PianoStaff.connectArpeggios = ##t
\override PianoStaff.Arpeggio.stencil = #ly:arpeggio::brew-chord-bracket
\new Staff {
  \relative c' {
    \key b \major
    \time 6/8
    b8-.(\arpeggio fis'-,\> cis-.
    e-, gis-, b-.)!\fermata\laissezVibrer \bar "||"
  }
}
\new Staff {
  \relative c' {
    \clef bass
    \key b \major
    <<
  }
}
2.2.2 Piano

This section discusses notation issues that relate most directly to the piano.

Piano pedals

Pianos generally have three pedals that alter the way sound is produced: sustain, sostenuto (sos.), and una corda (U.C.). Sustain pedals are also found on vibraphones and celestas.

```
\relative {
c''4\sustainOn d e g
<c, f a>1\sustainOff
c4\sostenutoOn e g c,
<bes d f>1\sostenutoOff
c4\unaCorda d e g
<d fis a>1\treCorde
}
```

There are three styles of pedal indications: text, bracket, and mixed. The sustain pedal and the una corda pedal use the text style by default while the sostenuto pedal uses mixed by default.

```
\relative {
c''4\sustainOn g c2\sustainOff
\set Staff.pedalSustainStyle = #'mixed
```
The placement of the pedal commands matches the physical movement of the sustain pedal during piano performance. Pedaling to the final bar line is indicated by omitting the final pedal off command.

Pedal indications may be placed in a Dynamics context, which aligns them on a horizontal line.

See also
Notation Reference: [Ties], page 58.
Snippets: Section “Keyboards” in Snippets.

2.2.3 Accordion
This section discusses notation that is unique to the accordion.

Discant symbols
Accordions are often built with more than one set of reeds that may be in unison with, an octave above, or an octave below the written pitch. Each accordion maker has different names for the shifts that select the various reed combinations, such as oboe, musette, or bandonium, so a system of symbols has come into use to simplify the performance instructions.

A complete list of all available accordion registers can be found in Section A.12.7 [Accordion registers], page 815.

Selected Snippets

Accordion register symbols
Accordion register symbols are available as \markup as well as as standalone music events (as register changes tend to occur between actual music events). Bass registers are not overly standardized. The available commands can be found in 'Discant symbols' in the Notation Reference.

#(use-modules (lily accreg))

\new PianoStaff
See also
Snippets: Section “Keyboards” in Snippets.

2.2.4 Harp
This section discusses notation issues that are unique to the harp.

References for harps
Some common characteristics of harp music are covered elsewhere:
- The glissando is the most characteristic harp technique, [Glissando], page 160.
- A bisbigliando is written as a tremolo [Tremolo repeats], page 193.
- Natural harmonics are covered under [Harmonics], page 393.
- For directional arpeggios and non-arpeggios, see [Arpeggio], page 165.
### Harp pedals

Harp pedals

Harps have seven strings per octave that may be sounded at the natural, flattened, or sharpened pitch. In lever harps, each string is adjusted individually, but in pedal harps every string with the same pitch name is controlled by a single pedal. From the player’s left to right, the pedals are D, C, and B on the left and E, F, G, and A on the right. The position of the pedals may be indicated with text marks:

```
\textLengthOn
\cis''1 \markup \concat \vcenter {
[D \flat C \sharp B | E \sharp F \sharp G A \flat] }
\c''11 \markup \concat \vcenter {
[C \natural] }
```

or pedal diagrams:

```
\textLengthOn
\cis''1 \markup { \harp-pedal “^v-|vv-^” }
\c''11 \markup { \harp-pedal “^o--|vv-^” }
```

The \harp-pedal command accepts a string of characters, where ^ is the highest pedal position (flattened pitch), _ is the middle pedal position (natural pitch), v is the lowest pedal position (sharpened pitch), and | is the divider. A prefixed o will circle the following pedal symbol.

### See also

Notation Reference: [Tremolo repeats], page 193, [Glissando], page 160, [Arpeggio], page 165, [Harmonics], page 393.

### 2.3 Unfretted string instruments
This section provides information and references which are helpful when writing for unfretted string instruments, principally orchestral strings.

2.3.1 Common notation for unfretted strings

There is little specialist notation for unfretted string instruments. The music is notated on a single staff, and usually only a single voice is required. Two voices might be required for some double-stopped or divisi passages.

References for unfretted strings

Most of the notation which is useful for orchestral strings and other bowed instruments is covered elsewhere:

- Textual indications such as “pizz.” and “arco” are added as simple text – see [Text scripts], page 283.
- Fingerings, including the thumb indication, are described in [Fingering instructions], page 258.
- String numbers may be added (generally in roman numbers for bowed instruments) as explained in [String number indications], page 396.
- Double stopping is normally indicated by writing a chord, see [Chorded notes], page 195. Directives for playing chords may be added, see [Arpeggio], page 165.
- Templates for string quartets can be found in Section “String quartet templates” in Learning Manual. Others are shown in the snippets.

See also


Notation Reference: [Text scripts], page 283, [Fingering instructions], page 258, [Chorded notes], page 195, [Arpeggio], page 165.

Snippets: Section “Unfretted strings” in Snippets.

Bowing indications

Bowing indications are created as articulations, which are described in [Articulations and ornamentations], page 140.

The bowing commands, \upbow and \downbow, are used with slurs as follows:

$\texttt{relative \{ c'4(\downbow d) e(\upbow f) \}}$
Roman numerals can be used for string numbers (rather than the default circled Arabic numbers), as explained in [String number indications], page 396.

Alternatively, string indications may be printed using markup commands; articulation scripts may also indicate open strings.

\begin{verbatim}
a'4 \open \\
\romanStringNumbers
a'\2
a'2^\markup { \small "sul A" }
\end{verbatim}

Predefined commands
\downbow, \upbow, \open, \romanStringNumbers.

See also
Notation Reference: [Articulations and ornamentations], page 140, [String number indications], page 396, [Slurs], page 153.

Harmonics
Natural harmonics
Natural harmonics can be notated in several ways. A diamond-shaped note head generally means to touch the string where you would stop the note if it were not a diamond.

\begin{verbatim}
\relative d'' { 
    d4 e4. 
    \harmonicsOn 
    d8 e e 
    \harmonicsOff 
    d8 e e 
}
\end{verbatim}

Alternatively a normal note head is shown at the pitch to be sounded together with a small circle to indicate it should be played as a harmonic:

\begin{verbatim}
d''2^\flageolet d'' \_\flageolet
\end{verbatim}

Artificial harmonics
Artificial harmonics are notated with two notes, one with a normal note head indicating the stopped position and one with an open diamond note head to indicate the harmonic position.

Artificial harmonics indicated with \harmonic do not show the dots. The context property harmonicDots should be set if dots are required.

\relative e' {
  <e a\harmonic>2. <c g'\harmonic>4
  \set harmonicDots = ##t
  <e a\harmonic>2. <c g'\harmonic>4
}

See also
Notation Reference: [Special note heads], page 41, [References for unfretted strings], page 392.

Snap (Bartók) pizzicato
A snap pizzicato (also known as “Bartok pizz”) is a type of pizzicato where the string is deliberately plucked upwards (rather than sideways) such that it hits the fingerboard.

\relative {
  c'4\snappizzicato
  <c' e g>4\snappizzicato
  <c' e g>4\snappizzicato
  <c, e g>4\snappizzicato
}

2.4 Fretted string instruments
This section discusses several aspects of music notation that are unique to fretted string instruments.

### 2.4.1 Common notation for fretted strings

This section discusses common notation that is unique to fretted string instruments.

**References for fretted strings**

Music for fretted string instruments is normally notated on a single staff, either in traditional music notation or in tablature. Sometimes the two types are combined, and it is especially common in popular music to use chord diagrams above a staff of traditional notation. The guitar and the banjo are transposing instruments, sounding an octave lower than written. Scores for these instruments should use the "treble_8" clef (or \transposition c to get correct MIDI output). Some other elements pertinent to fretted string instruments are covered elsewhere:

- Fingerings are indicated as shown in [Fingering instructions], page 258.
- Instructions for *Laissez vibrer* ties as well as ties on arpeggios and tremolos can be found in [Ties], page 58.
- Instructions for handling multiple voices can be found in [Collision resolution], page 206.
- Instructions for indicating harmonics can be found in [Harmonics], page 393.

**See also**

Notation Reference: [Fingering instructions], page 258, [Ties], page 58, [Collision resolution], page 206, [Instrument names], page 240, [Writing music in parallel], page 217, [Arpeggio], page 165, Section A.15 [List of articulations], page 833, [Clef], page 17, [Instrument transpositions], page 27.
String number indications
The string on which a note should be played may be indicated by appending `\number` to a note.

```
\clef "treble_8"
c4\5 e\4 g\2\3
<c\5 e\4 g\3>1
```

When fingerings and string indications are used together, their placement can be controlled by the order in which the two items appear in the code only if they appear inside of an explicit chord: applied to whole chords or single notes outside of chords, fingerings are placed using a different mechanism.

```
\clef "treble_8"
g\4\3-0
g-0\3
<g\3-0>
<g-0\3>
```

String numbers may also, as is customary with unfretted strings, be printed in Roman numerals and placed below the staff rather than above.

```
\clef "treble_8"
c'2\2
a\3
\romanStringNumbers
\set stringNumberOrientations = #'(down)
a\3
\arabicStringNumbers
g1\4
```

Most behaviors of string number indications (namely, the `StringNumber` object), including their placement, may be set in the same way as fingerings: see [Fingering instructions], page 258.

Predefined commands
\arabicStringNumbers, \romanStringNumbers.
Default tablatures

Music for plucked string instruments is frequently notated using a finger/touch notation or tablature. In contrast to traditional notation pitches are not denoted with note heads, but by numbers (or letter-like symbols in historical intavolatura). The staff lines in tablature indicate the string on which the note is to be played, and a number placed on a staff line indicated the fret at which the corresponding string is to be pressed. Notes that are to be played simultaneously are vertically aligned.

By default, string 1 is the highest string, and corresponds to the top line on the \texttt{TabStaff}. The tuning of the \texttt{TabStaff} strings defaults to the standard guitar tuning (with 6 strings). The notes are printed as tablature, by using \texttt{TabStaff} and \texttt{TabVoice} contexts. A calligraphic tablature clef is added automatically.

\begin{verbatim}
\new TabStaff \relative {
  a,8 a' <c e> a
  d,8 a' <d f> a
}
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{tablature.png}
\caption{Default tablature notation.}
\end{figure}

Default tablatures do not contain any symbols for tone duration nor any other musical symbols such as expressive marks, for example.

\begin{verbatim}
symbols = {
  \time 3/4
  c4-. "Allegro" d( e)
  f4-. \fermata \g a\n  \fermata \default c8._\<\( \c16 c~ 2\)
  c'2.\prall\}
}
\begin{verbatim}
\score {
  \new Staff { \clef "G_8" \symbols }
  \new TabStaff { \symbols }
  \new TabStaff { \symbols }
  \new TabStaff { \symbols }
  \new Staff { \clef "G_8" \symbols }
  \end{verbatim}

\end{verbatim}
If all musical symbols used in traditional notation should also show up in tablature one has to apply the command `\tabFullNotation` in a TabStaff-context. Please bear in mind that half notes are double-stemmed in tablature in order to distinguish them from quarter notes.

```latex
\score { \\
new TabStaff { \\
 \tabFullNotation \\
 \symbols
}
}
```

By default pitches are assigned to the lowest playing position on the fretboard (first position). Open strings are automatically preferred. If you would like a certain pitch to be played on a specific string you can add a string number indication to the pitch name. If you don’t want to have string number indications appear in traditional notation, you can override the respective stencil. Usually it will be more comfortable to define the playing position by using the value of `minimumFret`. The default value for `minimumFret` is 0.

Even when `minimumFret` is set, open strings are used whenever possible. This behavior can be changed by setting `restrainOpenStrings` to `#t`.

```latex
\layout { \omit Voice.StringNumber } \\
new StaffGroup << \\
 \clef "treble_8" \\
 \time 2/4 \\
 c16 d e f g4 \\
 c,16\5 d\5 e\4 f\4 g4\4 \\
 c,16 d e f g4
}
```
Chord constructs can be repeated by the chord repetition symbol $q$. In combination with tablatures, its behavior of removing string and finger numbers alongside with other events is cumbersome, so you'll want to run

\begin{verbatim}
\chordRepeats #'(string-number-event fingering-event)
\end{verbatim}

explicitly on music expressions in tablature using [Chord repetition], page 197. This particular command is so common that it is available as $\texttt{\tabChordRepeats}$.

\begin{verbatim}
guitar = \relative {
  r8 <gis-2 cis-3 b-0>- q4 q8- 8 q4
}
\end{verbatim}

Ties over a line break are parenthesized by default. The same holds for the second alternative of a repeat.

\begin{verbatim}
ties = \relative {
  \repeat volta 2 {
    e'2. f4-
    2 g2-
  }
}
\end{verbatim}
The command \hideSplitTiedTabNotes cancels the behavior of engraving fret numbers in parentheses:

\begin{verbatim}
ties = \relative { \\
repeat volta 2 { \\
e'2. f4 \tie \break b1 \\
\bar "|." \break b1 \\
}\end{verbatim}
Harmonic indications can be added to tablature notation as sounding pitches:

```
\layout { \omit Voice.StringNumber }
firstHarmonic = {
d'4\harmonic
g'4\harmonic
b'2\harmonic
```
Chapter 2: Specialist notation

Note that the command `\harmonic` must always be attached to single notes (possibly inside of a chord) instead of whole chords. It only makes sense for open-string harmonics in the 12th fret. All other harmonics should be calculated by LilyPond. This can be achieved by indicating the fret where a finger of the fretting hand should touch a string.

```
\fretHarmonics = {
 \harmonicByFret #5 d16\4
 \harmonicByFret #4 d16\4
 \harmonicByFret #3 d8\4
 \harmonicByFret #5 <g\3 b\2>2.
}
```

Alternatively, harmonics can be computed by defining the ratio of string lengths above and below the harmonic fingering.

```
\ratioHarmonics = {
 \harmonicByRatio #1/2 <g\3 b\2 e'\1>4
}
```
String bendings can be added to tablature notation. A bending is introduced by appending `^` to the note or chord to be bent; it terminates automatically at the next note or chord. Available are the following styles: the default prints a curve with an arrow head up or down, 'hold a dashed horizontal line, 'pre-bend a vertical line with an arrow head, and 'pre-bend-hold a vertical line with an arrow head continued by a dashed line.

\begin{verbatim}
\bend-styles = {
  <>^"default"
  f'4\^ g'4\^ f'2

  <>^"hold"
  \grace f'4\^ g'1\bendHold ^ g'1

  <>^"pre-bend"
  \grace f'4\preBend ^ g'1\bendHold ^ g'1

  <>^"pre-bend-hold"
  \grace f'4\preBendHold ^ g'1\bendHold ^ g'1\^ f'

  \bar "."
}
\end{verbatim}
Open strings are usually not bent. To have them bent as well set the property bend-me to \#t. To exclude other notes from being bent set it to \#f.

\mus = {
  <>"default"
  \a b f'>4
  \ais b fis'>
  \a b f'>2

  <>"bend open strings"
  \a \tweak bend-me \#t b f'>4
  \ais \tweak bend-me \#t bis fis'
  \a b f'>2

  <>"exclude other strings"
  \g \tweak bend-me \#f b\3 d'>4
  \a e'2
  \g \tweak bend-me \#f b\3 d'>2

  \bar "|."}

\score {
  \new StaffGroup
    <<
    \new Staff {

\new TabStaff \bend-styles

\layout {
  \context {
    \Voice
      \omit StringNumber
  }
  \context {
    \TabStaff
      minimumFret = #5
  }
  \context {
    \TabVoice
      \consists Bend_spanner_ engraver
  }
}
For consecutive bendings the starting bend may need to have an appropriate setting for details.successive-level. For convenience there is the function bendStartLevel, taking an integer.

\begin{verbatim}
printNext = -\tweak details.target-visibility ##t \etc

mus = {
c'4\3\cis'\3 \ d'2\3
\grace bes4\3\preBendHold \bendStartLevel 2 \printNext \n d'4\3\bendHold \ d'2\3 \ des'4\3 \ c'1\3

\bar "|."}
\end{verbatim}
Per default the BendSpanner ends at the following note or chord even if it is tied to the starting note or chord. A single NoteColumn may be skipped by using \skipNC. A group of NoteColumns can be skipped by using \skipNCs at the beginning and \endSkipNCs at the end.

\bends-with-ties-and-skips = {
  a'4- \^ \skipNC a'4- \skipNC a'4 b'4
  a'4- a'4- \^ \skipNC a'4 b'4
  a'4- a'4- a'4 \^ b'4
  c'2 \^ d'- \bendHold \^ \skipNC d'- d'\^ c'
  \grace { c'8- \preBendHold \^ } \skipNCs d'2- d'2- \endSkipNCs d'\^ c'2
  \bar "|."}

\score {
  \new StaffGroup <<
    \new Staff {
      \clef "G_8"
      \bends-with-ties-and-skips
    }
    \new TabVoice \bends-with-ties-and-skips
  >>
  \layout {
    \context {
      \Voice
      \omit StringNumber
    }
    \context {
      \TabVoice
      \consists Bend_spanner_ engraver
    }
  }
}
Predefined commands
\skipNCs, \skipNC, \endSkipNCs.

Selected Snippets

Stem and beam behavior in tablature
The direction of stems is controlled the same way in tablature as in traditional notation. Beams can be made horizontal, as shown in this example.
\new TabStaff {
  \relative c {
    \tabFullNotation
    g16 b d g b d g b
    \stemDown
    \override Beam.concaveness = #10000
    g,,16 b d g b d g b
  }
}

Polyphony in tablature
Polyphony is created the same way in a TabStaff as in a regular staff.
upper = \relative c' {
  \time 12/8
  \key e \minor
  \voiceOne
  r4. r8 e, fis g16 b g e e' b c b a g fis e
}

lower = \relative c {
  \key e \minor
\voiceTwo
r16 e d c b a g4 fis8 e fis g a b c
\}
\score {
<<
\new StaffGroup = "tab with traditional" <<
\new Staff = "guitar traditional" <<
\clef "treble_8"
\new Voice = "upper" \upper
\new Voice = "lower" \lower
>>
\new TabStaff = "guitar tab" <<
\new TabVoice = "upper" \upper
\new TabVoice = "lower" \lower
>>
>>
>>
}

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{harmonics.png}
\caption{Open string harmonics in tablature}
\end{figure}

This snippet demonstrates open-string harmonics.

openStringHarmonics = {
\textSpannerDown
\override TextSpanner.staff-padding = #3
\override TextSpanner.dash-fraction = #0.3
\override TextSpanner.dash-period = #1

%first harmonic
\override TextSpanner.bound-details.left.text =
\markup\small "1st harm."
\harmonicByFret #12 e,2\6\startTextSpan
\harmonicByRatio #1/2 e,\6\stopTextSpan

%second harmonic
\override TextSpanner.bound-details.left.text =
\markup\small "2nd harm."
\harmonicByFret #7 e,\6\startTextSpan
\harmonicByRatio #1/3 e,\6
\harmonicByFret #19 e,\6
\harmonicByRatio #2/3 e,\6\stopTextSpan
%\harmonicByFret #19 < e,\6 a,\5 d\4 >
%\harmonicByRatio #2/3 < e, \6 a, \5 d >

%third harmonic
\override TextSpanner.bound-details.left.text =
  \markup\small "3rd harm. "
\harmonicByFret #5 e, \6\startTextSpan
\harmonicByRatio #1/4 e, \6
\harmonicByFret #24 e, \6
\harmonicByRatio #3/4 e, \6\stopTextSpan
\break

%fourth harmonic
\override TextSpanner.bound-details.left.text =
  \markup\small "4th harm. "
\harmonicByFret #4 e, \6\startTextSpan
\harmonicByRatio #1/5 e, \6
\harmonicByFret #9 e, \6
\harmonicByRatio #2/5 e, \6
\harmonicByFret #16 e, \6
\harmonicByRatio #3/5 e, \6\stopTextSpan

%fifth harmonic
\override TextSpanner.bound-details.left.text =
  \markup\small "5th harm. "
\harmonicByFret #3 e, \6\startTextSpan
\harmonicByRatio #1/6 e, \6\stopTextSpan
\break

%sixth harmonic
\override TextSpanner.bound-details.left.text =
  \markup\small "6th harm. "
\harmonicByFret #2.7 e, \6\startTextSpan
\harmonicByRatio #1/7 e, \6\stopTextSpan

%seventh harmonic
\override TextSpanner.bound-details.left.text =
  \markup\small "7th harm. "
\harmonicByFret #2.3 e, \6\startTextSpan
\harmonicByRatio #1/8 e, \6\stopTextSpan

%eighth harmonic
\override TextSpanner.bound-details.left.text =
  \markup\small "8th harm. "
\harmonicByFret #2 e, \6\startTextSpan
\harmonicByRatio #1/9 e, \6\stopTextSpan

}\score {
  <<
    \new Staff
    \with { \omit StringNumber } {
        \new Voice {
Fretted-string harmonics in tablature

Demonstrates fretted-string harmonics in tablature

pinchedHarmonics = {
    \textSpannerDown
    \override TextSpanner.bound-details.left.text = \markup {\halign="#-0.5 \teeny "PH" } 
    \override TextSpanner.style = #’dashed-line
    \override TextSpanner.dash-period = #0.6
    \override TextSpanner.bound-details.right.attach-dir = #1
    \override TextSpanner.bound-details.right.text = \markup { \draw-line #'(0 . 1) }
    \override TextSpanner.bound-details.right.padding = #-0.5
}
Harmonics = {
  %artificial harmonics (AH)
  \textLengthOn
  \parenthesize b b'\harmonic>4\markup { \teeny "AH 16" }
  \parenthesize g g'\harmonic>4\markup { \teeny "AH 17" }
  \parenthesize d' d''\harmonic>2\markup { \teeny "AH 19" }
  %pinched harmonics (PH)
  \pinchedHarmonics
  \a'\harmonic>2\startTextSpan
  \d''\harmonic>4\markup { \teeny "PH 19" }
  \e'\harmonic>4\stopTextSpan
  %tapped harmonics (TH)
  \tappedHarmonics
  \g\4\harmonic>4\markup { \teeny "TH 17" }
  \a\4\harmonic>4\markup { \teeny "TH 19" }
  \c\3\harmonic>2\markup { \teeny "TH 17" }
  %touch harmonics (TCH)
  a4 (\e'\harmonic>2 \markup { \teeny "TCH" })
}

Fretted strings = {
  %artificial harmonics (AH)
  \harmonicByFret #4 g\3
  \harmonicByFret #5 d4\3
  \harmonicByFret #7 g2\3
  %pinched harmonics (PH)
  \harmonicByFret #7 d2\4
  \harmonicByFret #5 d4\4
  \harmonicByFret #7 a\5
  %tapped harmonics (TH)
  \harmonicByFret #5 d4\4
  \harmonicByFret #7 d4\4
  \harmonicByFret #5 g2\3
  %touch harmonics (TCH)
  a4 \harmonicByFret #9 g2\3
}

\score {
  <<
    \new Staff
    \with { \omit StringNumber } {
      \new Voice {
        \clef "treble_8"
        \harmonics
      }
    }
    \new TabStaff {
      \new TabVoice {
        \frettedStrings
      }
    }
  >>
}
Slides in tablature

Slides can be typeset in both Staff and TabStaff contexts:

```latex
\begin{verbatim}
slides = {
 c'8\3\glissando d'8\3
c'8\3\glissando d'8\3
\hideNotes
\grace { g16\glissando }
\unHideNotes
c'4\3
\afterGrace d'4\3\glissando {
 \stemDown \hideNotes
g16 }
\unHideNotes
}

\score {
 <<
 \new Staff { \clef "treble_8" \slides }
 \new TabStaff { \slides }
 >>
 \layout {
 \context {
 \Score
 \override Glissando.minimum-length = #4
 \override Glissando.springs-and-rods = #ly:spanner::set-spacing-rods
 \override Glissando.thickness = #2
 \omit StringNumber
 % or:
 %\override StringNumber.stencil = ##f
 }
 }
}
\end{verbatim}
```

\includegraphics[width=\textwidth]{example.png}
Chord glissando in tablature

Slides for chords are indicated by default in both Staff and TabStaff.

String numbers are necessary for TabStaff because automatic string calculations are different for chords and for single notes.

```latex
myMusic = \relative c' {
 <c e g> \glissando <f a c>
}

\score {
 <<
 \new Staff {
 \clef "treble_8"
 \myMusic
 }
 \new TabStaff \myMusic
 >>
}

\score {
 <<
 \new Staff {
 \clef "treble_8"
 \myMusic
 }
 \new TabStaff \with { \override Glissando.style = #'none } {
 \myMusic
 }
 >>
}
```

Hammer on and pull off

Hammer-on and pull-off can be obtained using slurs.

```latex
\new TabStaff {
 \relative c' {
 d4(e\2)
 a(g)
 }
```
Hammer on and pull off using voices

The arc of hammer-on and pull-off is upwards in voices one and three and downwards in voices two and four:

\begin{verbatim}
\new TabStaff {
  \relative c' {
    << { \voiceOne g2 ( a ) }
    \ \ { \voiceTwo a, ( b ) }
    >> \oneVoice
  }
}
\end{verbatim}

Hammer on and pull off using chords

When using hammer-on or pull-off with chorded notes, only a single arc is drawn. However “double arcs” are possible by setting the doubleSlurs property to \#t.

\begin{verbatim}
\new TabStaff {
  \relative c' {
    % chord hammer-on and pull-off
    \set doubleSlurs = \#t
    <g' b>8( <a c> <g b>)
  }
}
\end{verbatim}

See also

Notation Reference: [Chord repetition], page 197, [Glissando], page 160, [Harmonics], page 393, [Stems], page 271, [Written-out repeats], page 171.

Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “TabNoteHead” in Internals Reference, Section “TabStaff” in Internals Reference, Section “TabVoice” in Internals Reference, Section “Beam” in Internals Reference.

Known issues and warnings

Chords are not handled in a special way, and hence the automatic string selector may easily select the same string for two notes in a chord.

In order to handle \partCombine, a TabStaff must use specially-created voices:

\begin{verbatim}
melodia = \partCombine { e4 g g g } { e4 e e e }
\end{verbatim}
Custom tablatures

LilyPond tablature automatically calculates the fret for a note based on the string to which the note is assigned. In order to do this, the tuning of the strings must be specified. The tuning of the strings is given in the \stringTunings property.

LilyPond comes with predefined string tunings for banjo, mandolin, guitar, bass guitar, ukulele, violin, viola, cello, and double bass. LilyPond automatically sets the correct transposition for predefined tunings. The following example is for bass guitar, which sounds an octave lower than written.

The default string tuning is guitar-tuning, which is the standard EADGBE tuning. Some other predefined tunings are guitar-open-g-tuning, mandolin-tuning and banjo-open-g-tuning. The predefined string tunings are found in \package{ly/string-tunings-init.ly}.
Any desired string tuning can be created. The `\stringTuning` function can be used to define a string tuning which can be used to set `stringTunings` for the current context.

Its argument is a chord construct defining the pitches of each string in the tuning. The chord construct must be in absolute octave mode, see [Absolute octave entry], page 1. The string with the highest number (generally the lowest string) must come first in the chord. For example, we can define a string tuning for a four-string instrument with pitches of a'', d'', g', and c':

```plaintext
mynotes = {
 c'4 e' g' c'' |
 e''4 g'' b'' c'''
}

<<
\new Staff {
 \clef treble
 \mynotes
}
\new TabStaff {
 \set TabStaff.stringTunings = \stringTuning <c' g' d'' a''>
 \mynotes
}
>>
```

The `stringTunings` property is also used by FretBoards to calculate automatic fret diagrams.

String tunings are used as part of the hash key for predefined fret diagrams (see [Predefined fret diagrams], page 428).

The previous example could also be written as follows:

```plaintext
custom-tuning = \stringTuning <c' g' d'' a''>

mynotes = {
 c'4 e' g' c'' |
 e''4 g'' b'' c'''
}

<<
\new Staff {
 \clef treble
 \mynotes
}
\new TabStaff {
 \set TabStaff.stringTunings = #custom-tuning
 \mynotes
}
>>
```
Internally, a string tuning is a Scheme list of string pitches, one for each string, ordered by string number from 1 to N, where string 1 is at the top of the tablature staff and string N is at the bottom. This ordinarily results in ordering from highest pitch to lowest pitch, but some instruments (e.g., ukulele) do not have strings ordered by pitch.

A string pitch in a string tuning list is a LilyPond pitch object. Pitch objects are created with the Scheme function \texttt{ly:make-pitch} (see Section “Scheme functions” in Internals Reference).

\texttt{\stringTuning} creates such an object from chord input.

LilyPond automatically calculates the number of lines in the \texttt{TabStaff} and the number of strings in an automatically calculated \texttt{FretBoard} as the number of elements in \texttt{stringTunings}.

To let all \texttt{TabStaff} contexts use the same custom tuning by default, you can use

\begin{verbatim}
\layout {
  \context {
    \TabStaff
    stringTunings = \stringTuning <c' g' d'' a''>
  }
}
\end{verbatim}

A modern tab clef can also be used.

\begin{verbatim}
\new TabStaff {
  \clef moderntab
  <a, e a>1
  \break
  \clef tab
  <a, e a>1
}
\end{verbatim}

The modern tab clef supports tablatures from 4 to 7 strings.

\texttt{TabStaff} may support microtones like quarter tones, which can be played using bendings. \texttt{supportNonIntegerFret = ##t} needs to be set in \texttt{Score} context. However, microtones are not supported in \texttt{FretBoards}.

\begin{verbatim}
\layout {
  \context {
    \Score
    supportNonIntegerFret = ##t
  }
}
\end{verbatim}
custom-tuning = \stringTuning <e, a, d ges beh eeh'>

\mus = \relative {
  eees'4
  eeseh
  ees
  eeh
  e
  eih
  eis
  eisih
  eisis
}

<<
\new Staff << \clef "G\_8" \mus >>
\new TabStaff \with { stringTunings = \custom-tuning } \mus
>>

See also
Notation Reference: [Absolute octave entry], page 1, [Predefined fret diagrams], page 428.
Installed Files: ly/string-tunings-init.ly, scm/tablature.scm.
Snippets: Section “Fretted strings” in Snippets.
Internals Reference: Section “Tab_note_heads_ engraver” in Internals Reference, Section “Scheme functions” in Internals Reference.

Known issues and warnings
Automatic tablature calculations do not work properly in most cases for instruments where string pitches do not vary monotonically with string number, such as ukuleles.

Fret diagram markups
Fret diagrams can be added to music as a markup to the desired note. The markup contains information about the desired fret diagram. There are three different fret diagram markup interfaces: standard, terse, and verbose. The three interfaces produce equivalent markups, but have varying amounts of information in the markup string. Details about the syntax of the different markup strings used to define fret diagrams are found at Section A.12.6 [Instrument-specific markup], page 810.

The standard fret diagram markup string indicates the string number and the fret number for each dot to be placed on the string. In addition, open and unplayed (muted) strings can be indicated.

<<
\new ChordNames {


The size of the fret diagram, and the number of frets in the diagram can be changed in the fret diagram markup string.

```lilypond
\new ChordNames { \chordmode { f1 g } }
\new Staff { \clef "treble_8" <f, c f a c' f'>1\markup { \fret-diagram "c:6-1;6-1;5-3;4-3;3-2;2-1;1-1;" } <g, d g b d' g'>1\markup { \fret-diagram "c:6-1;6-1;5-3;4-5;3-4;2-3;1-3;" } }
}\new ChordNames { \chordmode { f1 g } }
\new Staff { \clef "treble_8" <f, c f a c' f'>1\markup { \fret-diagram "c:6-1;6-1;5-3;4-3;3-2;2-1;1-1;" } <g, d g b d' g'>1\markup { \fret-diagram "c:6-1;6-1;5-3;4-5;3-4;2-3;1-3;" } }
```

Barré indications can be added to the diagram from the fret diagram markup string.

```lilypond
\new ChordNames { \chordmode { f1 g } }
\new Staff { \clef "treble_8"<c e g c' e'>1\markup { \fret-diagram "6-x;5-3;4-2;3-o;2-1;1-o;" } <d a d' f'>1\markup { \fret-diagram "6-x;5-x;4-o;3-2;2-3;1-1;" } }
}\new ChordNames { \chordmode { f1 g } }
\new Staff { \clef "treble_8"<f, c f a c' f'>1\markup { \fret-diagram "c:6-1;6-1;5-3;4-3;3-2;2-1;1-1;" } <g, d g b d' g'>1\markup { \fret-diagram "c:6-1;6-1;5-3;4-5;3-4;2-3;1-3;" } }
```

The size of the fret diagram, and the number of frets in the diagram can be changed in the fret diagram markup string.
The number of strings in a fret diagram can be changed to accommodate different instruments such as banjos and ukuleles with the fret diagram markup string.

Fingering indications can be added, and the location of fingering labels can be controlled by the fret diagram markup string.
Have jean to be controlled with the fret diagram markup string.  

```
\new ChordNames {
 \chordmode {
 c1 d:m
 }
}
\new Staff {
 \clef "treble_8"
 <c e g c' e'>1\markup {
 \fret-diagram "d:0.35;6-x;5-3;4-2;3-o;2-1;1-o;"
 }
 <d a d' f'>1\markup {
 \fret-diagram "p:0.2;6-x;5-x;4-o;3-2;2-3;1-1;"
 }
}
\markup
\center-column {
 "C"
 "(left-handed)"
 \override #`(fret-diagram-details . ((handedness . ,LEFT)))
 \fret-diagram "6-x;5-3-3;4-2-2;3-o;2-1;1-o;"
}
```

Fret-diagrams may be printed left-handed
C
(left-handed)

The \fret-diagram-terse markup string omits string numbers; the string number is implied by the presence of semicolons. There is one semicolon for each string in the diagram. The first semicolon corresponds to the highest string number and the last semicolon corresponds to the first string. Mute strings, open strings, and fret numbers can be indicated.

\new ChordNames {
  \chordmode {
    c1 d:m
  }
}
\new Staff {
  \clef "treble_8"
  <c e g c' e'>1\markup {
    \fret-diagram-terse "x;3;2;0;1;0;"
  }
  <d a d' f'>1\markup {
    \fret-diagram-terse "x;x;0;2;3;1;"
  }
}

Barré indicators can be included in the \fret-diagram-terse markup string.

\new ChordNames {
  \chordmode {
    f1 g
  }
}
\new Staff {
  \clef "treble_8"
  <f, c f a c' f'>1\markup {
    \fret-diagram-terse "1-;3;3;2;1;1-;"
  }
  <g, d g b d' g'>1\markup {
    \fret-diagram-terse "3-;5;5;4;3;3-;"
  }
}

Fingering indications can be included in the \fret-diagram-terse markup string.

\[
\begin{align*}
\text{\new ChordNames} \{ \\
\text{chordmode} \{ \\
\quad \text{c1 d:m} \\
\} \\
\text{\new Staff} \{ \\
\text{\override Voice.TextScript.fret-diagram-details.finger-code =} \\
\quad \text{#'below-string} \\
\text{\clef "treble_8"} \\
\quad \text{<c e g c' e'>1"\markup \{ \\
\text{\fret-diagram-terse "x;3-3;2-2;0;1-1;0;"} \\
\} \\
\quad \text{<d a d' f'>1"\markup \{ \\
\text{\fret-diagram-terse "x:x;0;2-2;3-3;1-1;"} \\
\}} \\
\text{\new ChordNames} \{ \\
\text{\new Staff} \{ \\
\text{\clef "treble_8"} \\
\quad \text{<c e g c' e'>1"\markup \{ \\
\text{\fret-diagram-terse "x;3-3;2-2;0;1-1;0;"} \\
\}} \\
\end{align*}
\]

Other fret diagram properties must be adjusted using \override when using the \fret-diagram-terse markup.

Only one indication per string can be included in a \fret-diagram-terse markup. To have multiple indications per string use a fret diagram or \fret-diagram-verbose markup.

The \fret-diagram-verbose markup string is in the format of a Scheme list. Each element of the list indicates an item to be placed on the fret diagram.

\[
\begin{align*}
\text{\new ChordNames} \{ \\
\text{chordmode} \{ \\
\quad \text{c1 d:m} \\
\} \\
\text{\new Staff} \{ \\
\text{\clef "treble_8"} \\
\quad \text{<c e g c' e'>1"\markup \{ \\
\text{\fret-diagram-verbose #'(} \\
\quad \text{(mute 6)}\) \\
\}} \\
\end{align*}
\]
Fingering indications and barrés can be included in a \fret-diagram-verbose markup string. Unique to the \fret-diagram-verbose interface is a capo indication that can be placed on the fret diagram. The capo indication is a thick bar that covers all strings. The fret with the capo will be the lowest fret in the fret diagram.

Fingering indication dots can be colored as well as parenthesized; the parenthesis’s color can also be altered independently.

Markups can be placed into the dots as well.

<<
\new ChordNames {
  \chordmode {
    f1 g c c b
  }
}
\new Staff {
  \clef "treble_8"
  \override Voice.TextScript .fret-diagram-details.finger-code = #'below-string
  <f, c f a c' f'>1\markup {
    \fret-diagram-verbose #'( 
      (place-fret 6 1)
      (place-fret 5 3)
      (place-fret 4 3)
      (place-fret 3 2)
      (place-fret 2 1)
      (place-fret 1 1)
    )
}
\fret-diagram-verbose #1'\{ (place-fret 6 3 2) (place-fret 5 2 1) (open 4) (open 3) (open 2) (place-fret 1 3 3) \} \fret-diagram-verbose #1'\{ (capo 3) (mute 6) (place-fret 4 5 1) (place-fret 3 5 2) (place-fret 2 5 3) \} \fret-diagram-verbose #1'\{ (place-fret 6 3 1 red parenthesized default-paren-color) (place-fret 5 3 1 inverted) (place-fret 4 5 2 blue parenthesized) (place-fret 3 5 3 blue) (place-fret 2 5 4 blue) (place-fret 1 3 1 inverted) \} \fret-diagram-verbose #1'\{ (place-fret 5 2 1) (place-fret 4 4 "fis" red) (place-fret 3 4 "b" red) (place-fret 2 4 \\
\concat{ \vcenter "d" \fontsize #-5 \musicglyph "accidentals.sharp"} \} red) (place-fret 1 2 1) \}
All other fret diagram properties must be adjusted using `\override` when using the `\fret-diagram-verbose` markup.

The graphical layout of a fret diagram can be customized according to user preference through the properties of the `fret-diagram-interface`. Details are found at Section “fret-diagram-interface” in *Internals Reference*. For a fret diagram markup, the interface properties belong to `Voice.TextScript`.

**Selected Snippets**

**Changing fret orientations**

Fret diagrams can be oriented in three ways. By default the top string or fret in the different orientations will be aligned.

```latex
\include "predefined-guitar-fretboards.ly"

<<
\chords {
c1
c1
c1
}
\new FretBoards {
\chordmode {
c1
\override FretBoard.fret-diagram-details.orientation = #'landscape
c1
\override FretBoard.fret-diagram-details.orientation = #'opposing-landscape
c1
}
\new Voice {
c'1
c'1
c'
}
>>
```
Fret diagram properties can be set through `fret-diagram-details`. For markup fret diagrams, overrides can be applied to the `Voice.TextScript` object or directly to the markup.

```plaintext
\new Voice = "mel" {
 \textLengthOn
 % Set global properties of fret diagram
 \override TextScript.size = #'1.2
 \override TextScript.fret-diagram-details.finger-code = #'in-dot
 \override TextScript.fret-diagram-details.dot-color = #'white

 %% C major for guitar, no barre, using defaults
 % terse style
 c'1\markup { \fret-diagram-terse "x;3-3;2-2;o;1-1;o;" }

 %% C major for guitar, barred on third fret
 % verbose style
 % size 1.0
 % roman fret label, finger labels below string, straight barre
 c'1\markup {
 % standard size
 \override #(size . 1.0) {
 \override #(fret-diagram-details . (
 (number-type . roman-lower)
 (finger-code . in-dot)
 (barre-type . straight))) {
 \fret-diagram-verbose #'((mute 6)
 (place-fret 5 3 1)
 (place-fret 4 5 2)
 (place-fret 3 5 3)
 (place-fret 2 5 4)
 (place-fret 1 3 1)
 (barre 5 1 3))
 }
 }
 }

 %% C major for guitar, barred on third fret
 % verbose style
 % landscape orientation, arabic numbers, M for mute string
 % no barre, fret label down or left, small mute label font
 c'1\markup {
"x;3-3;2-2;o;1-1;o;
 \fret-diagram-verbose #'((mute 6)
 (place-fret 5 3 1)
 (place-fret 4 5 2)
 (place-fret 3 5 3)
 (place-fret 2 5 4)
 (place-fret 1 3 1)
 (barre 5 1 3))
 }
 }
```

---

**Customizing markup fret diagrams**

Fret diagram properties can be set through `fret-diagram-details`. For markup fret diagrams, overrides can be applied to the `Voice.TextScript` object or directly to the markup.
\override #'(fret-diagram-details . (  
  (finger-code . below-string)  
  (number-type . arabic)  
  (label-dir . -1)  
  (mute-string . "M")  
  (orientation . landscape)  
  (barre-type . none)  
  (xo-font-magnification . 0.4)  
  (xo-padding . 0.3))) { 

\fret-diagram-verbose #'((mute 6)  
  (place-fret 5 3 1)  
  (place-fret 4 5 2)  
  (place-fret 3 5 3)  
  (place-fret 2 5 4)  
  (place-fret 1 3 1)  
  (barre 5 1 3))  

}% simple D chord  
% terse style  
% larger dots, centered dots, fewer frets  
% label below string  

d'\markup { 
\override #'(fret-diagram-details . (  
  (finger-code . below-string)  
  (dot-radius . 0.35)  
  (dot-position . 0.5)  
  (fret-count . 3))) { 

\fret-diagram-terse "x;x;o;2-1;3-2;2-3;"  

} 

}

See also

Notation Reference: Section A.12.6 [Instrument-specific markup], page 810.
Snippets: Section “Fretted strings” in Snippets.
Internals Reference: Section “fret-diagram-interface” in Internals Reference.

Predefined fret diagrams

Fret diagrams can be displayed using the FretBoards context. By default, the FretBoards context will display fret diagrams that are stored in a lookup table:
\include "predefined-guitar-fretboards.ly"
The default predefined fret diagrams are contained in the file predefined-guitar-fretboards.ly. Fret diagrams are stored based on the pitches of a chord and the value of stringTunings that is currently in use. predefined-guitar-fretboards.ly contains predefined fret diagrams only for guitar-tuning. Predefined fret diagrams can be added for other instruments or other tunings by following the examples found in predefined-guitar-fretboards.ly.

Fret diagrams for the ukulele are contained in the file predefined-ukulele-fretboards.ly.
\include "predefined-ukulele-fretboards.ly"

\new ChordNames {
    myChords
}
\new FretBoards {
    \set Staff.stringTunings = #ukulele-tuning
    \myChords
}

Fret diagrams for the mandolin are contained in the file predefined-mandolin-fretboards.ly.
\include "predefined-mandolin-fretboards.ly"

\new ChordNames {
    myChords
}
\new FretBoards {
    \set Staff.stringTunings = #mandolin-tuning
    \myChords
}

C   C\flat   C+
Chord pitches can be entered either as simultaneous music or using chord mode (see [Chord mode overview], page 469).

\include "predefined-guitar-fretboards.ly"
\new FretBoards {
  \chordmode { c1 }
  <c' e' g'>1
}

It is common that both chord names and fret diagrams are displayed together. This is achieved by putting a ChordNames context in parallel with a FretBoards context and giving both contexts the same music.

\include "predefined-guitar-fretboards.ly"
mychords = \chordmode {
  c1 f g
}

<<
  \new ChordNames {
    \mychords
  }
  \new FretBoards {
    \mychords
  }
>>

Predefined fret diagrams are transposable, as long as a diagram for the transposed chord is stored in the fret diagram table.

\include "predefined-guitar-fretboards.ly"
mychords = \chordmode {
  c1 f g
}

mychordlist = {
  \mychords
  \transpose c e { \mychords }
}
<<
  \new ChordNames {
    \mychordlist
  }
The predefined fret diagram table for guitar contains eight chords (major, minor, augmented, diminished, dominant seventh, major seventh, minor seventh, dominant ninth) for each of 17 keys.

The predefined fret diagram table for ukulele contains these chords plus an additional three chords (major sixth, suspended second, and suspended fourth).

See Section A.4 [Predefined fretboard diagrams], page 730, for a complete list of the predefined fret diagrams. If there is no entry in the table for a chord, the FretBoards engraver calculates a fret diagram using the automatic fret diagram functionality, see [Automatic fret diagrams], page 439.

Fret diagrams can be added to the fret diagram table. To add a diagram, you must specify the hash table for the diagram, the chord for the diagram, the tuning to be used, and a definition for the diagram. Normally, the hash table will be default-fret-table. The diagram definition can be either a \fret-diagram-terse definition string or a \fret-diagram-verbose marking list.
Different fret diagrams for the same chord name can be stored using different octaves of pitches. The different octave should be at least two octaves above or below the default octave, because the octaves above and below the default octave are used for transposing fretboards.

\include "predefined-guitar-fretboards.ly"

\storePredefinedDiagram #default-fret-table
\chordmode { c'' }
#guitar-tuning
#(offset-fret 2
  (chord-shape 'bes guitar-tuning))

mychords = \chordmode {
  c1 c''
}

In addition to fret diagrams, LilyPond stores an internal list of chord shapes. The chord shapes are fret diagrams that can be shifted along the neck to different positions to provide different chords. Chord shapes can be added to the internal list and then used to define predefined fret diagrams. Because they can be moved to various positions on the neck, chord shapes will normally not contain any open strings. Like fret diagrams, chord shapes can be entered as either \fret-diagram-terse strings or \fret-diagram-verbose marking lists.

\include "predefined-guitar-fretboards.ly"

% Add a new chord shape
\addChordShape #'powerf #guitar-tuning "1-1;3-3;3-4;x;x;x;"

% add some new chords based on the power chord shape

\storePredefinedDiagram #default-fret-table
\chordmode { f'' }
#guitar-tuning
#(chord-shape 'powerf guitar-tuning)
\storePredefinedDiagram #default-fret-table
\chordmode { g'' }
#guitar-tuning
#(offset-fret 2
   (chord-shape 'powerf guitar-tuning))

mychords = \chordmode {
   f1 f'' g g''
}

<<
\new ChordNames {
   mychords
}
\new FretBoards {
   mychords
}
>>

```
F F G G
| | | |
| | | |
| 194 193 | |
```

The graphical layout of a fret diagram can be customized according to user preference through the properties of the fret-diagram-interface. Details are found at Section “fret-diagram-interface” in Internals Reference. For a predefined fret diagram, the interface properties belong to FretBoards.FretBoard.

Selected Snippets

**Customizing fretboard fret diagrams**

Fret diagram properties can be set through 'fret-diagram-details. For FretBoard fret diagrams, overrides are applied to the FretBoards.FretBoard object. Like Voice, FretBoards is a bottom level context, therefore can be omitted in property overrides.

```
\include "predefined-guitar-fretboards.ly"

\storePredefinedDiagram #default-fret-table \chordmode { c' }
#guitar-tuning
#"x;1-1-;3-2;3-3;3-4;1-1-;"

% shorthand
oo = #(define-music-function
```
(grob-path value)
(list? scheme?)
#{ once override $grob-path = #value #})

<<
\new ChordNames {
  \chordmode { c1 | c | c | d }
}
\new FretBoards {
% Set global properties of fret diagram
\override FretBoards.FretBoard.size = #'1.2
\override FretBoard.fret-diagram-details.finger-code = #'in-dot
\override FretBoard.fret-diagram-details.dot-color = #'white
\chordmode {
  c
  \oo FretBoard.size #'1.0
  \oo FretBoard.fret-diagram-details.barre-type #'straight
  \oo FretBoard.fret-diagram-details.dot-color #'black
  \oo FretBoard.fret-diagram-details.finger-code #'below-string
  c'
  \oo FretBoard.fret-diagram-details.barre-type #'none
  \oo FretBoard.fret-diagram-details.number-type #'arabic
  \oo FretBoard.fret-diagram-details.orientation #'landscape
  \oo FretBoard.fret-diagram-details.mute-string #'!'
  \oo FretBoard.fret-diagram-details.label-dir #LEFT
  \oo FretBoard.fret-diagram-details.dot-color #'black
  c'
  \oo FretBoard.fret-diagram-details.finger-code #'below-string
  \oo FretBoard.fret-diagram-details.dot-radius #0.35
  \oo FretBoard.fret-diagram-details.dot-position #0.5
  \oo FretBoard.fret-diagram-details.fret-count #3
  d
}
}\new Voice {
  c'1 | c' | c' | d'
}
>>

Defining predefined fretboards for other instruments

Predefined fret diagrams can be added for new instruments in addition to the standards used for guitar. This file shows how this is done by defining a new string-tuning and a few predefined fretboards for the Venezuelan cuatro.
This file also shows how fingerings can be included in the chords used as reference points for the chord lookup, and displayed in the fret diagram and the TabStaff, but not the music.

These fretboards are not transposable because they contain string information. This is planned to be corrected in the future.

\% add FretBoards for the Cuatro
\% Note: This section could be put into a separate file
\% predefined-cuatro-fretboards.ly
\% and included into each of your compositions

cuatroTuning = #\((\text{ly:make-pitch } 0 \ 6 \ 0)\)
\(\text{, (ly:make-pitch } 1 \ 3 \ \text{SHARP})\)
\(\text{, (ly:make-pitch } 1 \ 1 \ 0)\)
\(\text{, (ly:make-pitch } 0 \ 5 \ 0)\))

dSix = \{ <a\4 \ b\1 \ d\3 \ fis\2> \}
dMajor = \{ <a\4 \ d\1 \ d\3 \ fis \ 2> \}
aMajSeven = \{ <a\4 \ cis\1 \ e\3 \ g\2> \}
dMajSeven = \{ <a\4 \ c\1 \ d\3 \ fis\2> \}
gMajor = \{ <b\4 \ b\1 \ d\3 \ g\2> \}

\storePredefinedDiagram #default-fret-table dSix
\#cuatroTuning
\"o;o;o;o;\"
\storePredefinedDiagram #default-fret-table dMajor
\#cuatroTuning
\"o;o;o;3-3;\"
\storePredefinedDiagram #default-fret-table aMajSeven
\#cuatroTuning
\"o;2-2;1-1;2-3;\"
\storePredefinedDiagram #default-fret-table dMajSeven
\#cuatroTuning
\"o;o;o;1-1;\"
\storePredefinedDiagram #default-fret-table gMajor
\#cuatroTuning
\"2-2;o;1-1;o;\"

\% end of potential include file /predefined-cuatro-fretboards.ly

\%(set-global-staff-size 16)

primerosNames = \chordmode \{ 
d:6 d a:maj7 d:maj7
\g
\}
primeros = \{ 
\dSix \dMajor \aMajSeven \dMajSeven
\gMajor
\}

\score
ChordChanges for FretBoards

FretBoards can be set to display only when the chord changes or at the beginning of a new line.
\include "predefined-guitar-fretboards.ly"

myChords = \chordmode {
  c1 c1 \break
  \set chordChanges = ##t
  c1 c1 \break
  c1 c1
}

<<
\new ChordNames { \myChords }
\new FretBoards { \myChords }
\new Staff { \myChords }
>>

Fretboards alternate tables

Alternate fretboard tables can be created. These would be used in order to have alternate fretboards for a given chord.

In order to use an alternate fretboard table, the table must first be created. Fretboards are then added to the table.

The created fretboard table can be blank, or it can be copied from an existing table.

The table to be used in displaying predefined fretboards is selected by the property \predefinedDiagramTable.

\include "predefined-guitar-fretboards.ly"

% Make a blank new fretboard table
#(define custom-fretboard-table-one
  (make-fretboard-table))

% Make a new fretboard table as a copy of default-fret-table
#(define custom-fretboard-table-two
  (make-fretboard-table default-fret-table))

% Add a chord to custom-fretboard-table-one
\storePredefinedDiagram #custom-fretboard-table-one
  \chordmode {c}
  #guitar-tuning
  "3-(;3;5;5;5;3-);"

% Add a chord to custom-fretboard-table-two
\storePredefinedDiagram #custom-fretboard-table-two
  \chordmode {c}
  #guitar-tuning
  "x;3;5;5;5;o;"

<<
\chords {
  c1 | d1 |
  c1 | d1 |
  c1 | d1 |
}
\new FretBoards {
  \chordmode {
    \set predefinedDiagramTable = #default-fret-table
    c1 | d1 |
    \set predefinedDiagramTable = #custom-fretboard-table-one
    c1 | d1 |
    \set predefinedDiagramTable = #custom-fretboard-table-two
    c1 | d1 |
  }
}
\new Staff {
  \clef "treble_8"
<<
  \chordmode {
    c1 | d1 |
    c1 | d1 |
    c1 | d1 |
  }
  {\s1 \markup "Default table" | \s1 |
   \s1 \markup \column {"New table" "from empty"} | \s1 |
   \s1 \markup \column {"New table" "from default"} | \s1 |
  }
>>
}
See also

Notation Reference: [Custom tablatures], page 415, [Automatic fret diagrams], page 439, [Chord mode overview], page 469, Section A.4 [Predefined fretboard diagrams], page 730.


Snippets: Section “Fretted strings” in Snippets.

Internals Reference: Section “fret-diagram-interface” in Internals Reference.

Automatic fret diagrams

Fret diagrams can be automatically created from entered notes using the FretBoards context. If no predefined diagram is available for the entered notes in the active stringTunings, this context calculates strings and frets that can be used to play the notes.

<<
\new ChordNames {
  \chordmode {
    f1 \ g
  }
}
\new FretBoards {
  <f, \ c \ f \ a \ c' \ f'>1
  <g, \ b, \ d \ g \ b' \ g'>1
}
\new Staff {
  \clef "treble_8"
  <f, \ c \ f \ a \ c' \ f'>1
  <g, \ b, \ d \ g \ b' \ g'>1
}
>>

As no predefined diagrams are loaded by default, automatic calculation of fret diagrams is the default behavior. Once default diagrams are loaded, automatic calculation can be enabled and disabled with predefined commands:
Sometimes the fretboard calculator will be unable to find an acceptable diagram. This can often be remedied by manually assigning a note to a string. In many cases, only one note need be manually placed on a string; the rest of the notes will then be placed appropriately by the FretBoards context.

Fingerings can be added to FretBoard fret diagrams.
The minimum fret to be used in calculating strings and frets for the FretBoard context can be set with the minimumFret property.

\new ChordNames {
  \chordmode {
    d1:m d:m
  }
}
\new FretBoards {
  <d a d' f'>1
  \set FretBoards.minimumFret = #5
  <d a d' f'>1
}
\new Staff {
  \clef "treble_8"
  <d a d' f'>1
  <d a d' f'>1
}

The strings and frets for the FretBoards context depend on the stringTunings property, which has the same meaning as in the TabStaff context. See [Custom tablatures], page 415, for information on the stringTunings property.

The graphical layout of a fret diagram can be customized according to user preference through the properties of the fret-diagram-interface. Details are found at Section “fret-diagram-interface” in Internals Reference. For a FretBoards fret diagram, the interface properties belong to FretBoards.FretBoard.

**Predefined commands**
\predefinedFretboardsOff, \predefinedFretboardsOn.

**See also**
Notation Reference: [Custom tablatures], page 415.
Snippets: Section “Fretted strings” in Snippets.
Internals Reference: Section “fret-diagram-interface” in Internals Reference.

Known issues and warnings
Automatic fretboard calculations do not work properly for instruments with non-monotonic tunings.

Right-hand fingerings
Right-hand fingerings p-i-m-a must be entered using `\rightHandFinger` followed by a number.

Note: If the number is entered in Scheme notation, remember to append a space before following it with a closing > or similar.

```
\clef "treble_8"
c4\rightHandFinger #1
e\rightHandFinger #2
g\rightHandFinger #3
c'\rightHandFinger #4
<\rightHandFinger #1 e\rightHandFinger #2
g\rightHandFinger #3 c'\rightHandFinger #4 >1
```

For convenience, `\rightHandFinger` may be abbreviated to something shorter, for example `\RH`, by adding the appropriate definition at the source file’s top level:

```
RH = \rightHandFinger \etc
```

Most behaviors of right-hand fingerings (namely, the StrokeFinger object) may be set in the same way as ordinary fingerings: see [Fingering instructions], page 258.

Selected Snippets

Placement of right-hand fingerings
It is possible to exercise greater control over the placement of right-hand fingerings by setting a specific property, as demonstrated in the following example.

```
#(define RH rightHandFinger)

\relative c {
 \clef "treble_8"
 \set strokeFingerOrientations = #'(up down)
 <cRH #1 eRH #2 gRH #3 cRH #4 >4
 \set strokeFingerOrientations = #'(up right down)
 <cRH #1 eRH #2 gRH #3 cRH #4 >4
 \set strokeFingerOrientations = #'(left)
 <cRH #1 eRH #2 gRH #3 cRH #4 >2
 \set strokeFingerOrientations = #'(right)
 cRH #1
}
Fingerings, string indications, and right-hand fingerings

This example combines left-hand fingering, string indications, and right-hand fingering.

```lilypond
#(define RH rightHandFinger)

\relative c {
  \clef "treble_8"
  \once \override TextSpanner.bound-details.left.text = \markup {"XII" \hspace #0.4 }
  \once \override TextSpanner.bound-details.right.text = \markup \draw-line \hspace .4 \draw-line #'(0 . -.5)
  \once \override TextSpanner.bound-details.right.padding = #-.65
  \once \override TextSpanner.dash-fraction = #.4
  \once \override TextSpanner.dash-period = #1.3
}
```

See also

Notation Reference: [Fingering instructions], page 258.
Snippets: Section “Fretted strings” in Snippets.
Internals Reference: Section “StrokeFinger” in Internals Reference.

2.4.2 Guitar

Most of the notational issues associated with guitar music are covered sufficiently in the general fretted strings section, but there are a few more worth covering here. Occasionally users want to create songbook-type documents having only lyrics with chord indications above them. Since LilyPond is a music typesetter, it is not recommended for documents that have no music notation in them. A better alternative is a word processor, text editor, or, for experienced users, a typesetter like GuitarTeX.

Indicating position and barring

This example demonstrates how to include guitar position and barring indications using a barré line.

```lilypond
\relative {
  \clef "treble_8"
  b,16 d g b e
  \once \override TextSpanner.bound-details.left.text = \markup {"XII" \hspace #0.4 }
  \once \override TextSpanner.bound-details.right.text = \markup \draw-line \hspace .4 \draw-line #'(0 . -.5)
  \once \override TextSpanner.bound-details.right.padding = #-.65
  \once \override TextSpanner.dash-fraction = #.4
  \once \override TextSpanner.dash-period = #1.3
}
```
Specialist notation

A more sophisticated solution can be found in LSR snippet 952 (https://lsr.di.unimi.it/LSR/Item?id=952).

See also

Notation Reference: [Text spanners], page 284.

Snippets: Section “Fretted strings” in Snippets, Section “Expressive marks” in Snippets.

Indicating harmonics and dampened notes

Special note heads can be used to indicate dampened notes or harmonics. Harmonics are normally further explained with a text markup.

```
\relative { 
    \clef "treble_8"
    \override NoteHead.style = #'harmonic-mixed
    d'8�markup { \italic \fontsize #-2 "harm. 12" } \g b>4 }
```

Dampened notes (also called dead notes) are supported within normal and tablature staves. In the following example, such notes are shown with pitches in the normal staff, indicating the frets where they are dampened. An alternative notation is to use empty strings instead. In tablature notation, however, it doesn’t make a difference.

```
music = \relative c' { 
    \omit StringNumber
    <a \deadNote cis a'>4
    <b\3 \deadNote dis b'>
    <c\3 \deadNote e\2 c'>
    \deadNotesOn
    \tuplet 3/2 { g8 b e }
    \deadNotesOff
    <a, c e>1
}
```

```
\new StaffGroup <<
    \new Staff {
        \clef "treble_8"
        \music
```
Another playing technique (especially used on electric guitars) is called \textit{palm mute}. The string is hereby partly muted by the palm of the striking hand (hence the name). LilyPond supports the notation of palm mute-style notes by changing the note head to a triangle shape.

```
\new Voice { % Warning: explicit Voice instantiation is 
  % required to have palmMuteOff work properly 
  % when palmMuteOn comes at the beginning of 
  % the piece. 
  \relative c, { 
  \clef "G_8" 
  \palmMuteOn 
  e8\markup { \musicglyph "noteheads.s2do" = palm mute } 
  < e b' e > e 
  \palmMuteOff 
  e e \palmMute e e e | 
  e8 \palmMute { e e e } e e e | 
  < \palmMute e b' e >8 \palmMute { e e e } < \palmMute e b' e >2 
  } 
}
```

\textbf{See also}\n
Snippets: Section “Fretted strings” in \textit{Snippets}.

Notation Reference: [Special note heads], page 41, Section A.9 [Note head styles], page 757.

\textbf{Indicating power chords}\n
Power chords and their symbols can be engraved in chord mode or as chord constructs. As an exception, the fifth is specified in these chord names, whereas it is usually left out in other chords (e.g., major or minor triads).

```
ChordsAndSymbols = { 
  \chordmode { 
    e,,1:5 
    a,,:5.8 
  } 
```
\set TabStaff.restrainOpenStrings = ##t
\set minimumFret = #8
c,,:5
f,,:5.8
}\set minimumFret = #2
\set restrainOpenStrings = ##f
\<a, e> <a cis' e'>
\<g d' g'>
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}

See also

Music Glossary: Section “power chord” in Music Glossary.
Notation Reference: [Extended and altered chords], page 471, [Printing chord names], page 474.
Snippets: Section “Fretted strings” in Snippets.

2.4.3 Banjo

Banjo tablatures

LilyPond has basic support for the five-string banjo. When making tablatures for five-string banjo, use the banjo tablature format function to get correct fret numbers for the fifth string:

```lilypond
\set TabStaff.restrainOpenStrings = ##t
\set minimumFret = #8
c,,:5
f,,:5.8
}\set minimumFret = #2
\set restrainOpenStrings = ##f
\<a, e> <a cis' e'>
\<g d' g'>
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}

\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}

\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}

\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}
```

```lilypond
\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}
```

See also

Music Glossary: Section “power chord” in Music Glossary.
Notation Reference: [Extended and altered chords], page 471, [Printing chord names], page 474.
Snippets: Section “Fretted strings” in Snippets.

2.4.3 Banjo

Banjo tablatures

LilyPond has basic support for the five-string banjo. When making tablatures for five-string banjo, use the banjo tablature format function to get correct fret numbers for the fifth string:

```lilypond
\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}
```

```lilypond
\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\score {
<<
\new ChordNames {
\ChordsAndSymbols
}\new Staff {
\clef "treble_8"
\ChordsAndSymbols
}\new TabStaff {
\ChordsAndSymbols
}\>>
}
```
A number of common tunings for the five-string banjo are predefined: banjo-open-g-tuning (gDGBD), banjo-c-tuning (gCGBD), banjo-modal-tuning (gDGCD), banjo-open-d-tuning (aDF#AD), banjo-open-dm-tuning (aDFAD), banjo-double-c-tuning (gCGCD) and banjo-double-d-tuning (aDGDE).

These may be converted to four-string tunings using the four-string-banjo function:
\set TabStaff.stringTunings = #(four-string-banjo banjo-c-tuning)

See also
Installed Files: ly/string-tunings-init.ly.
Snippets: Section “Fretted strings” in Snippets.

2.4.4 Lute

Lute tablatures

LilyPond supports tablature for lute.

To get additional bass strings use additionalBassStrings, where the pitches of those strings are set. They will be printed below lowest line as: a, /a, //a, ///a, 4, 5, etc.

fret-letter-tablature-format for tablatureFormat should be used, probably also fretLabels for further customizing.

m = { f'4 d' a f d a, g, fis, e, d, c, \bar "\|." }

\score { << \new Staff \with { \omit StringNumber } { \clef "treble_8" \music } \new TabStaff \with { tablatureFormat = #fret-number-tablature-format-banjo stringTunings = #banjo-open-g-tuning } { \music } >> }
stringTunings = \stringTuning <a, d f a d' f'>
additionalBassStrings = \stringTuning <c, d, e, fis, g,>
fretLabels = #'("a" "b" "c" "d" "e" "f" "g" "h" "i" "k")

Known issues and warnings
Using FretBoards with additionalBassStrings is not supported and will yield unsatisfying results.

2.5 Percussion

2.5.1 Common notation for percussion
Rhythmic music is primarily used for percussion and drum notation, but it can also be used to show the rhythms of melodies.

References for percussion
- Some percussion may be notated on a rhythmic staff; this is discussed in [Showing melody rhythms], page 89, and [Instantiating new staves], page 220.
- MIDI output is discussed in a separate section; please see Section 3.6 [Creating MIDI output], page 590.

See also
Notation Reference: [Showing melody rhythms], page 89, [Instantiating new staves], page 220, Section 3.6 [Creating MIDI output], page 590.
Snippets: Section “Percussion” in Snippets.

Basic percussion notation
Percussion notes may be entered in \drummode mode, which is similar to the standard mode for entering notes. The simplest way to enter percussion notes is to use the \drums command, which creates the correct context and entry mode for percussion:

\drums {
 hihat4 hh bassdrum bd
}

This is shorthand for:

\new DrumStaff \drummode {
 hihat4 hh bassdrum bd
Each piece of percussion has a full name and an abbreviated name, and both can be used in input files. The full list of percussion note names may be found in Section A.17 [Percussion notes], page 835.

Note that the normal notation of pitches (such as cis4) in a DrumStaff context will cause an error message. Percussion clefs are added automatically to a DrumStaff context but they can also be set explicitly. Other clefs may be used as well.

```
\drums {
  \clef percussion
  bd4 4 4 4
  \clef treble
  hh4 4 4 4
}
```

There are a few issues concerning MIDI support for percussion instruments; for details please see Section 3.6 [Creating MIDI output], page 590.

See also

Notation Reference: Section 3.6 [Creating MIDI output], page 590, Section A.17 [Percussion notes], page 835.

Installed Files: ly/drumpitch-init.ly.

Snippets: Section “Percussion” in Snippets.

Drum rolls

Drum rolls are indicated with three slashes across the stem. For quarter notes or longer the three slashes are shown explicitly, eighth notes are shown with two slashes (the beam being the third), and drum rolls shorter than eighths have one stem slash to supplement the beams. This is achieved with the tremolo notation, as described in [Tremolo repeats], page 193.

```
\drums {
  \time 2/4
  sn16 8 16 8 8:32 ~
  8 8 4:32 ~
  4 8 16 16
  4 r4
}
```

Sticking can be indicated by placing a markup for "R" or "L" above or below notes, as discussed in Section 5.4.1 [Direction and placement], page 698. The staff-padding property may be overridden to achieve a pleasing baseline.

```
\drums {
  \repeat unfold 2 {
```
Chapter 2: Specialist notation

Pitched percussion

Certain pitched percussion instruments (e.g., xylophone, vibraphone, and timpani) are written using normal staves. This is covered in other sections of the manual.

See also

Notation Reference: Section 3.6 [Creating MIDI output], page 590.
Snippets: Section “Percussion” in Snippets.

Percussion staves

A percussion part for more than one instrument typically uses a multi-line staff where each position in the staff refers to one piece of percussion. To typeset the music, the notes must be interpreted in DrumStaff and DrumVoice context.

\new DrumStaff <<
\drummode {
 crashcymbal4 hihat8 halfopenhihat hh hh hh openhihat
}
\new DrumVoice { \voiceOne \up }
\new DrumVoice { \voiceTwo \down }
>>

The above example shows verbose polyphonic notation. The short polyphonic notation, described in Section “I'm hearing voices” in Learning Manual, can also be used. For example,

\new DrumStaff <<
\drummode {
 bd4 sn4 bd4 sn4
<< {
 \repeat unfold 16 hh16
} \}
 bd4 sn4 bd4 sn4
}
There are also other layout possibilities. To use these, set the property `drumStyleTable` in context `DrumVoice`. The following variables have been predefined:

drums-style

This is the default. It typesets a typical drum kit on a five-line staff:

![Drum Kit Example](image)

The drum scheme supports six different toms. When there are fewer toms, simply select the toms that produce the desired result. For example, to get toms on the three middle lines you use `tommh`, `tomml`, and `tomfl`.

agostini-drums-style

Invented by the French percussionist Dante Agostini in 1965, this notation is commonly employed in France but also elsewhere.

![Drum Kit Example](image)
Based on the work of Norman Weinberg, published in his *Guidelines for Drumset Notation*.

Weinberg-drums-style

This typesets timbales on a two line staff:

```
| | | -
| |
```

Congas-style

This typesets congas on a two line staff:

```
| | -
| |
```

Bongos-style

This typesets bongos on a two line staff:

```
| | -
| |
```

Percussion-style

To typeset all kinds of simple percussion on one-line staves:

```
| | -
| |
```
Custom percussion styles may also be defined, as explained in [Custom percussion staves], page 453.

See also

Notation Reference: [Custom percussion staves], page 453.

Installed Files: ly/drumpitch-init.ly.

Snippets: Section “Percussion” in *Snippets*.

Custom percussion staves

Custom percussion styles may be defined, to which the `drumStyleTable` property may then be set. Existing notations may be redefined as an association list where each entry has to be comprised of four items: a name, the note head style (or default), an articulation sign if needed (or #f if not), and the note head’s position on the staff. That list must then be converted into a Scheme hash table, using the `alist->hash-table` function.

```
#(define mydrums '(
  (bassdrum default #f -1)
  (snare default #f 0)
  (hihat cross #f 1)
  (halfopenhihat cross halfopen 1)
  (pedalhihat xcircle stopped 2)
  (loutom diamond #f 3)))
```

```
up = \drummode { hh8 hh hhho hhho hhp4 hhp }
down = \drummode { bd4 sn bd toml8 toml }
```

```
\new DrumStaff \with { drumStyleTable = #(alist->hash-table mydrums) }
<<
  \new DrumVoice { \voiceOne \up }
  \new DrumVoice { \voiceTwo \down }
>>
```

New names may also be added to these custom notations through the `drumPitchNames` variable, that may be redefined as an association list (or augmented by appending a new list to its existing value, as demonstrated below), but also through its individual entries. This also makes it possible to define aliases: alternate input shorthand for some notations.

```
drumPitchNames =
  #(append
    '(((leftsnap . sidestick)
      (rightsnap . ridecymbal))
    drumPitchNames)

drumPitchNames.ls = #'sidestick
```
drumPitchNames.rs = #'ridecymbal
\drums {
 leftsnap4. rightsnap8 leftsnap4 rightsnap
 ls8 rs ls rs ls4 rs
}

In a similar manner, the drumPitchTable property associates a specific pitch (meaning a different instrument sound, as provided by available MIDI sound fonts) to each notation. That property needs to be defined as a hash table, which is again converted from an association list (stored by default as the midiDrumPitches variable). Redefining these associations is achieved as explained above, either by defining an entire association list or through individual entries. The following example demonstrates how to create a whole notation set with its own input syntax, custom notations and corresponding MIDI output.

```
drumPitchNames.dbass = #'dbass
drumPitchNames.db = #'dbass  % 'db is in use already
drumPitchNames.dbassmute = #'dbassmute
drumPitchNames.dbm = #'dbassmute
drumPitchNames.do = #'dopen
drumPitchNames.dopenmute = #'dopenmute
drumPitchNames.dm = #'dopenmute
drumPitchNames.dslap = #'dslap
drumPitchNames.ds = #'dslap
drumPitchNames.dslapmute = #'dslapmute
drumPitchNames.dsm = #'dslapmute

#(define djembe-style
  '((dbass default #f -2)
    (dbassmute default stopped -2)
    (dopen default #f 0)
    (dopenmute default stopped 0)
    (dslap default #f 2)
    (dslapmute default stopped 2)))

midiDrumPitches.dbass = g
midiDrumPitches.dbassmute = fis
midiDrumPitches.dopen = a
midiDrumPitches.dopenmute = gis
midiDrumPitches.dslap = b
midiDrumPitches.dslapmute = ais

test = \drummode { dba4 do ds dbm dom dsm }

\score {
  \new DrumStaff \with {
    \override StaffSymbol.line-count = #3
    instrumentName = "Djembé "
    drumStyleTable = #(alist->hash-table djembe-style)
    drumPitchTable = #(alist->hash-table midiDrumPitches)
}
See also

Installed Files: ly/drum_pitch-init.ly.

Snippets: Section “Percussion” in Snippets.

Internals Reference: Section “DrumStaff” in Internals Reference, Section “DrumVoice” in Internals Reference.

Ghost notes

Also known as dead, muted, silenced or false notes; ghost notes can be created using the \parenthesize command, see [Parentheses], page 269.

\new DrumStaff <<
\new DrumVoice = "1" { s1 }
\new DrumVoice = "2" { s1 }
\drummode {
<<
{
   hh8[ 8] <hh sn> hh16
   \parenthesize sn hh
   \parenthesize sn hh8 <hh sn> hh
} \\
{
   bd4 r4 bd8 8 r8 bd
}
}>
}>

See also

Notation Reference: [Parentheses], page 269.

Snippets: Section “Percussion” in Snippets.
2.6 Wind instruments

This section includes elements of music notation that arise when writing specifically for wind instruments.

2.6.1 Common notation for wind instruments

This section discusses notation common to most wind instruments.

References for wind instruments

Many notation issues for wind instruments pertain to breathing and tonguing:
- Breathing can be specified by rests or [Breath marks], page 159.
- Legato playing is indicated by [Slurs], page 153.
- Different types of tonguing, ranging from legato to non-legato to staccato are usually shown by articulation marks, sometimes combined with slurs, see [Articulations and ornamentations], page 140, and Section A.15 [List of articulations], page 833.
- Flutter tonguing is usually indicated by placing a tremolo mark and a text markup on the note. See [Tremolo repeats], page 193.

Other aspects of musical notation that can apply to wind instruments:
- Many wind instruments are transposing instruments, see [Instrument transpositions], page 27.
- Slide glissandi are characteristic of the trombone, but other winds may perform keyed or valved glissandi. See [Glissando], page 160.
- Harmonic series glissandi, which are possible on all brass instruments but common for French Horns, are usually written out as [Grace notes], page 133.
- Pitch inflections at the end of a note are discussed in [Falls and doits], page 159.
- Key slaps or valve slaps are often shown by the cross style of [Special note heads], page 41.
- Woodwinds can overblow low notes to sound harmonics. These are shown by the flageolet articulation. See Section A.15 [List of articulations], page 833.
- The use of brass mutes is usually indicated by a text markup, but where there are many rapid changes it is better to use the stopped and open articulations. See [Articulations and ornamentations], page 140, and Section A.15 [List of articulations], page 833.
- Stopped horns are indicated by the stopped articulation. See [Articulations and ornamentations], page 140.

See also

Notation Reference: [Breath marks], page 159, [Slurs], page 153, [Articulations and ornamentations], page 140, Section A.15 [List of articulations], page 833, [Tremolo repeats], page 193, [Instrument transpositions], page 27, [Glissando], page 160, [Grace notes], page 133, [Falls and doits], page 159, [Special note heads], page 41.

Snippets: Section “Winds” in Snippets.
Fingerings

All wind instruments other than the trombone require the use of several fingers to produce each pitch. Some fingering examples are shown in the snippets below.

Woodwind diagrams can be produced and are described in [Woodwind diagrams], page 460.

Selected Snippets

Fingering symbols for wind instruments

Special symbols can be achieved by combining existing glyphs, which is useful for wind instruments.

```
\once \override TextScript.self-alignment-X = #CENTER
\once \override TextScript.X-offset =#(lambda (g)
 (+ (ly:self-alignment-interface::centered-on-x-parent g)
 (ly:self-alignment-interface::x-aligned-on-self g)))

\score {
 \relative c' {
 g\open
 \once \override TextScript.staff-padding = #-1.0
 \centermarkup
 g^\markup {
 \combine
 \musicglyph "scripts.open"
 \musicglyph "scripts.tenuto"
 }
 \centermarkup
 g^\markup {
 \combine
 \musicglyph "scripts.open"
 \musicglyph "scripts.stopped"
 }
 g\stopped
 }
 }
}
```

Recorder fingering chart

The following example demonstrates how fingering charts for wind instruments can be realized.

```
% range chart for paetzold contrabass recorder

\once \override TextScript.self-alignment-X = #CENTER
\once \override TextScript.X-offset =#(lambda (g)
 (+ (ly:self-alignment-interface::centered-on-x-parent g)
 (ly:self-alignment-interface::x-aligned-on-self g)))
```
\score {
\new Staff \with {
  \remove "Time_signature_engraver"
  \omit Stem
  \omit Flag
  \consists "Horizontal_bracket_engraver"
}
{
  \clef bass
  \set Score.timing = ##f
  f,1*1/4 \glissando
  \clef violin
  gis'1*1/4
  \stemDown a'4 ^\markup {1}
  \centermarkup \once \override TextScript.padding = #2
  bes'1*1/4 \markup (baseline-skip . 1.7) \column
    \{ \fontsize #-5 \slashed-digit #0 \finger 1 \finger 2
      \finger 3 \finger 4 \finger 5 \finger 6 \finger 7 \}
  b'1*1/4
  c''4 ^\markup {1}
  \centermarkup \once \override TextScript.padding = #2
  cis''1*1/4
  deh''1*1/4
  \centermarkup \once \override TextScript.padding = #2
  \once \override Staff.HorizontalBracket.direction = #UP
  e''1*1/4 \markup (baseline-skip . 1.7) \column
    \{ \fontsize #-5 \slashed-digit #0 \finger 1 \finger 2
      \finger 4 \finger 5 \}
  \startGroup
  f''1*1/4 ^\markup {2}\stopGroup
}

See also

Notation Reference: [Woodwind diagrams], page 460.

Snippets: Section “Winds” in Snippets.
2.6.2 Bagpipes

This section discusses notation common to bagpipes.

**Bagpipe definitions**

LilyPond contains special definitions for Scottish, Highland Bagpipe music; to use them, add

```
\include "bagpipe.ly"
```

to the top of your input file. This lets you add the special grace notes common to bagpipe music with short commands. For example, you could write `\taor` instead of

```
\grace { \small G32[d G e] }
```

`bagpipe.ly` also contains pitch definitions for the bagpipe notes in the appropriate octaves, so you do not need to worry about `\relative` or `\transpose`.

```
\include "bagpipe.ly"
{ \grg G4 \grg a \grg b \grg c \grg d \grg e \grg f \grA g A }
```

Bagpipe music nominally uses the key of D Major (even though that isn’t really true). However, since that is the only key that can be used, the key signature is normally not written out. To set this up correctly, always start your music with `\hideKeySignature`. If you for some reason want to show the key signature, you can use `\showKeySignature` instead.

Some modern music use cross-fingering on c and f to flatten those notes. This can be indicated by c-flat or f-flat. Similarly, the *Piobaireachd* high g can be written g-flat when it occurs in light music.

**See also**

Snippets: Section “Winds” in Snippets.

**Bagpipe example**

This is what the well known tune Amazing Grace looks like in bagpipe notation.

```
\include "bagpipe.ly"
\layout {
 indent = 0.0\cm
 \context { \Score \remove Bar_number_ engraver }
}

\header {
 title = "Amazing Grace"
 meter = "Hymn"
 arranger = "Trad. arr."
}

{
 \hideKeySignature
 \time 3/4
 \grg \partial 4 a8. d16
 \slurd d2 \grg f8[e32 d16.]
 \grg f2 \grg f8 e
```
2.6.3 Woodwinds

This section discusses notation specifically for woodwind instruments.

Woodwind diagrams

Woodwind diagrams can be used to indicate the fingering to be used for specific notes and are available for the following instruments:

- piccolo
- flute
- oboe
- clarinet
- bass clarinet
- saxophone
- bassoon

Amazing Grace

Hymn

Trad. arr.

See also

Snippets: Section “Winds” in Snippets.
• contrabassoon

Woodwind diagrams are created as markups:

```latex
\markup {
 \woodwind-diagram #'piccolo #'(lh . (gis))
 (cc . (one three))
 (rh . (ees))
}
```

Keys can be open, partially-covered, ring-depressed, or fully covered. The angle of partially-covered keys can be specified:

```latex
\markup \override #(baseline-skip . 22) \column {
 \override #(baseline-skip . 2.5) \fill-line {
 ""
 \raise #1.2 \center-column { "one" "quarter" }
 \raise #1.2 \center-column { "one" "half" }
 \raise #1.2 \center-column { "three" "quarter" }
 "ring"
 "full"
 \raise #1.2 \center-column { "one half," "vertical" }
 ""
 }
 \fill-line {
 ""
 \woodwind-diagram #'flute #'(cc . (one1q))
 (lh . ())
 (rh . ())
 \woodwind-diagram #'flute #'(cc . (one1h))
 (lh . ())
 (rh . ())
 \woodwind-diagram #'flute #'(cc . (one3q))
 (lh . ())
 (rh . ())
 \woodwind-diagram #'flute #'(cc . (oneR))
 (lh . ())
 (rh . ())
 \woodwind-diagram #'flute #'(cc . (oneF two))
 (lh . ())
 (rh . ())
 \override #'(woodwind-diagram-details . ((fill-angle . 90)))
 \woodwind-diagram #'flute #'(cc . (one1h))
 (lh . ())
 }
}
```
Trills are indicated as shaded keys, or in non-graphical mode, as either circled (the default) or shaded text:

\markup 
\override #'(baseline-skip . 20) 
\override #'(line-width . 50) 
\column {
  \fill-line {
    "standard"
    "circled"
    "shaded"
  } 
  \fill-line {
    ""
  }
  \woodwind-diagram #'bass-clarinet
    #'(cc . (threeT four))
    (lh . ())
    (rh . (b fis)))
\override #(graphical . #f)
\woodwind-diagram #'bass-clarinet
    #'(cc . (threeT four))
    (lh . ())
    (rh . (b fisT)))
\override #(graphical . #f)
\override #(woodwind-diagram-details . ((text-trill-circled . #f)))
\woodwind-diagram #'bass-clarinet
    #'(cc . (threeT four))
    (lh . ())
    (rh . (b fisT)))
A variety of trills can be displayed:

\markup {
  \override #(baseline-skip . 22)
  \column {
    \override #(baseline-skip . 2.5) \fill-line {
      ""
      \center-column { "one quarter" "to ring" }
      \center-column { "ring" "to shut" }
      \center-column { "ring" "to open" }
      \center-column { "open" "to shut" }
      \center-column { "one quarter to" "three quarters" }
    }
  }
  \fill-line {
    ""
    \woodwind-diagram #'flute #'((cc . (one1qTR))
      (lh . ()))
      (rh . ()))
    \woodwind-diagram #'flute #'((cc . (oneTR))
      (lh . ()))
      (rh . ()))
    \woodwind-diagram #'flute #'((cc . (oneRT))
      (lh . ()))
      (rh . ()))
    \woodwind-diagram #'flute #'((cc . (oneT))
      (lh . ()))
      (rh . ()))
    \woodwind-diagram #'flute #'((cc . (one1qT3q))
      (lh . ()))
      (rh . ()))
  }
}
The list of all possible keys and settings for a given instrument can be displayed on the console using `(print-keys-verbose 'flute)` or in the log file using `(print-keys-verbose 'flute (current-error-port))`, although they will not show up in the music output.

Creating new diagrams is possible, although this will require Scheme ability and may not be accessible to all users. The patterns for the diagrams are in files `scm/define-woodwind-diagrams.scm` and `scm/display-woodwind-diagrams.scm`.

**Selected Snippets**

**Woodwind diagrams listing**

The following music shows all of the woodwind diagrams currently defined in LilyPond.

\layout {
  indent = 0
}

\relative c' {
  \textLengthOn
  c^\prime
  \markup {
    \center-column {
      'tin-whistle
      " "
      \woodwind-diagram
      '#tin-whistle
      '#'()
    }
  }
  c^\prime
  \markup {
    \center-column {
      'piccolo
      " "
      \woodwind-diagram
      '#piccolo
      '#'()
    }
  }
  c^\prime
  \markup {
    \center-column {
      }
  }
}
"flute
\woodwind-diagram
 #'flute
 #'()
\}
\}
c1\markup { \center-column { 'oboe
 " "
 \woodwind-diagram
 #'oboe
 #'()
\}
\}
c1\markup { \center-column { 'clarinet
 " "
 \woodwind-diagram
 #'clarinet
 #'()
\}
\}
c1\markup { \center-column { 'bass-clarinet
 " "
 \woodwind-diagram
 #'bass-clarinet
 #'()
\}
\}
c1\markup { \center-column { 'saxophone
 " "
 \woodwind-diagram
 #'saxophone
 #'()
\}
\}
c1\markup { \center-column { 'bassoon
 " "
 \woodwind-diagram
Graphical and text woodwind diagrams

In many cases, the keys other than the central column can be displayed by key name as well as by graphical means.
Changing the size of woodwind diagrams

The size and thickness of woodwind diagrams can be changed.

\relative c' { 
\textLengthOn
\relative c' { 
\rel
Woodwind diagrams key lists

The snippet below produces a list of all possible keys and key settings for woodwind diagrams as defined in scm/define-woodwind-diagrams.scm. The list will be displayed in the log file, but not in the music. If output to the console is wanted, omit the (current-error-port) from the commands.

```lilypond
#(print-keys-verbose 'piccolo (current-error-port))
#(print-keys-verbose 'flute (current-error-port))
#(print-keys-verbose 'flute-b-extension (current-error-port))
#(print-keys-verbose 'tin-whistle (current-error-port))
#(print-keys-verbose 'obo (current-error-port))
#(print-keys-verbose 'clarinet (current-error-port))
#(print-keys-verbose 'bass-clarinet (current-error-port))
#(print-keys-verbose 'low-bass-clarinet (current-error-port))
#(print-keys-verbose 'saxophone (current-error-port))
#(print-keys-verbose 'soprano-saxophone (current-error-port))
#(print-keys-verbose 'alto-saxophone (current-error-port))
#(print-keys-verbose 'tenor-saxophone (current-error-port))
#(print-keys-verbose 'baritone-saxophone (current-error-port))
#(print-keys-verbose 'bassoon (current-error-port))
#(print-keys-verbose 'contrabassoon (current-error-port))
\score {c''1}
```

See also

Installed Files: scm/define-woodwind-diagrams.scm,
scm/display-woodwind-diagrams.scm.

Snippets: Section “Winds” in Snippets.

2.7 Chord notation

Chord mode is used to enter chords using an indicator of the chord structure, rather than the chord pitches.

Chord mode overview

Chords can be entered as simultaneous music, as discussed in [Chorded notes], page 195.

Chords can also be entered in “chord mode”, which is an input mode that focuses on the structures of chords in traditional European music, rather than on specific pitches. This is convenient for those who are familiar with using chord names to describe chords. More information on different input modes can be found at Section 3.1 [Input modes], page 537.

\chordmode \{ c1 g a g c \}

Chords entered using chord mode are music elements, and can be transposed just like chords entered using simultaneous music. \chordmode is absolute, as \relative has no effect on chordmode blocks. However, in \chordmode the absolute pitches are one octave higher than in note mode.

Chord mode and note mode can be mixed in sequential music:

\relative {\relative {<c' e g>2 <g b d> \chordmode \{ c2 f \} <c e g>2 <g' b d>}}
\chordmode \{ f2 g \}

\chordmode \{ c2 f4 g \}

See also
Notation Reference: [Chorded notes], page 195, Section 3.1 [Input modes], page 537.
Snippets: Section “Chords” in Snippets.

Known issues and warnings
Predefined shorthands for articulations and ornaments cannot be used on notes in chord mode, see [Articulations and ornamentations], page 140.

Common chords
Major triads are entered by including the root and an optional duration:
\chordmode \{ c2 f4 g \}

Minor, augmented, and diminished triads are entered by placing : and a quality modifier string after the duration:
\chordmode \{ c2:m f4:aug g:dim \}

Seventh chords can be created:
\chordmode \{ c1:7 c:m7 c:maj7 c:dim7 c:aug7 \}

The table below shows the actions of the quality modifiers on triads and seventh chords. The default seventh step added to chords is a minor or flatted seventh, which makes the dominant seventh the basic seventh chord. All alterations are relative to the dominant seventh. A more complete table of modifier usage is found at Section A.2 [Common chord modifiers], page 726.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Action</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>The default action; produces a major triad.</td>
<td>\chordmode { c2 f4 g }</td>
</tr>
</tbody>
</table>
m, m7  The minor chord. This modifier lowers the 3rd.

\[\begin{array}{c}
\text{c1:2 c:3 c:4 c:5} \\
\text{c1:6 c:7 c:8 c:9} \\
\text{c1:10 c:11 c:12 c:13} \\
\text{c1:14}
\end{array}\]

\[\text{dim, dim7} \quad \text{The diminished chord. This modifier lowers the 3rd, 5th and (if present) the 7th step.}\]

\[\begin{array}{c}
\text{c1:2 c:3 c:4 c:5} \\
\text{c1:6 c:7 c:8 c:9} \\
\text{c1:10 c:11 c:12 c:13} \\
\text{c1:14}
\end{array}\]

\[\text{aug} \quad \text{The augmented chord. This modifier raises the 5th step.}\]

\[\begin{array}{c}
\text{c1:2 c:3 c:4 c:5} \\
\text{c1:6 c:7 c:8 c:9} \\
\text{c1:10 c:11 c:12 c:13} \\
\text{c1:14}
\end{array}\]

\[\text{maj, maj7} \quad \text{The major 7th chord. This modifier adds a raised 7th step. The 7 following maj is optional. Do NOT use this modifier to create a major triad.}\]

\[\begin{array}{c}
\text{c1:2 c:3 c:4 c:5} \\
\text{c1:6 c:7 c:8 c:9} \\
\text{c1:10 c:11 c:12 c:13} \\
\text{c1:14}
\end{array}\]

\[\text{See also}\]

Notation Reference: Section A.2 [Common chord modifiers], page 726, [Extended and altered chords], page 471.

Snippets: Section “Chords” in Snippets.

**Known issues and warnings**

Only one quality modifier should be used per chord, typically on the highest step present in the chord. Chords with more than quality modifier will be parsed without an error or warning, but the results are unpredictable. Chords that cannot be achieved with a single quality modifier should be altered by individual pitches, as described in [Extended and altered chords], page 471.

**Extended and altered chords**

Chord structures of arbitrary complexity can be created in chord mode. The modifier string can be used to extend a chord, add or remove chord steps, raise or lower chord steps, and add a bass note or create an inversion.

The first number following the : is taken to be the extent of the chord. The chord is constructed by sequentially adding thirds to the root until the specified number has been reached. Note that the seventh step added as part of an extended chord will be the minor or flatted seventh, not the major seventh. If the extent is not a third (e.g., 6), thirds are added up to the highest third below the extent, and then the step of the extent is added. The largest possible value for the extent is 13. Any larger value is interpreted as 13.

\[\text{\texttt{chordmode \{} \quad \texttt{c1:2 c:3 c:4 c:5} \quad \texttt{c1:6 c:7 c:8 c:9} \quad \texttt{c1:10 c:11 c:12 c:13} \quad \texttt{c1:14 \}} \]

\[\begin{array}{c}
\text{c1:2 c:3 c:4 c:5} \\
\text{c1:6 c:7 c:8 c:9} \\
\text{c1:10 c:11 c:12 c:13} \\
\text{c1:14}
\end{array}\]
As a special exception, c:5 produces a 'power chord' only consisting of root and fifth.

Since an unaltered 11 does not sound good when combined with an unaltered 13, the 11 is removed from a :13 chord (unless it is added explicitly).

\chordmode {
  c1:13 c:13.11 c:m13
}

Individual steps can be added to a chord. Additions follow the extent and are prefixed by a dot (.). The basic seventh step added to a chord is the minor or flatted seventh, rather than the major seventh.

\chordmode {
  c1:3.5.6 c:3.7.8 c:3.6.13
}

Added steps can be as high as desired.

\chordmode {
  c4:3.5.15 c:3.5.20 c:3.5.25 c:3.5.30
}

Added chord steps can be altered by suffixing a - or + sign to the number. To alter a step that is automatically included as part of the basic chord structure, add it as an altered step.

\chordmode {
  c1:7+ c:5+.3- c:3-.5= -.7-
}

Following any steps to be added, a series of steps to be removed is introduced in a modifier string with a prefix of ^\-. If more than one step is to be removed, the steps to be removed are separated by . following the initial ^\-.

\chordmode {

The modifier \textit{sus} can be added to the modifier string to create suspended chords. This removes the 3rd step from the chord. Append either 2 or 4 to add the 2nd or 4th step to the chord. When \textit{sus} is followed by either a 2nd or 4th step, it is equivalent to \textit{\textasciicircum}3, otherwise to \textit{sus4}, namely 5.4.

\begin{verbatim}
\chordmode {
   c1:sus c:sus2 c:sus4 c:5.4
}
\end{verbatim}

Added bass notes (putting a pitch other than the root on the bottom of the chord) can be specified by appending /\textit{pitch} to the chord.

\begin{verbatim}
\chordmode {
   c'1 c'/e c'/f
}
\end{verbatim}

If the added pitch is already part of the chord, this may be used to print chord inversions, in which case the pitch is not added but merely moved to the bottom of the chord. It may however be treated as an added note (and thus printed twice), by using the syntax /+\textit{pitch}.

\begin{verbatim}
\chordmode {
   c'1 c'/g c'/+e
}
\end{verbatim}

Automatic chord inversions and voicings are demonstrated in [Chord inversions and specific voicings], page 474.

Chord modifiers that can be used to produce a variety of standard chords are shown in Section A.2 [Common chord modifiers], page 726.

\textbf{See also}

Notation Reference: [Chord inversions and specific voicings], page 474, Section A.2 [Common chord modifiers], page 726.

Snippets: Section “Chords” in \textit{Snippets}. 

Known issues and warnings

Each step can only be present in a chord once. The following simply produces the augmented chord, since 5+ is interpreted last.

\chordmode \{ c1:3.5.5-.5+ \}

\begin{music}
\chord{cog}{\sharp}{\G}{C44}
\end{music}

Chord inversions and specific voicings

In addition to chord modifiers and added bass notes, various functions may be used to automatically print chords in a specific inversion or voicing – for example the so-called ‘drop 2' voicing commonly used in jazz music.

\chordmode \{
    \dropNote 2 \{
        c2: \maj7 d: \m7
    \}
    \invertChords 1 d1: \maj7
\}

\begin{music}
\chord{cog}{\sharp}{\G}{C44}
\end{music}

Unlike added bass notes shown in [Extended and altered chords], page 471, this only affects the way chords are printed on a staff, and not chord names written with letters. Furthermore, these functions may be used not only in chord mode but also with \(<\ldots>\) chords constructs explained in [Chorded notes], page 195.

See also

Notation Reference: [Extended and altered chords], page 471, [Chorded notes], page 195.

Snippets: Section “Chords” in Snippets.

2.7.2 Displaying chords

Chords can be displayed by name, in addition to the standard display as notes on a staff.

Printing chord names

Chord names are printed in the ChordNames context:

\begin{music}
\new ChordNames \{
    \chordmode \{
        c2 f4. g8
    \}
\}
\end{music}

C F G

Chords can be entered as simultaneous notes or through the use of chord mode. The displayed chord name will be the same, regardless of the mode of entry, unless there are inversions or added bass notes:

\begin{music}
\chordmusic = \relative \{
    c' e g>2 <f bes c>
\}
\end{music}
When passed to a ChordNames context, rests (including multi-measure rests) cause the text “N.C.” (No Chord) to be displayed.

\new ChordNames \myChords
\new Staff \myChords

\chords \{ ... \} is a shortcut notation for \new ChordNames \chordmode \{ ... \}.

\chords \{ ... \}
Selected Snippets

Showing chords at changes

By default, every chord entered is printed; this behavior can be modified so that chord names are printed only at the start of lines and when the chord changes.

```
harmonies = \chordmode {
 c1:m c:m \break c:m c:m d
}

<<
\new ChordNames {
 \set chordChanges = ##t
 \harmonies
}
\new Staff {
 \relative c' {
 \harmonies
 }
}
>>
```

```
\begin{music}\setstaffa{C}{\begin{music}\setstaffb{C}{Cm}\setstaffc{D}{3}\end{music}}\end{music}
```

Simple lead sheet

When put together, chord names, a melody, and lyrics form a lead sheet:

```
\begin{music}\setstaffa{C}{\begin{music}\setstaffb{C}{\begin{music}\begin{music}\chords{ c2 g:sus4 f e }\new Staff \relative c'' { a4 e c8 e r4 b2 c4(d) } \addlyrics { One day this shall be free _ _ } \end{music}\end{music}\end{music}}\end{music}}\end{music}
```

```
\begin{music}\setstaffa{C}{\begin{music}\setstaffb{C}{C G^{sus4} F E}\end{music}}\end{music}
```

One day this shall be free_

Customizing the no-chord symbol

By default, rests in a ChordNames context cause the “N.C.” symbol to be printed. This markup can be customized.

```
<<
\chords {
 R1
 \set noChordSymbol = "---"
}
```
Chapter 2: Specialist notation

R1
\set noChordSymbol = \markup \italic "Ssh!"
R1
}  
{  
R1*3  
}
>>
\new Staff {  
\clef treble  
\times 4  
\note c4 \tie \note d4 \tie \note e4 \tie \note f4 \tie \note g4 \tie \note a4 \tie \note b4 \tie \note c5 
}\new Staff {  
\clef bass  
\times 4  
\note c4 \tie \note e4 \tie \note g4 \tie \note c5 
}\new Staff {  
\clef bass  
\times 4  
\note e4 \tie \note a4 \tie \note d4 \tie \note g4 \tie \note c5 
}\new Staff {  
\clef bass  
\times 4  
\note g4 \tie \note c5 
}\new Staff {  
\clef bass  
\times 4  
\note c5 
}

See also

Notation Reference: [Writing music in parallel], page 217.
Snippets: Section “Chords” in Snippets.
Internals Reference: Section “ChordNames” in Internals Reference, Section “ChordName” in Internals Reference, Section “Chord_name_ engraver” in Internals Reference, Section “Volta_ engraver” in Internals Reference, Section “Bar_ engraver” in Internals Reference.

Known issues and warnings

Chords containing inversions or altered bass notes are not named properly if entered using simultaneous music.

Customizing chord names

There is no unique system for naming chords. Different musical traditions use different names for the same set of chords. There are also different symbols displayed for a given chord name. The names and symbols displayed for chord names are customizable.

The basic chord name layout is a system for Jazz music, proposed by Klaus Ignatzek (see Section “Literature list” in Essay). (Other chord naming systems may be implemented through Scheme functions, as demonstrated by the “Chord names alternative” snippet in Section “Chords” in Snippets.) A list of common jazz chords notations may be found on the chart in Section A.1 [Chord name chart], page 726.

The default naming system may be tweaked easily in a number of ways. To begin with, predefined commands allow to use different languages for the root pitch. These include \germanChords, \semiGermanChords, \italianChords and \frenchChords:

\begin{verbatim}
default E/D Cm B/B B\#/B\# B/B/B\flat
german E/d Cm H/h H\#/his B/b
semi-german E/d Cm H/h H\#/his B/b/b
italian Mi/Re Do m Si/Si Si#/Si#/ Si/b/Si/b
french Mi/\R\acute{e} Do m Si/Si Si#/Si#/ Si/b/Si/b
\end{verbatim}

German songbooks may indicate minor chords as lowercase letters, without any m suffix. This can be obtained by setting the chordNameLowercaseMinor property:

\begin{verbatim}\chords { \end{verbatim}
\set chordNameLowercaseMinor = ##t
c2 d:m e:m f 
}
C d e F

The chord name display can also be tuned through the following properties.

chordRootNamer
The chord name is usually printed as a letter for the root with an optional alteration. The transformation from pitch to letter is done by this function. Special note names (for example, the German ‘H’ for a B-chord) can be produced by storing a new function in this property.

majorSevenSymbol
This property contains the markup object used to follow the output of chordRootNamer to identify a major 7 chord. Predefined options are whiteTriangleMarkup and blackTriangleMarkup.

additionalPitchPrefix
When the chord name contains additional pitches, they can optionally be prefixed with some text. The default is no prefix, in order to avoid too much visual clutter, but for small numbers of additional pitches this can be visually effective.

\new ChordNames {
  <c e g d'>  % add9
  \set additionalPitchPrefix = "add"
  <c e g d'>  % add9
}
C9 Cadd9

chordNoteNamer
When the chord name contains additional pitches other than the root (e.g., an added bass note), this function is used to print the additional pitch. By default the pitch is printed using chordRootNamer. The chordNoteNamer property can be set to a specialized function to change this behavior. For example, the bass note can be printed in lower case.

chordNameSeparator
Different parts of a chord name are normally separated by a small amount of horizontal space. By setting chordNameSeparator, you can use any desired markup for a separator. This does not affect the separator between a chord and its bass note; to customize that, use slashChordSeparator.

\chords {
  c4:7.9- c:7.9-/g
  \set chordNameSeparator = \markup { "/" }
  \break
c4:7.9- c:7.9-/g
}
C7b9 C7b9/G
C7b9 C7b9/G

slashChordSeparator
Chords can be played over a bass note other than the conventional root of the chord. These are known as “inversions” or “slash chords”, because the default way
of notating them is with a forward slash between the main chord and the bass note. Therefore the value of slashChordSeparator defaults to a forward slash, but you can change it to any markup you choose.

\chords {
  c4:7.9- c:7.9-/g
  \set slashChordSeparator = \markup { " over " }
  \break
  c4:7.9- c:7.9-/g
}

C7 |9  C7 |9/G

C7 |9  C7 |9 over G

chordNameExceptions
This property is a list of pairs. The first item in each pair is a set of pitches used to identify the steps present in the chord. The second item is a markup that will follow the chordRootNamer output to create the chord name.

minorChordModifier
Minor chords are often denoted via a ‘m’ suffix to the right of the root of the chord. However some idioms prefer other suffices, such as a minus sign.

\chords {
  c4:min f:min7
  \set minorChordModifier = \markup { "-" }
  \break
  c4:min f:min7
}

Cm Fm7

C- F-7

chordPrefixSpacer
The modifier for minor chords as determined by minorChordModifier is usually printed immediately to the right of the root of the chord. A spacer can be placed between the root and the modifier by setting chordPrefixSpacer. The spacer is not used when the root is altered.

Predefined commands
\whiteTriangleMarkup, \blackTriangleMarkup, \germanChords, \semiGermanChords, \italianChords, \frenchChords.

Selected Snippets

Chord name exceptions
The property chordNameExceptions can be used to store a list of special notations for specific chords.

% modify maj9 and 6(add9)
% Exception music is chords with markups
chExceptionMusic = {
  <c e g b d'>1-\markup { \super "maj9" }
}
\begin{verbatim}
<\ce{c e g a d'>1-\markup { \super "6(add9)" }
}

\% Convert music to list and prepend to existing exceptions.
chExceptions = #(append
  (sequential-music-to-chord-exceptions chExceptionMusic #t)
  ignatzekExceptions)

theMusic = \chordmode {
  g1:maj9 g1:6.9
  \set chordNameExceptions = #chExceptions
g1:maj9 g1:6.9
}

\layout {
  ragged-right = ##t
}

<<
  \new ChordNames \theMusic
  \new Voice \theMusic
>>

chord name major7
The layout of the major 7 can be tuned with majorSevenSymbol.

\chords {
  c:7+
  \set majorSevenSymbol = \markup { j7 }
c:7+
}

C^\flat C^7

Adding bar lines to ChordNames context
To add bar line indications in the ChordNames context, add the Bar_engraver.

\new ChordNames \with {
  \override BarLine.bar-extent = #'(-2 . 2)
  \consists "Bar_engraver"
}

\chordmode {
  f1:maj7 f:7 bes:7
}

\begin{array}{c|c|c}
  F^\flat & F^7 & B^b^7
\end{array}
\end{verbatim}
**Volta below chords**

By adding the Volta_engraver to the relevant staff, volte can be put under chords.

```latex
\score {
 <<
 \chords {
 c1
 c1
 }
 new Staff \with {
 \consists "Volta_engraver"
 }
 \repeat volta 2 { c'1 }
 \alternative { c' }
}
>>
\layout {
 \context {
 \Score
 \remove "Volta_engraver"
 }
}
}
```

![Example notation](dots.dot)

**Changing chord separator**

The separator between different parts of a chord name can be set to any markup.

```latex
\chords {
 c:7sus4
 \set chordNameSeparator = \markup { \typewriter | }
 c:7sus4
}
```

\[C^7\text{sus4} \quad C^7|\text{sus4}\]

**See also**

Notation Reference: Section A.1 [Chord name chart], page 726, Section A.2 [Common chord modifiers], page 726.

Essay on automated music engraving: Section “Literature list” in Essay.


Snippets: Section “Chords” in Snippets.
Known issues and warnings

Chord names are determined from both the pitches that are present in the chord and the information on the chord structure that may have been entered in \chordmode. If the simultaneous pitches method of entering chords is used, undesired names result from inversions or bass notes.

\begin{verbatim}
myChords = \relative c' {
  \chordmode { c1 c/g c/f }
  <c e g>1 <g c e> <f c' e g>
}
<<
  \new ChordNames { \myChords }
  \new Staff { \myChords }
>>
\end{verbatim}

Chord grids

In some European countries, particularly France, jazz musicians use so-called ‘chord grids’, which notate chords visually by placing them in squares.

Although they are omitted in the rest of this section for brevity, it is recommended to use the following \paper settings for chord grids:

\begin{verbatim}
\paper {
  indent = 0
  ragged-right = ##f
}
\end{verbatim}

\indent = 0 ensures that the first line is not indented as it would normally be (see \paper variables for shifts and indents], page 612). \ragged-right = ##f is necessary for single-line grids to ensure they span the whole page; see \paper variables for widths and margins], page 610.

In order to create a chord grid, instantiate a ChordGrid context.

\begin{verbatim}
\new ChordGrid \chordmode { c1 d1:m e1:7 f1:7+ }
\end{verbatim}

Each square is automatically subdivided.

\begin{verbatim}
\new ChordGrid \chordmode {
  c1
d2 c2
e2. c4
}\end{verbatim}
Chords spanning a complete measure are centered within their square. Chords lasting half a measure take half the square, and those lasting a quarter of a measure take a quarter of the square. This summary picture shows the default rules for subdividing the square:

The \medianChordGridStyle changes the default display of squares with four chords of equal length to use the style recommended by Philippe Baudoin in his book Jazz, mode d'emploi (“Jazz, user instructions”).

In chord grids, rests cause the noChordSymbol to be printed, just like in a regular ChordNames context (see [Printing chord names], page 474).

Skips cause blank space. They can occupy part of a square.
**Selected Snippets**

**Customizing the chord grid style**

Custom divisions of chord squares can be defined through the `measure-division-lines-alist` and `measure-division-chord-placement-alist` properties of `ChordSquare`. These are both alists. Their keys are measure divisions, namely lists which give the fraction of the measure that each chord (or rest, or skip) represents. More precisely, a measure division alist is made of positive, exact numbers adding up to 1, for example: `(1/2 1/4 1/4)`. The exactness requirement means that, e.g., 1/2 is valid but not 0.5.

The values in `measure-division-lines-alist` are lists of lines, which are represented as `(x1 y1 x2 y2)`. The line starts at the point `(x1 . y1)` and ends at `(x2 . y2)`. Coordinates are expressed in the [-1, 1] scale relative to the extent of the square.

The values in `measure-division-chord-placement-alist` are lists of `(x . y)` pairs giving the placement of the respective chords.

This example defines a peculiar chord grid style that has a rule for measures divided in three equal parts.

\[
\text{\texttt{\textbackslash paper \{}\linebreak}
\hspace{1em}\text{\texttt{line-width = 10\textbackslash cm}}\linebreak
\hspace{1em}\text{\texttt{ragged-right = ##f}}\linebreak
\text{\texttt{\} \new ChordGrid \with \{}\linebreak}
\hspace{1em}\text{\texttt{\override ChordSquare.measure-division-lines-alist = \#'(\{(1) (\)} \linebreak}
\hspace{1em}\text{\texttt{\{(1/3 1/3 1/3) . ((-1 -0.4 0 1) (0 -1 1 0.4))\} \linebreak}
\hspace{1em}\text{\texttt{\override ChordSquare.measure-division-chord-placement-alist = \#'(\{(1) ((0 . 0)) \linebreak}
\hspace{1em}\text{\texttt{\{(1/3 1/3 1/3) . ((-0.7 . 0.5) (0 . 0) (0.7 . -0.5))\} \linebreak}
\text{\texttt{\} \chordmode \{}\linebreak}
\hspace{1em}\text{\texttt{\time 3/4}}\linebreak
\hspace{1em}\text{\texttt{c2. \linebreak}}
\hspace{1em}\text{\texttt{c4 c4 c4}}\linebreak
\text{\texttt{\} \}}\]

**See also**


Internals Reference: Section “ChordGrid” in *Internals Reference*, Section “ChordGrid-Score” in *Internals Reference*, Section “GridChordName” in *Internals Reference*, Section
“ChordSquare” in *Internals Reference*, Section “Grid_chord_name_engraver” in *Internals Reference*, Section “Chord_square_engraver” in *Internals Reference*.

2.7.3 Figured bass

Introduction to figured bass

LilyPond has support for figured bass, also called thorough bass or basso continuo.

<<<
\new Voice { \clef bass dis4 c d ais g fis}
\new FiguredBass {
  \figuremode {
    <6>4 <7\+>8 <6+ [..1]> <6>4 <6 5 [3+]> |
    <_.>4 <6 5/>4
  }
}

Figured bass notation can be displayed.
The support for figured bass consists of two parts: there is an input mode, introduced by `\figuremode`, that accepts entry of bass figures, and there is a context named `FiguredBass` that takes care of displaying `BassFigure` objects. Figured bass can also be displayed in `Staff` contexts.

`\figures { ... }` is a shortcut notation for `\new FiguredBass \figuremode { ... }`.

Although the support for figured bass may superficially resemble chord support, it is much simpler. `\figuremode` mode simply stores the figures and the `FiguredBass` context prints them as entered. There is no conversion to pitches.

**See also**


Snippets: Section “Chords” in *Snippets*.

**Entering figured bass**

`\figuremode` is used to switch the input mode to figure mode. See Section 3.1 [Input modes], page 537, for more information on different input modes.

In figure mode, a group of bass figures is delimited by ‘<’ and ‘>’. The duration is entered after the ‘>’.

\[
\begin{align*}
\text{\new FiguredBass} & \{
\text{\figuremode} \{
\begin{align*}
&<6 \quad 4>2 \\
&6 \quad 4
\end{align*}
\}
\}
\end{align*}
\]

Accidentals (including naturals) may be used for modifying scale steps. These are entered by appending ‘+’ (for sharps), ‘-’ (for flats) or ‘!’ (for naturals) after the number. For double accidentals the modifier is applied twice. For the modification of the third step the number is often omitted, which can be achieved by using ‘_’ instead of a number.

\[
\begin{align*}
\text{\figures} & \{
\begin{align*}
<7! & \quad 6+ \quad 4-> \quad <5++> \quad <3--> \quad <-> \quad <7 \quad _!>
\end{align*}
\}
\end{align*}
\]

If used without accidental, ‘_’ creates an empty figure which nevertheless takes up space. This can be used for controlling the stacking of bass figures.

\[
\begin{align*}
&<< \\
&\{ \text{\clef} \text{ bass} \\
&g2 \quad c4
\end{align*}
\]

The support for figured bass consists of two parts: there is an input mode, introduced by `\figuremode`, that accepts entry of bass figures, and there is a context named `FiguredBass` that takes care of displaying `BassFigure` objects. Figured bass can also be displayed in `Staff` contexts.

`\figures { ... }` is a shortcut notation for `\new FiguredBass \figuremode { ... }`.

Although the support for figured bass may superficially resemble chord support, it is much simpler. `\figuremode` mode simply stores the figures and the `FiguredBass` context prints them as entered. There is no conversion to pitches.

**See also**


Snippets: Section “Chords” in *Snippets*.

**Entering figured bass**

`\figuremode` is used to switch the input mode to figure mode. See Section 3.1 [Input modes], page 537, for more information on different input modes.

In figure mode, a group of bass figures is delimited by ‘<’ and ‘>’. The duration is entered after the ‘>’.

\[
\begin{align*}
\text{\new FiguredBass} & \{
\text{\figuremode} \{
\begin{align*}
&<6 \quad 4>2 \\
&6 \quad 4
\end{align*}
\}
\}
\end{align*}
\]

Accidentals (including naturals) may be used for modifying scale steps. These are entered by appending ‘+’ (for sharps), ‘-’ (for flats) or ‘!’ (for naturals) after the number. For double accidentals the modifier is applied twice. For the modification of the third step the number is often omitted, which can be achieved by using ‘_’ instead of a number.

\[
\begin{align*}
\text{\figures} & \{
\begin{align*}
<7! & \quad 6+ \quad 4-> \quad <5++> \quad <3--> \quad <-+> \quad <7 \quad _!>
\end{align*}
\}
\end{align*}
\]

If used without accidental, ‘_’ creates an empty figure which nevertheless takes up space. This can be used for controlling the stacking of bass figures.

\[
\begin{align*}
&<< \\
&\{ \text{\clef} \text{ bass} \\
&g2 \quad c4
\end{align*}
\]
Augmented and diminished steps can be indicated.
\begin{verbatim}
\figures {
    <6\+ 5/> <7/> <7\+_>
}
\end{verbatim}
A backward slash through a figure is also available.
\begin{verbatim}
\figures {
    <5> <5\>
}
\end{verbatim}
For some figures, special backward slash glyphs are provided.
\begin{verbatim}
\figures {
    <8 6\> <9 7\> <9\ 7>
}
\end{verbatim}
Brackets can be added around accidentals, figures, and consecutive groups of figures.
\begin{verbatim}
\figures {
    <9[-] 8 [7-] 5 [4[1] 2+]>
}
\end{verbatim}
Any text markup can be inserted as a figure.
\begin{verbatim}
\figures {
    <\_markup { \fontsize #-5 \number 6 \teeny \super (1) } 5>
}
\end{verbatim}
Continuation lines can be used to indicate repeated figures.
\begin{verbatim}
<<
    { c
        \clef bass
        e4 d c b,
        e4 d c b,
    }
\end{verbatim}
In this case, the extender lines replace existing figures, unless the continuation lines have been explicitly terminated with \!.

The table below summarizes the figure modifiers available.

<table>
<thead>
<tr>
<th>Modifier</th>
<th>Purpose</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>+, -, !</td>
<td>accidentals</td>
<td>\accidentals.flatflat.figbass</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
+ / | augmented and diminished steps          | \6 \7 |
| \ \ | raised by a semitone                   | \6 \7 \9 |
| \! | end of continuation line               | |

Predefined commands
\bassFigureExtendersOn, \bassFigureExtendersOff.

Selected Snippets
Changing the positions of figured bass alterations

Accidentals and plus signs can appear before or after the numbers, depending on the figuredBassAlterationDirection and figuredBassPlusDirection properties.

If plus signs appear after the number, specially designed glyphs are provided for some figures.

\figures {
  \set figuredBassAlterationDirection = \#RIGHT
  <5\+> <5+ 4\+> <6 4- 2\+> r
  \set figuredBassPlusDirection = \#RIGHT
  <5\+> <5+ 4\+> <6 4- 2\+> r
  \set figuredBassAlterationDirection = \#LEFT
  <5\+> <5+ 4\+> <6 4- 2\+> r
}

Adjusting figured bass alteration glyphs

In figured bass, specially designed glyphs for $6\\backslash$, $7\\backslash$, and $9\\backslash$ are used by default. Similarly, specially designed glyphs for symbols $2\+$, $4\+$, and $5\+$ are used by default if plus signs appear after the number.

To change that, pass an alist to figuredBassPlusStrokedAlist and set the glyph in question to #f (or omit it).

\figures {
  \set figuredBassPlusDirection = \#RIGHT
  <6\\backslash> <7\\backslash> <9\\backslash> r
  <2\+> <4\+> <5\+> r

  \set figuredBassPlusStrokedAlist =
    '((2 . "figbass.twoplus")
     ;; (4 . "figbass.fourplus")
     ;; (5 . "figbass.fiveplus")
    (6 . "figbass.sixstroked")
    ;; (7 . "figbass.sevenstroked")
    ;; (9 . "figbass.ninestroked")
 )
  <6\\backslash> <7\\backslash> <9\\backslash> r
  <2\+> <4\+> <5\+> r
}

See also

Snippets: Section “Chords” in Snippets.

Internals Reference: Section “BassFigure” in Internals Reference, Section “BassFigure-Alignment” in Internals Reference, Section “BassFigureLine” in Internals Reference, Section “BassFigureBracket” in Internals Reference, Section “BassFigureContinuation” in Internals Reference, Section “FiguredBass” in Internals Reference.

Displaying figured bass

Figured bass can be displayed using the FiguredBass context, or in most staff contexts.
When displayed in a FiguredBass context, the vertical location of the figures is independent of the notes on the staff.

<< \relative { 
  c'\textquoteright4 c'8 r8 c,4 c'
} \new FiguredBass { 
  \figuremode { 
    <4>4 <10 6>8 s8
    <6 4>4 <6 4>
  } 
} >>

In the example above, the FiguredBass context must be explicitly instantiated to avoid creating a second (empty) staff.

Figured bass can also be added to Staff contexts directly. In this case, the vertical position of the figures is adjusted automatically.

<< \new Staff = "myStaff" \figuremode { 
  <4>4 <10 6>8 s8
  <6 4>4 <6 4>
} \%\% Put notes on same Staff as figures \context Staff = "myStaff" { 
  \clef bass
  c4 c'8 r8 c4 c'
} >>

When added in a Staff context, figured bass can be displayed above or below the staff.

<< \new Staff = "myStaff" \figuremode { 
  <4>4 <10 6>8 s8 
  \bassFigureStaffAlignmentDown
    <6 4>4 <6 4>
} \%\% Put notes on same Staff as figures \context Staff = "myStaff" { 
  \clef bass
  c4 c'8 r8 c4 c'
} >>
The horizontal alignment of numbers in a figured bass stack that have more than a single digit can be controlled with the context property \texttt{figuredBassLargeNumberAlignment}.

\begin{verbatim}
<<
\new Voice {
  \clef bass
  r2 d | d d | a2
}
\new FiguredBass \figuremode {
  s2 <10+ 8> |
  \set figuredBassLargeNumberAlignment = #RIGHT
  <11 9>2
  \set figuredBassLargeNumberAlignment = #LEFT
  <10+ 9>2 |
  <_+>2
}
>>
\end{verbatim}

The vertical distance of figured bass elements can be controlled with subproperties \texttt{minimum-distance} and \texttt{padding} of \texttt{staff-staff-spacing}.

\begin{verbatim}
<<
{ \clef bass g,2 c, }
\figures {
  \once \override BassFigureLine
    .staff-staff-spacing.minimum-distance = 3
    <7 _-> <7- _->
}
>>
\end{verbatim}

**Predefined commands**

\texttt{\bassFigureStaffAlignmentDown, \bassFigureStaffAlignmentUp, \bassFigureStaffAlignmentNeutral.}
See also

Snippets: Section “Chords” in Snippets.

Internals Reference: Section “BassFigure” in Internals Reference, Section “BassFigureAlignment” in Internals Reference, Section “BassFigureLine” in Internals Reference, Section “BassFigureBracket” in Internals Reference, Section “BassFigureContinuation” in Internals Reference, Section “FiguredBass” in Internals Reference.

Known issues and warnings

To ensure that continuation lines work properly, it is safest to use the same rhythm in the figure line as in the bass line.

```
{\clef bass
\repeat unfold 4 \{ f16. g32 \} f8. es16 d8 es
}
\figures{
% The extenders are correct here,
% with the same rhythm as the bass.
\repeat unfold 4 \{ <6 4->16. <6 4->32 \}
<5>8. r16 <6>8 <6<! 5->
}
```

2.8 Contemporary music

From the beginning of the 20th Century there has been a massive expansion of compositional style and technique. New harmonic and rhythmic developments, an expansion of the pitch spectrum and the development of a wide range of new instrumental techniques have been accom-
panied by a parallel evolution and expansion of musical notation. The purpose of this section is to provide references and information relevant to working with these new notational techniques.

2.8.1 Pitch and harmony in contemporary music
This section highlights issues that are relevant to notating pitch and harmony in contemporary music.

References for pitch and harmony in contemporary music
- Standard quarter tone notation is addressed in [Note names in other languages], page 8.
- Non-standard key signatures are addressed in [Key signature], page 21.
- Contemporary practices in displaying accidentals are addressed in [Automatic accidentals], page 29.

Microtonal notation

Contemporary key signatures and harmony

2.8.2 Contemporary approaches to rhythm
This section highlights issues that are relevant to the notation of rhythm in contemporary music.

References for contemporary approaches to rhythm
- Compound time signatures are addressed in [Time signature], page 72.
- Basic polymetric notation is addressed in [Polymetric notation], page 84.
- Feathered beams are addressed in [Feathered beams], page 106.
- Mensurstriche bar lines (bar lines between staves only) are addressed in [Grouping staves], page 221.

Tuplets in contemporary music

Contemporary time signatures

Extended polymetric notation

Beams in contemporary music

Bar lines in contemporary music

2.8.3 Graphical notation
Rhythmic items may be continued by a duration line, which gets represented by a DurationLine grob. Possible styles are ‘beam’, ‘line’, ‘dashed-line’, ‘dotted-line’, ‘zigzag’, ‘trill’ and ‘none’. The duration line may end with a hook (beam-style only) or an arrow.

```
\layout {
 \context {
 \Voice
 \consists Duration_line_engraver
 \omit Stem
 \omit Flag
 \omit Beam
 \override NoteHead.duration-log = 2
 }
```
2.8.4 Contemporary scoring techniques

2.8.5 New instrumental techniques

2.8.6 Further reading and scores of interest

This section suggests books, musical examples and other resources useful in studying contemporary musical notation.

Books and articles on contemporary musical notation

- *Instrumentation and Orchestration* by Alfred Blatter [Schirmer, 2nd ed. 1997]

Scores and musical examples
2.9 Ancient notation

Salve, Regina, mater mi seri cor di ae: Ad te clama mus, ex su les,
fi li i Hevae. Ad te suspira mus, gemen tes et flentes in hac lacrima rum val le. E ia er-go, Ad vocata nostra, illos tus miseri cor des o cu los ad nos con vete. Et Je sum, bene dic tum fructum ventris tu i, no bis post hoc exsi li um os tende. O Clemens: O pi a: O
dul cis Virgo Mari a.

Support for ancient notation includes features for mensural notation, Gregorian chant notation, and Kievan square notation. These features can be accessed either by modifying style properties of graphical objects such as note heads and rests, or by using one of the predefined contexts for these styles.

Many graphical objects, such as note heads and flags, accidentals, time signatures, and rests, provide a style property, which can be changed to emulate several different styles of ancient notation. See

- [Mensural note heads], page 501,
- [Mensural accidentals and key signatures], page 503,
- [Mensural rests], page 503,
- [Mensural clefs], page 499,
- [Gregorian clefs], page 508,
- [Mensural flags], page 502,
- [Mensural time signatures], page 500.

Some notational concepts are introduced specifically for ancient notation,

- [Custodes], page 498,
- [Divisiones], page 509,
- [Ligatures], page 497.
See also

Notation Reference: [Mensural note heads], page 501, [Mensural accidentals and key signatures], page 503, [Mensural rests], page 503, [Gregorian clefs], page 508, [Mensural flags], page 502, [Mensural time signatures], page 500, [Custodes], page 498, [Divisiones], page 509, [Ligatures], page 497.

2.9.1 Overview of the supported styles
Three styles are available for typesetting Gregorian chant:

- **Editio Vaticana** is a complete style for Gregorian chant, following the appearance of the Solesmes editions, the official chant books of the Vatican since 1904. LilyPond has support for all the notational signs used in this style, including ligatures, custodes, and special signs such as the quilisma and the oriscus.

- The **Editio Medicea** style offers certain features used in the Medicea (or Ratisbona) editions which were used prior to the Solesmes editions. The most significant differences from the Vaticana style are the clefs, which have downward-slanted strokes, and the note heads, which are square and regular.

- The **Hufnagel** (“horseshoe nail”) or **Gothic** style mimics the writing style in chant manuscripts from Germany and Central Europe during the middle ages. It is named after the basic note shape (the virga), which looks like a small nail.

Three styles emulate the appearance of late-medieval and renaissance manuscripts and prints of mensural music:

- The **Mensural** style most closely resembles the writing style used in late-medieval and early renaissance manuscripts, with its small and narrow, diamond-shaped note heads and its rests which approach a hand-drawn style.

- The **Neomensural** style is a modernized and stylized version of the former: the note heads are broader and the rests are made up of straight lines. This style is particularly suited, e.g., for incipits of transcribed pieces of mensural music.

- The **Petrucci** style is named after Ottaviano Petrucci (1466-1539), the first printer to use movable type for music (in his Harmonice musices odhecaton, 1501). The style uses larger note heads than the other mensural styles.

*Baroque* and *Classical* are not complete styles but differ from the default style only in some details: certain note heads (Baroque) and the quarter rest (Classical).

Only the mensural style has alternatives for all aspects of the notation. Thus, there are no rests or flags in the Gregorian styles, since these signs are not used in plainchant notation, and the Petrucci style has no flags or accidentals of its own.

Each element of the notation can be changed independently of the others, so that one can use mensural flags, Petrucci note heads, classical rests and Vaticana clefs in the same piece, if one wishes.

See also

2.9.2 Ancient notation – common features
Chapter 2: Specialist notation

Predefined contexts

For Gregorian chant and mensural notation, there are predefined voice, staff, and score contexts available, which set all the various notation signs to values suitable for these styles. If one is satisfied with these defaults, one can proceed directly with note entry without worrying about the details on how to customize a context. See one of the predefined contexts VaticanaScore, VaticanaVoice, VaticanaStaff, MensuralVoice, MensuralStaff, KievanVoice, and KievanStaff.

See also

Notation Reference: [Gregorian chant contexts], page 507, [Mensural contexts], page 499, [Kievan contexts], page 516.

Ligatures

A ligature is a graphical symbol that represents at least two distinct notes. Ligatures originally appeared in the manuscripts of Gregorian chant notation to denote ascending or descending sequences of notes on the same syllable. They are also used in mensural notation.

Ligatures are entered by enclosing them in \[ and \]. Some ligature styles may need additional input syntax specific for this particular type of ligature. By default, the LigatureBracket engraver just puts a square bracket above the ligature.

\relative {
    \[ g' c, a' f d' \]
    a g f
    \[ e f a g \]
}

Three other ligature styles are available: ‘Vaticana’ for Gregorian chant, ‘Mensural’ for mensural music (only white mensural ligatures are supported for mensural music, and with certain limitations), and ‘Kievan’ for Kievan melismata. To use any of these styles, the default Ligature_bracket_engraver has to be replaced with one of the specialized ligature engravers in the Voice context. For more information, see [White mensural ligatures], page 504, [Gregorian square neume ligatures], page 510, and [Kievan melismata], page 518.

See also

Notation Reference: [White mensural ligatures], page 504, [Gregorian square neume ligatures], page 510.

Known issues and warnings

Spacing required for ligatures is not currently implemented and, as a result, there may end up being too much space between them. Line breaking may also be unsatisfactory.

Lyrics might not align as expected when using ligatures.

Accidentals must not be printed within a ligature, but instead be collected and printed in front of it.

The syntax still uses the deprecated “infix” style \[ music expr \]. For consistency reasons, it will eventually be changed to “postfix” style note\[ ... note\].
Custodes

A custos (plural: custodes; Latin word for “guard”) is a symbol that appears at the end of a staff. It anticipates the pitch of the first note of the following line, thus helping the performer to manage line breaks during performance.

Custodes were frequently used in music notation until the seventeenth century. Nowadays, they have survived only in a few particular forms of musical notation such as contemporary editions of Gregorian chant like the Editio Vaticana. There are different custos glyphs used in different flavors of notational style.

For typesetting custodes, just put a Custos_engraver into the Staff context when declaring the \layout block, and change the style of the custos with an \override if desired, as shown in the following example:

\score {
  \relative a'1 { a' \break g }
  \layout {
    \context {
      \Staff
      \consists { \StaffFrame
        \override Custos.style = #'mensural
      }
    }
  }
}

The custos glyph is selected by the style property. The styles supported are vaticana, medicaea, hufnagel, and mensural.

\new Lyrics \lyricmode {
  \markup { \column {
    \typewriter "vaticana "
    \line { " " \musicglyph "custodes.vaticana.u0" } }
  }
  \markup { \column {
    \typewriter "medicaea "
    \line { " " \musicglyph "custodes.medicaea.u0" } }
  }
  \markup { \column {
    \typewriter "hufnagel "
    \line { " " \musicglyph "custodes.hufnagel.u0" } }
  }
  \markup { \column {
    \typewriter "mensural "
    \line { " " \musicglyph "custodes.mensural.u0" } }
}
2.9.3 Typesetting mensural music

Mensural contexts

The predefined \texttt{MensuralVoice} and \texttt{MensuralStaff} contexts can be used to engrave a piece in mensural style. These contexts initialize all relevant context properties and grob properties to proper values, so you can immediately go ahead entering the chant, as the following excerpt demonstrates:

\begin{verbatim}
\score { <<
  \new MensuralVoice = "discantus" \relative {
    \hide Score.BarNumber {
      c'\melisma bes a g\melismaEnd
      f\breve
      [ f\melisma a c\breve d\melismaEnd ]
      c\longa
      c\breve\melisma a1 g\melismaEnd
      fis\longa\signumcongruentiae
    }
  }
  \new Lyrics \lyricsto "discantus" {
    San -- ctus, San -- ctus, San -- ctus
  }
>>
}
\end{verbatim}

\begin{verbatim}
\begin{music}
\melisma \breve \melismaEnd
\melisma \longa \melismaEnd
\signumcongruentiae
\end{music}
\end{verbatim}

See also


Mensural clefs

Mensural clefs are supported using the \texttt{\clef} command. Some of the clefs use the same glyph, but differ only with respect to the line they are printed on. In such cases, a trailing number in the name is used to enumerate these clefs, numbered from the lowest to the highest line.
\new MensuralStaff {  
  \clef "mensural-c1" c'1  
}

\new MensuralStaff {  
  \override NoteHead.style = #'blackmensural  
  \clef "blackmensural-c2" c'1  
}

\new MensuralStaff {  
  \override NoteHead.style = #'neomensural  
  \clef "neomensural-c3" c'1  
}

\new PetrucciStaff {  
  \clef "petrucci-c4" c'1  
}

It is possible to manually force a clef glyph to be typeset on an arbitrary line, see [Clef], page 17. For the complete range of possible clefs, see Section A.11 [Clef styles], page 759.

See also

Notation Reference: [Gregorian clefs], page 508, [Clef], page 17.
Installed Files: scm/parser-clef.scm.
Snippets: Section “Pitches” in Snippets.
Internals Reference: Section “Clef_engraver” in Internals Reference, Section “Clef” in Internals Reference, Section “ClefModifier” in Internals Reference, Section “clef-interface” in Internals Reference.

Known issues and warnings
The Mensural g clef is mapped to the Petrucci g clef.

Mensural time signatures
There is limited support for mensuration signs (which are similar to but not exactly the same as time signatures). The glyphs are hard-wired to particular time fractions. In other words, to get a particular mensuration sign with the \time n/m command, n and m have to be chosen according to the following table.
Use the style property of grob TimeSignature to select ancient time signatures. Supported styles are neomensural and mensural. The above table uses the neomensural style. The following examples show the differences in style:

\begin{verbatim}
\time 4/4 \time 2/2 \time 6/4 \time 6/8
\end{verbatim}

\begin{verbatim}
\time 3/2 \time 3/4 \time 9/4 \time 9/8
\end{verbatim}

\begin{verbatim}
\time 4/8 \time 2/4
\end{verbatim}

See [Time signature], page 72, for a general introduction to the use of time signatures.

**See also**


Notation Reference: [Time signature], page 72.

**Known issues and warnings**

Ratios of note durations cannot change with the time signature, as those are not constant. For example, the ratio of 1 breve = 3 semibreves (*tempus perfectum*) can be made by hand, by setting

\begin{verbatim}
\set ly:make-duration brevetp = 
\end{verbatim}

\begin{verbatim}
\set ly:make-duration brevetp f1}
\end{verbatim}

This sets brevetp to 3/2 times 2 = 3 times a whole note.

The mensural68alt and neomensural68alt symbols (alternate symbols for 6/8) are not addressable with \time. Use \markup {\musicglyph "timesig.mensural68alt" } instead.

**Mensural note heads**

For ancient notation, a note head style other than the default style may be chosen. This is accomplished by setting the style property of the NoteHead object to baroque, neomensural, mensural, petrucci, blackpetrucci or semipetrucci.

The baroque style differs from the default style by:

- Providing a maxima note head, and
- Using a square shape for \breve note heads.

The neomensural, mensural, and petrucci styles differ from the baroque style by:

- Using rhomboidal heads for semibreves and all smaller durations, and
- Centering the stems on the note heads.

The blackpetrucci style produces note heads usable in black mensural notation or coloratio sections in white mensural notation. Because note head style does not influence flag count, in this style a semiminima should be notated as a8•2, not a4, otherwise it will look like a minima. The multiplier can be different if coloratio is used, e.g., to notate triplets.
Use \textit{semipetrucci} style to draw half-colored note heads (breves, longas and maximas).

The following example demonstrates the \textit{petrucci} style:

\begin{verbatim}
\compressEmptyMeasures
\autoBeamOff
\override NoteHead.style = #'petrucci
a''maxima a''longa a''breve a'1 a'2 a'4 a'8 a'16 a'
\override NoteHead.style = #'semipetrucci
a''breve*5/6
\override NoteHead.style = #'blackpetrucci
a'8*4/3 a'
\override NoteHead.style = #'petrucci
a''longa
\end{verbatim}

Section A.9 [Note head styles], page 757, gives an overview of all available note head styles.

\textbf{See also}


\textbf{Menural flags}

Use the flag-style property of grob Stem to select ancient flags. Besides the default flag style, only the mensural style is supported.

\begin{verbatim}\relative c' { \override Flag.style = #'mensural \override Stem.thickness = #1.0 \override NoteHead.style = #'mensural \autoBeamOff c8 d e f c16 d e f c32 d e f s8 c'8 d e f c16 d e f c32 d e f }\end{verbatim}

Note that the innermost flare of each mensural flag is vertically aligned with a staff line.

There is no particular flag style for neo-mensural or Petrucci notation. There are no flags in Gregorian chant notation.

\textbf{See also}

Known issues and warnings
Vertically aligning each flag with a staff line assumes that stems always end either exactly on or exactly in the middle of two staff lines. This may not always be true when using advanced layout features of classical notation (which however are typically out of scope for mensural notation).

Mensural rests
Use the style property of grob Rest to select ancient rests. Supported ancient styles are neomensural, and mensural.

The following example demonstrates these styles:

\compressEmptyMeasures
\override Rest.style = #'mensural
r\longa"mensural" r\breve r1 r2 r4 r8 r16 s \break
\override Rest.style = #'neomensural
r\longa"neomensural" r\breve r1 r2 r4 r8 r16

There are no 32nd and 64th rests specifically for the mensural or neo-mensural styles. Rests from the default style are used.

See also
Notation Reference: [Rests], page 62.
Snippets: Section “Ancient notation” in Snippets.

Known issues and warnings
The glyph for the maxima rest in mensural style is actually a perfect longa rest; use two (or three) longa rests to print a maxima rest. Longa rests are not grouped automatically, so have to be done manually by using pitched rests.

Mensural accidentals and key signatures
The mensural style provides a sharp and a flat sign different from the default style. Mensural notation rarely used a natural sign: instead the appropriate sharp or flat is used. For example, a B natural in the key of F major would be indicated with a sharp. However, if specifically called for, the natural sign is taken from the vaticana style.

mensural

The way to use this style is covered in [Alternate accidental glyphs], page 36. It is the default in the MensuralStaff context.
See also


Notation Reference: Section 1.1 [Pitches], page 1, [Accidentals], page 6, [Automatic accidentals], page 29, [Alternate accidental glyphs], page 36, Section A.10 [Accidental glyph sets], page 758, [Key signature], page 21.

Internals Reference: Section “KeySignature” in Internals Reference.

Annotational accidentals (*musica ficta*)

In European music from before about 1600, singers were expected to chromatically alter notes at their own initiative according to certain rules. This is called *musica ficta*. In modern transcriptions, these accidentals are usually printed over the note.

Support for such suggested accidentals is included, and can be switched on by setting `suggestAccidentals` to true.

```
\relative {
 fis' gis
 \set suggestAccidentals = ##t
 ais bis
}
```

This will treat every subsequent accidental as *musica ficta* until it is unset with `\set suggestAccidentals = ##f`. A more practical way is to use `\once \set suggestAccidentals = ##t`, which can even be defined as a convenient shorthand:

```
\begin{Verbatim}
\set suggestAccidentals = ##t
\end{Verbatim}
```

```
\begin{Verbatim}
\set suggestAccidentals = ##t
\end{Verbatim}
```

\score { \relative 
  fis' gis 
  \set suggestAccidentals = ##t 
  ais bis 
}

```
\begin{Verbatim}
\set suggestAccidentals = ##t
\end{Verbatim}
```

```
\set suggestAccidentals = ##t
\end{Verbatim}
```

See also

Internals Reference: Section “Accidental engraver” in Internals Reference, Section “AccidentalSuggestion” in Internals Reference.

White mensural ligatures

There is limited support for white mensural ligatures.

To engrave white mensural ligatures, in the layout block, replace the `Ligature_bracket_engraver` with the `Mensural_ligature_engraver` in the `Voice` context:

```
\layout {
 \context {
 \relative
 \set suggestAccidentals = ##t
 fis' gis
 \set suggestAccidentals = ##t
 ais bis
 }
```

```
\begin{Verbatim}
\set suggestAccidentals = ##t
\end{Verbatim}
```

```
\set suggestAccidentals = ##t
\end{Verbatim}
```

```
\begin{Verbatim}
\set suggestAccidentals = ##t
\end{Verbatim}
```

```
\set suggestAccidentals = ##t
\end{Verbatim}
```

See also

Internals Reference: Section “Accidental engraver” in Internals Reference, Section “AccidentalSuggestion” in Internals Reference.
There is no additional input language to describe the shape of a white mensural ligature. The shape is rather determined solely from the pitch and duration of the enclosed notes. While this approach may take a new user a while to get accustomed to, it has the great advantage that the full musical information of the ligature is known internally. This is not only required for correct MIDI output, but also allows for automatic transcription of the ligatures.

At certain places two consecutive notes can be represented either as two squares or as an oblique parallelogram (flexa shape). In such cases the default is the two squares, but a flexa can be required by setting the ligature-flexa property of the second note head. The length of a flexa can be set by the note head property flexa-width.

For example,

\score {\relative {\set Score.timing = ##f\set Score.measureBarType = #'(\override NoteHead.style = #'petrucci\override Staff.TimeSignature.style = #'mensural\clef "petrucci-g"\[ c''\maxima g \]\[ d'\longa \\override NoteHead.ligature-flexa = ##t\once \override NoteHead.flexa-width = #3.2c\breve f e d \]\[ c\maxima d\longa \]\[ e i a, g\breve \]}\layout {\context {\Voice \remove Ligature_bracket_engraver\consists Mensural_ligature_engraver}}}\score {\relative {\set Score.timing = ##f\set Score.measureBarType = #'(\override NoteHead.style = #'petrucci\override Staff.TimeSignature.style = #'mensural\clef "petrucci-g"\[ c''\maxima g \]\[ d'\longa \\override NoteHead.ligature-flexa = ##t\once \override NoteHead.flexa-width = #3.2c\breve f e d \]\[ c\maxima d\longa \]\[ e i a, g\breve \]}\layout {\context {\Voice \remove Ligature_bracket_engraver\consists Mensural_ligature_engraver}}}\score {\relative {\set Score.timing = ##f\set Score.measureBarType = #'(\override NoteHead.style = #'petrucci\override Staff.TimeSignature.style = #'mensural\clef "petrucci-g"\[ c''\maxima g \]\[ d'\longa \\override NoteHead.ligature-flexa = ##t\once \override NoteHead.flexa-width = #3.2c\breve f e d \]\[ c\maxima d\longa \]\[ e i a, g\breve \]}\layout {\context {\Voice \remove Ligature_bracket_engraver\consists Mensural_ligature_engraver}}}\score {\relative {\set Score.timing = ##f\set Score.measureBarType = #'(\override NoteHead.style = #'petrucci\override Staff.TimeSignature.style = #'mensural\clef "petrucci-g"\[ c''\maxima g \]\[ d'\longa \\override NoteHead.ligature-flexa = ##t\once \override NoteHead.flexa-width = #3.2c\breve f e d \]\[ c\maxima d\longa \]\[ e i a, g\breve \]}\layout {\context {\Voice \remove Ligature_bracket_engraver\consists Mensural_ligature_engraver}}}\score {\relative {\set Score.timing = ##f\set Score.measureBarType = #'(\override NoteHead.style = #'petrucci\override Staff.TimeSignature.style = #'mensural\clef "petrucci-g"\[ c''\maxima g \]\[ d'\longa \\override NoteHead.ligature-flexa = ##t\once \override NoteHead.flexa-width = #3.2c\breve f e d \]\[ c\maxima d\longa \]\[ e i a, g\breve \]}\layout {\context {\Voice \remove Ligature_bracket_engraver\consists Mensural_ligature_engraver}}}

Without replacing Ligature_bracket_engraver with Mensural_ligature_engraver, the same music looks as follows:

There are also cases when a stem is not required to unambiguously encode the note length, but is also not forbidden:

- an initial breve (when lower than the next note) may or may not have a downward left stem;
• a maxima may or may not have a downward right stem;
• a final longa (when lower than the previous note) may or may not have a right stem.

For example,
\score {
\relative {
  \set Score.timing = ##f
  \set Score.measureBarType = '#()
  \override NoteHead.style = #'petrucci
  \override Staff.TimeSignature.style = #'mensural
  \clef "petrucci-c4"
  \[ \once \override NoteHead.left-down-stem = ##t
    a\breve b \]
  \once \override NoteHead.right-down-stem = ##t
  g\longa \]
  \[ \once \override NoteHead.right-down-stem = ##t
    b\maxima \]
  \once \override NoteHead.right-up-stem = ##t
  g\longa \]
}
\layout {
  \context {
    \Voice
      \remove Ligature_bracket_engraver
      \consists Mensural_ligature_engraver
    }
  }
  }
  }
  \[ C \]
2.9.4 Typesetting Gregorian chant

When typesetting a piece in Gregorian chant notation, the Vaticana_ligature_engraver automatically selects the proper note heads, so there is no need to explicitly set the note head style. Still, the note head style can be set, e.g., to vaticana.punctum to produce punctum neumes. Similarly, the Mensural_ligature_engraver automatically assembles mensural ligatures.

See also
Notation Reference: [Gregorian square neume ligatures], page 510, [Ligatures], page 497.

Known issues and warnings
Horizontal spacing of ligatures may be poor. Accidentals may collide with previous notes.

Gregorian chant contexts
The predefined contexts VaticanaScore, VaticanaVoice, VaticanaStaff, and VaticanaLyrics can be used to engrave a piece of Gregorian chant in the style of the Editio Vaticana. These contexts initialize all relevant context and grob properties to proper values; you can immediately go ahead entering the chant, as the following excerpt demonstrates.

```latex
\new VaticanaScore {
 \new VaticanaVoice = "cantus" {
 \[c'\melisma c' \flexa a \]
 \[a \flexa \deminutum g\melismaEnd \]
 f \divisioMinima
 \[f\melisma \pes a c' \pes d'\melismaEnd \]
 c' \divisioMinima \break
 \[c'\melisma c' \flexa a \]
 \[a \flexa \deminutum g\melismaEnd \] f \divisioMinima
 }
 \new VaticanaLyrics \lyricsto "cantus" {
 San -- ctus, San -- ctus, San -- ctus
 }
}
```

See also
Notation Reference: [White mensural ligatures], page 504, [Ligatures], page 497.

*Sanctus, Sanctus,*
Gregorian clefs

The following table shows all Gregorian clefs that are supported via the `\clef` command. Some of the clefs use the same glyph, but differ only with respect to the line they are printed on. In such cases, a trailing number in the name is used to enumerate these clefs, numbered from the lowest to the highest line. Still, you can manually force a clef glyph to be typeset on an arbitrary line, as described in [Clef], page 17. The note printed to the right side of each clef in the example column denotes the $c'$ with respect to that clef.

<table>
<thead>
<tr>
<th>Description</th>
<th>Supported Clefs</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Editio Vaticana style do clef</td>
<td>vaticana-do1, vaticana-do2, vaticana-do3</td>
<td></td>
</tr>
<tr>
<td>Editio Vaticana style fa clef</td>
<td>vaticana-fa1, vaticana-fa2</td>
<td></td>
</tr>
<tr>
<td>Editio Medicaea style do clef</td>
<td>medicaea-do1, medicaea-do2, medicaea-do3</td>
<td></td>
</tr>
<tr>
<td>Editio Medicaea style fa clef</td>
<td>medicaea-fa1, medicaea-fa2</td>
<td></td>
</tr>
<tr>
<td>Hufnagel style do clef</td>
<td>hufnagel-do1, hufnagel-do2, hufnagel-do3</td>
<td></td>
</tr>
<tr>
<td>Hufnagel style fa clef</td>
<td>hufnagel-fa1, hufnagel-fa2</td>
<td></td>
</tr>
<tr>
<td>Hufnagel style combined do/fa clef</td>
<td>hufnagel-do-fa</td>
<td></td>
</tr>
</tbody>
</table>

See also


Notation Reference: [Clef], page 17.

Gregorian accidentals and key signatures

Accidentals for the three different Gregorian styles are available:

vaticana medicaea hufnagel

As shown, not all accidentals are supported by each style. When trying to access an unsupported accidental, LilyPond will switch to a different style.

How to switch between styles is covered in [Alternate accidental glyphs], page 36.

See also


Notation Reference: Section 1.1 [Pitches], page 1, [Accidentals], page 6, [Automatic accidentals], page 29, [Alternate accidental glyphs], page 36, [Key signature], page 21.
Divisiones

There are no rests in Gregorian chant notation; instead, it uses Divisiones, page 509.

A divisio (plural: divisiones; Latin word for ‘division’) is a staff-context symbol indicating the phrase and section structure of Gregorian music. The musical meaning of divisio minima, divisio maior, and divisio maxima can be characterized as short, medium, and long pause. The finalis sign not only marks the end of a chant, but is also frequently used within a single antiphonal/responsorial chant to mark the end of each section.

Some editions use virgula or caesura instead of divisio minima; the predefined staff contexts for Gregorian chant configure \caesura to produce an ancient caesura mark.

\begin{verbatim}
divisio minima  divisio maior  divisio maxima
\end{verbatim}

Predefined commands
\virgula, \caesura, \divisioMinima, \divisioMaior, \divisioMaxima, \finalis.

See also

Notation Reference: [Breath marks], page 159.

Gregorian articulation signs

In addition to the standard articulation signs described in section [Articulations and ornamentations], page 140, articulation signs specifically designed for use with notation in Editio Vaticana style are provided.

\begin{verbatim}
\new VaticanaScore {
  \new VaticanaVoice {
    \override Script.padding = #-0.1
    a\ictus\"ictus " \break
    a\circulus\"circulus " \break
    a\semicirculus\"semicirculus " \break
    a\accentus\"accentus " \break
    \[ a\"episema\ episemInitium \pes b
    \flexa a b \episemFinis \flexa a \]
  }
}\layout {
  \indent = 0
  \ragged-last = ##t
}
\ictus
\end{verbatim}
Chapter 2: Specialist notation

See also

Notation Reference: [Articulations and ornamentations], page 140.
Snippets: Section “Ancient notation” in Snippets.

Known issues and warnings
Some articulations are vertically placed too closely to the corresponding note heads.

Augmentum dots (morae)
Augmentum dots, also called morae, are added with the music function \augmentum. Note that \augmentum is implemented as a unary music function rather than as head prefix. It applies to the immediately following music expression only. That is, \augmentum \virga \textit{c} will have no visible effect. Instead, say \virga \augmentum \textit{c} or \augmentum \{\virga \textit{c}\}. Also note that you can say \augmentum \{\textit{a g}\} as a shortcut for \augmentum \textit{a} \augmentum \textit{g}.

\new VaticanaScore{
  \new VaticanaVoice{
    \[\augmentum a \flexa \augmentum g\]
    \augmentum g
  }
}

Gregorian square neume ligatures
There is limited support for Gregorian square neumes notation (following the style of the Editio Vaticana). Core ligatures can already be typeset, but essential issues for serious typesetting are still lacking, such as (among others) horizontal alignment of multiple ligatures, lyrics alignment, and proper handling of accidentals.
Note heads can be modified and/or joined.

- The shape of the note head can be modified by prefixing the note name with any of the following commands: \virga, \stropha, \inclinatum, \auctum, \descendens, \ascendens, \oriscus, \quilisma, \deminutum, \cavum, \linea.

- Ligatures, properly speaking (i.e., notes joined together), are produced by placing one of the joining commands \pes or \flexa, for upwards and downwards movement, respectively, between the notes to be joined.

A note name without any qualifiers will produce a punctum. All other neumes, including the single-note neumes with a different shape such as the virga, are in principle considered as ligatures and should therefore be placed between \[][...\].

**Single-note neumes**

- The punctum is the basic note shape (in the Vaticana style: a square with some curvation for typographical finesse). In addition to the regular punctum, there is also the oblique punctum inclinatum, produced with the prefix \inclinatum. The regular punctum can be modified with \cavum, which produces a hollow note, and \linea, which draws vertical lines on either side of the note.

- The virga has a descending stem on the right side. It is produced by the modifier \virga.

**Ligatures**

Unlike most other neumes notation systems, the typographical appearance of ligatures is not directly dictated by the input commands, but follows certain conventions dependent on musical meaning. For example, a three-note ligature with the musical shape low-high-low, such as \[ a \pes b \flexa g \], produces a Torculus consisting of three Punctum heads, while the shape high-low-high, such as \[ a \flexa g \pes b \], produces a Porrectus with a curved flexa shape and only a single Punctum head. There is no command to explicitly typeset the curved flexa shape; the decision of when to typeset a curved flexa shape is based on the musical input. The idea of this approach is to separate the musical aspects of the input from the notation style of the output. This way, the same input can be reused to typeset the same music in a different style of Gregorian chant notation.

**Liquescent neumes**

Another main category of notes in Gregorian chant is the so-called liquescent neumes. They are used under certain circumstances at the end of a syllable which ends in a ‘liquescent’ letter, i.e., the sounding consonants that can hold a tone (the nasals, l, r, v, j, and their diphthong equivalents). Thus, the liquescent neumes are never used alone (although some of them can be produced), and they always fall at the end of a ligature.

Liquescent neumes are represented graphically in two different, more or less interchangeable ways: with a smaller note or by ‘twisting’ the main note upwards or downwards. The first is produced by making a regular pes or flexa and modifying the shape of the second note: \[ a \pes \deminutum b \], the second by modifying the shape of a single-note neume with \auctum and one of the direction markers \descendens or \ascendens, e.g., \[ \auctum \descendens a \].

**Special signs**

A third category of signs is made up of a small number of signs with a special meaning (which, incidentally, in most cases is only vaguely known): the quilisma, the oriscus, and the strophicus. These are all produced by prefixing a note name with the corresponding modifier, \quilisma, \oriscus, or \stropha.
Virtually, within the ligature delimiters `\[` and `\]`, any number of heads may be accumulated to form a single ligature, and head prefixes like `\pes`, `\flexa`, `\virga`, `\inclinatum`, etc., may be mixed in as desired. The use of the set of rules that underlies the construction of the ligatures in the above table is accordingly extrapolated. This way, infinitely many different ligatures can be created.

Note that the use of these signs in the music itself follows certain rules, which are not checked by LilyPond. E.g., the *quilisma* is always the middle note of an ascending ligature, and usually falls on a half-tone step, but it is perfectly possible, although incorrect, to make a single-note quilisma.

In addition to the note signs, LilyPond also defines the commands `\versus`, `\responsum`, `\ij`, `\iiij`, `\IJ`, and `\IIJ`, that will produce the corresponding characters, e.g., for use in lyrics, as section markers, etc. These commands use special Unicode characters and will only work if a font is used which supports them.

The following table shows a limited, but still representative pool of Gregorian ligatures, together with the code fragments that produce the ligatures. The table is based on the extended neumes table of the 2nd volume of the Antiphonale Romanum (*Liber Hymnarius*), published 1983 by the monks of Solesmes. The first column gives the name of the ligature, with the main form in boldface and the liquescent forms in italics. The third column shows the code fragment that produces this ligature, using g, a, and b as example pitches.

### Single-note neumes

<table>
<thead>
<tr>
<th>Basic and Liquescent forms</th>
<th>Output</th>
<th>LilyPond code</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Punctum</strong></td>
<td><img src="image" alt="Image" /></td>
<td><code>\[ b \]</code></td>
</tr>
<tr>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \cavum b \]</code></td>
<td></td>
</tr>
<tr>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \linea b \]</code></td>
<td></td>
</tr>
<tr>
<td><em>Punctum Auctum Ascendens</em></td>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \auctum \ascendens b \]</code></td>
</tr>
<tr>
<td><em>Punctum Auctum Descendens</em></td>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \auctum \descendens b \]</code></td>
</tr>
<tr>
<td><em>Punctum inclinatuum</em></td>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \inclinatum b \]</code></td>
</tr>
<tr>
<td><em>Punctum Inclinatum Auctum</em></td>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \inclinatum \auctum b \]</code></td>
</tr>
<tr>
<td><em>Punctum Inclinatum Parvum</em></td>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \inclinatum \deminutum b \]</code></td>
</tr>
<tr>
<td><strong>Virga</strong></td>
<td><img src="image" alt="Image" /></td>
<td><code>\[ \virga b' \]</code></td>
</tr>
</tbody>
</table>
Two-note ligatures

Clivis vel Flexa \[ b \flexa g \]

Clivis Aucta Descendens \[ b \flexa \auctum \descendens g \]

Clivis Aucta Ascendens \[ b \flexa \auctum \ascendens g \]

Cephalicus \[ b \flexa \deminutum g \]

Podatus/Pes \[ g \pes b \]

Pes Auctus Descendens \[ g \pes \auctum \descendens b \]

Pes Auctus Ascendens \[ g \pes \auctum \ascendens b \]

Epiphonus \[ g \pes \deminutum b \]

Pes Initio Debilis \[ \deminutum g \pes b \]

Pes Auctus Descendens Initio Debilis \[ \deminutum g \pes \auctum \descendens b \]

Multi-note ligatures
<table>
<thead>
<tr>
<th>Torculus</th>
<th>[ a \pes b \flexa g ]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torculus Auctus Descendens</td>
<td>[ a \pes b \flexa \auctum \descendens g ]</td>
</tr>
<tr>
<td>Torculus Deminutus</td>
<td>[ a \pes b \flexa \deminutum g ]</td>
</tr>
<tr>
<td>Torculus Initio Debilis</td>
<td>[ \deminutum a \pes b \flexa g ]</td>
</tr>
<tr>
<td>Torculus Auctus Descendens Initio Debilis</td>
<td>[ \deminutum a \pes b \flexa \auctum \descendens g ]</td>
</tr>
<tr>
<td>Torculus Deminutus Initio Debilis</td>
<td>[ \deminutum a \pes b \flexa \deminutum g ]</td>
</tr>
<tr>
<td>Porrectus</td>
<td>[ a \flexa g \pes b ]</td>
</tr>
<tr>
<td>Porrectus Auctus Descendens</td>
<td>[ a \flexa g \pes \auctum \descendens b ]</td>
</tr>
<tr>
<td>Porrectus Deminutus</td>
<td>[ a \flexa g \pes \deminutum b ]</td>
</tr>
<tr>
<td>Climacus</td>
<td>[ \virga b \inclinatum a \inclinatum g ]</td>
</tr>
<tr>
<td>Climacus Auctus</td>
<td>[ \virga b \inclinatum a \inclinatum \auctum g ]</td>
</tr>
<tr>
<td>Climacus Deminutus</td>
<td>[ \virga b \inclinatum a \inclinatum \deminutum g ]</td>
</tr>
<tr>
<td>Scandicus</td>
<td>[ g \pes a \virga b ]</td>
</tr>
<tr>
<td>Scandicus Auctus Descendens</td>
<td>[ g \pes a \pes \auctum \descendens b ]</td>
</tr>
</tbody>
</table>
Chapter 2: Specialist notation

**Scandicus Deminutus**
\[ g \pes a \pes \deminutum b \]

**Special signs**

**Quilisma**
\[ g \pes \quilisma a \pes b \]

**Quilisma Pes Auctus Descendens**
\[ g \quilisma a \pes \auctum \descendens b \]

**Oriscus**
\[ \oriscus b \]

**Pes Quassus**
\[ \oriscus g \pes \virga b \]

**Pes Quassus Auctus Descendens**
\[ \oriscus g \pes \auctum \descendens b \]

**Salicus**
\[ g \oriscus a \pes \virga b \]

**Salicus Auctus Descendens**
\[ g \oriscus a \pes \auctum \descendens b \]

**(Apo)stropha**
\[ \stropha b \]

**Stropha Aucta**
\[ \stropha \auctum b \]

**Bistropha**
\[ \stropha b \stropha b \]

**Tristropha**
\[ \stropha b \stropha b \stropha b \]

**Trigonus**
\[ \stropha b \stropha b \stropha a \]

**Predefined commands**
The following head prefixes are supported: \virga, \stropha, \inclinatum, \auctum, \descendens, \ascendens, \oriscus, \quilisma, \deminutum, \cavum, \linea.
Head prefixes can be accumulated, though restrictions apply. For example, either \descendens or \ascendens can be applied to a head, but not both to the same head.

Two adjacent heads can be tied together with the \pes and \flexa infix commands for a rising and falling line of melody, respectively.

Use the unary music function \augmentum to add augmentum dots.

See also
Notation Reference: [Gregorian square neume ligatures], page 510, [White mensural ligatures], page 504, [Ligatures], page 497.

Known issues and warnings
When an \augmentum dot appears at the end of the last staff within a ligature, it is sometimes vertically placed wrong. As a workaround, add an additional skip note (e.g., s8) as last note of the staff.

\augmentum should be implemented as a head prefix rather than a unary music function, such that \augmentum can be intermixed with head prefixes in arbitrary order.

2.9.5 Typesetting Kievan square notation

Kievan contexts
As with Mensural and Gregorian notation, the predefined KievanVoice and KievanStaff contexts can be used to engrave a piece in square notation. These contexts initialize all relevant context properties and grob properties to proper values, so you can immediately go ahead entering the chant:

% Font settings for Cyrillic
\paper {
   property-defaults.fonts-serif = "Linux Libertine O,serif"
}

\score { << \new KievanVoice = "melody" \relative c' { \cadenzaOn 
   c4 c c c2 b\longa
   \fine }
\new Lyrics \lyricsto "melody" { 
   Го -- спо -- ди по -- ми -- луй.
} >> }

\noteheads.sM2kievan
\noteheads.s1kievan
\scripts.barline.kievan
\noteheads.d2kievan /clefs.kievan.do /noteheads.d2kievan /noteheads.d2kievan

See also
Known issues and warnings

LilyPond supports Kievan notation of the Synodal style, as used in the corpus of chant books printed by the Russian Holy Synod in the 1910’s and recently reprinted by the Moscow Patriarchate Publishing House. LilyPond does not support the older (less common) forms of Kievan notation that were used in Galicia to notate Rusyn plainchant.

Kievan clefs

There is only one clef used in Kievan notation (the Tse-fa-ut Clef). It is used to indicate the position of $c$:

```
\clef "kievan-do"
\kievanOn
\c'
```

See also


Notation Reference: [Clef], page 17.

Kievan notes

For Kievan square notation, the appropriate note head style needs to be chosen and the flags and stems need to be turned off. This is accomplished by calling the \kievanOn function, which sets the appropriate properties of the note head, stems, and flags. Once Kievan note heads are not needed, these properties can be reverted by calling the \kievanOff function.

The Kievan final note, which usually comes at the end of a piece of music, may be selected by setting the duration to \longa. The Kievan recitative mark, used to indicate the chanting of several syllables on one note, may be selected by setting the duration to \breve. The following example demonstrates the various Kievan note heads:

```
\autoBeamOff
\cadenzaOn
\kievanOn
b'1 b'2 b'4 b'8 b'\breve b'\longa
\kievanOff
b'2
```

See also


Notation Reference: Section A.9 [Note head styles], page 757.

Known issues and warnings

LilyPond automatically determines if the stem up or stem down form of a note is drawn. When setting chant in square notation, however, it is customary to have the stems point in the same direction within a single melisma. This can be done manually by setting the direction property of the Stem object.
Kievan accidentals

The kievan style provides a sharp and a flat sign different from the default style. There is no natural sign in Kievan notation. The sharp sign is not used in Synodal music but may occur in earlier manuscripts. It has been included primarily for the sake of compatibility.

\clef "kievan-do"
\set Staff.alterationGlyphs =
#alteration-kievan-glyph-name-alist
bes’ dis’

See also


Notation Reference: [Accidentals], page 6, [Automatic accidentals], page 29, [Alternate accidental glyphs], page 36, Section A.8 [The Emmentaler font], page 743.

Kievan bar lines

In a KievanStaff, there are no measures, but the \caesura command creates a phrase bar line, and the \section and \fine commands create a special section bar line.

\new KievanStaff {
  c’4 4 4 4 4 4 \caesura \% \bar "_" 
  d’4 4 4 4 4 4 \section \% \bar "k"
  e’4 4 4 4 4 4 \fine
}

See also

Notation Reference: Section 1.2.5 [Bars], page 107, Section A.8 [The Emmentaler font], page 743.

Kievan melismata

Notes within a Kievan melisma are usually placed close to each other and the melismata separated by whitespace. This is done to allow the chanter to quickly identify the melodic structures of Znamenny chant. In LilyPond, melismata are treated as ligatures and the spacing is implemented by the Kievan_ligature_engraver.

When the KievanVoice and KievanStaff contexts are used, the Kievan_ligature_engraver is enabled by default. In other contexts, it can be invoked by replacing the Ligature_bracket_engraver with the Kievan_ligature_engraver in the layout block:

\layout {
  \context {
    \Voice
    \remove Ligature_bracket_engraver
    \consists Kievan_ligature_engraver
  }
}
The spacing between the notes within a Kievan ligature can be controlled by setting the padding property of the \KievanLigature.

The following example demonstrates the use of Kievan ligatures:

```latex
\paper {
 property-defaults.fonts.serif = "Linux Libertine O,serif"
}
\score { <<
 \new KievanVoice = "melody" \relative c' {
 \cadenzaOn
 e2 \[e4(d4) \] \[c4(d e d) \] e1 \fine
 }
 \new Lyrics \lyricsto "melody" {
 \text{Га -- врі -- и -- лу}
 }
>> }
```

See also


Notation Reference: [White mensural ligatures], page 504, [Gregorian square neume ligatures], page 510, [Ligatures], page 497.

Known issues and warnings

Horizontal spacing of ligatures is poor.

2.9.6 Working with ancient music – scenarios and solutions

Working with ancient music frequently involves particular tasks which differ considerably from the modern notation for which LilyPond is designed. In the rest of this section, a number of typical scenarios are outlined, with suggestions of solutions. These involve:

- how to make incipits (i.e., prefatory material to indicate what the original has looked like) to modern transcriptions of mensural music;
- how to achieve the Mensurstriche layout frequently used for modern transcriptions of polyphonic music;
- how to transcribe Gregorian chant in modern notation;
- how to generate both ancient and modern notation from the same source.

Incipits

It is customary when transcribing mensural music into modern notation to place an indication of how the initial rests and note or notes of the original version appeared – including the original clefs. This is called an \incipit. The \incipit command uses the indent of the main staff to set the width occupied by the incipit, and \incipit-width to set the width of the incipit staff.

\score {
\new Staff << 
\new Voice = Tenor { 
  \set Staff.instrumentName = "Tenor"
  \override Staff.InstrumentName.self-alignment-X = #RIGHT
  \incipit { \clef "mensural-c4" \key f \major r\breve r1 c'1 }
  \clef "treble_8"
  \key f \major
  R1 r2 c'2 |
  a4. c'8
}
\new Lyrics \lyricsto Tenor { Cyn -- thia your }
>>
\layout {
  indent = 5\cm
  incipit-width = 3\cm
}

\new StaffGroup <<
\new Staff \music
\new Staff \music

Known issues and warnings

Note that instrumentName must be set in the music for the incipit to be produced. If no
instrument name is required then use \set Staff.instrumentName = "".

Mensurstriche layout

Mensurstriche ('mensuration lines') is the accepted term for bar lines that are drawn between
the staves of a system but not through the staves themselves. It is a common way to preserve
the rhythmic appearance of the original, i.e., not having to break syncopated notes at bar lines,
while still providing the orientation aids that bar lines give.

Mensurstriche, bar lines between but not through staves, can be printed by setting
measureBarType to "-span|" and using a grouping context that allows span bars, such as StaffGroup.

\layout {
  \context {
    \Staff
      measureBarType = "-span|"
  }
}

music = \fixed c' { 
  c1
  d2 \section e2
  f1 \fine
}

\new StaffGroup <<
\new Staff \music
\new Staff \music
Transcribing Gregorian chant

Gregorian chant can be transcribed into modern notation with a number of simple tweaks.

**Stems.** The `GregorianTranscriptionVoice` context does not create stems. You can extend this behavior to other contexts by removing `Stem_engraver`:

```latex
\layout {
 ...
 \context {\Voice \remove Stem_engraver}
}
```

**Timing.** For unmetered chant, there are several alternatives.

The `Time_signature_engraver` can be removed from the `Staff` context without any negative side effects. The alternative, to make it transparent, will leave an empty space in the score, since the invisible signature will still take up space.

In many cases, `\set Score.timing = ##f` will give good results. An alternative is to use `\cadenzaOn` and `\cadenzaOff`.

The predefined staff contexts for ancient music do not create measure bar lines. You can extend this behavior to all other contexts with `\set Score.measureBarType = #'()` or to particular staves with `\set Staff.measureBarType = #'()`.

The predefined staff contexts for ancient music allow line breaks without bar lines. You can extend this behavior to all other contexts with `\set Score.forbidBreakBetweenBarLines = ##f` or to particular staves with `\set Staff.forbidBreakBetweenBarLines = ##f`.

A common type of transcription is recitativic chant where the repeated notes are indicated with a single breve. The text to the recitation tone can be dealt with in two different ways: either set as a single, left-aligned syllable:

```latex
chant = \relative {\clef "G_8"
 c\breve c4 b4 a c2 c4 \divisioMaior
 c\breve c4 c f, f \finalis}
```

```latex
verba = \lyricmode {
 \once \override LyricText.self-alignment-X = #-1
 "Noctem quietam et" fi -- nem per -- fec -- tum
 \once \override LyricText.self-alignment-X = #-1
 "concedat nobis Dominus" om -- ni -- po -- tens.
}
```

```latex
\score {
 \new GregorianTranscriptionStaff <<
 \new GregorianTranscriptionVoice = "melody" {
```
This works fine, as long as the text doesn’t span a line break. If that is the case, an alternative is to add hidden notes to the score, as below.

In some transcription styles, stems are used occasionally, for example to indicate the transition from a single-tone recitative to a fixed melodic gesture. In these cases, one can use the `Stem_engraver` and manually `\omit Stem` and `\undo \omit Stem`.

```latex
\chant
\new GregorianTranscriptionLyrics = "one" {
\lyricsto "melody" \verba
}
\>
\score {
\new GregorianTranscriptionStaff <<
\new GregorianTranscriptionVoice = "melody" {
\chant
}
\new GregorianTranscriptionLyrics = "one" {
\lyricsto "melody" \verba
}
\>
\layout {
\context {
GregorianTranscriptionVoice
\consists Stem_engraver
```
Another common situation is transcription of neumatic or melismatic chants, i.e., chants with a varying number of notes to each syllable. In this case, one would want to set the syllable groups clearly apart, usually also the subdivisions of a longer melisma. One way to achieve this is to use a fixed \time, e.g., 1/4, and let each syllable or note group fill one of these measures, with the help of tuplets or shorter durations. If the bar lines and all other rhythmical indications are made transparent, and the space around the bar lines is increased, this will give a fairly good representation in modern notation of the original.

To avoid that syllables of different width (such as “-ri” and “-rum”) spread the syllable note groups unevenly apart, the X-extent property of the LyricText object may be set to a fixed value. Another, more cumbersome way would be to add the syllables as \markup elements. If further adjustments are necessary, this can be easily done with a ‘notes’.

\begin{verbatim}
spiritus = \relative {
  \time 1/4
  \override Lyrics.LyricText.X-extent = #'(0 . 3)
  d'4 \tuplet 3/2 { f8 a g } g a a4 g f8 e
  d4 f8 g g8 d f g a g f4 g8 a a4 s
  \tuplet 3/2 { g8 f d } e f g a g4
}

spirLyr = \lyricmode {
  Spi -- ri -- _ _ tus _ Do -- mi -- ni _ re -- ple -- _ vit _
  or -- _ bem _ ter -- ra -- _ rum, al -- _ _ le -- _ _ lu
  -- _ ia.
}
\end{verbatim}
Ancient and modern from one source

*Using tags to produce mensural and modern music from the same source*

Using tags, it is possible to produce both mensural and modern notation from the same music. In this snippet, a function \menrest is introduced, allowing mensural rests to be pitched as in the original, but with modern rests in the standard staff position. Tags can also be used where other differences are needed: for example using “whole measure rests” (R1, R\breve{}, etc.) in modern music, but normal rests (r1, r\breve{}, etc.) in the mensural version. Converting mensural music to its modern equivalent is usually referred to as transcription.

\header { tagline = ##f }

menrest = #(define-music-function (note)
(ly:music?)
#{
\tag #'mens $(make-music 'RestEvent note)
\tag #'mod $(make-music 'RestEvent note 'pitch '())
#})

MenStyle = {
\autoBeamOff
\override NoteHead.style = #'petrucci
\override Score.BarNumber.transparent = ##t
\override Stem.neutral-direction = #up
}

finalis = \section

Music = \relative c' {
\set Score.tempoHideNote = ##t
\key f \major
\time 4/4
g1 d'2 \menrest bes4 bes2 a2 r4 g4 fis2.
\finalis
}
MenLyr = \lyricmode { So farre, deere life, deare life }
ModLyr = \lyricmode { So far, dear life, dear life }

\score {
\keepWithTag #'mens {
  \new MensuralStaff {
    \new MensuralVoice = Cantus
    \clef "mensural-c1" \MenStyle \Music
    \new Lyrics \lyricsto Cantus \MenLyr
  }
}\}
}\score {
\keepWithTag #'mod {
  \new ChoirStaff <<
    \new Staff {
      \new Voice = Sop \with {
        \remove "Note_heads_engraver"
        \consists "Completion_heads_engraver"
        \remove "Rest_engraver"
        \consists "Completion_rest_engraver"
      }
      \shiftDurations #1 #0 { \autoBeamOff \Music }
    }
  \new Lyrics \lyricsto Sop \ModLyr
}\}

So farre, deere life, deare life
So far, dear life, dear life

2.10 World music
The purpose of this section is to highlight musical notation issues that are relevant to traditions outside the Western tradition.

2.10.1 Common notation for non-Western music
This section discusses how to enter and print music scores that do not belong to the Western classical tradition, also referred to as *Common Practice Period*.
Extending notation and tuning systems

Standard classical notation (also known as Common Practice Period notation) is commonly used in all sorts of music, not limited to ‘classical’ Western music. This notation is discussed in Section 1.1.1 [Writing pitches], page 1, and the various note names that may be used are explained in [Note names in other languages], page 8.

Some types of non-Western music and folk/traditional music often employ alternative or extended tuning systems that do not fit easily into standard, classical notation.

Standard notation is still used but with pitch differences being implicit. For example, Arabic music is notated with semi and quarter tone accidentals but with precise pitch alterations being determined by context. In the case of Arabic music, the init file arabic.ly provides a suitable set of macros and definitions that extend the standard notation using Italian note names. For more details see Section 2.10.2 [Arabic music], page 526.

Other types of music require extended or unique notations, for example, Turkish classical music (also known as Ottoman classical music) employs melodic forms known as makamlar where intervals are based on 1/9 divisions of the whole tone. Standard, Western staff notes are still used, but with special accidentals uniquely defined in the files turkish-nakam.ly. For more information on Turkish classical music and makamlar see Section 2.10.3 [Turkish classical music], page 532.

Other, related init files are also available; hel-arabic.ly and nakam.ly.

To locate these init files on your system, see Section “Other sources of information” in Learning Manual.

See also


Notation Reference: Section 1.1.1 [Writing pitches], page 1, [Note names in other languages], page 8, Section 2.10.2 [Arabic music], page 526, Section 2.10.3 [Turkish classical music], page 532, Section 2.10.4 [Persian classical music], page 534.

2.10.2 Arabic music

This section highlights issues that are relevant to notating Arabic music.

References for Arabic music

Arabic music so far has been mainly an oral tradition. When music is transcribed, it is usually in a sketch format, on which performers are expected to improvise significantly. Increasingly, Western notation, with a few variations, is adopted in order to communicate and preserve Arabic music.

Some elements of Western musical notation such as the transcription of chords or independent parts, are not required to typeset the more traditional Arabic pieces. There are however some different issues, such as the need to indicate medium intervals that are somewhere between a semi-tone and a tone, in addition to the minor and major intervals that are used in Western music. There is also the need to group and indicate a large number of different maqams (modes) that are part of Arabic music.

In general, Arabic music notation does not attempt to precisely indicate microtonal elements that are present in musical practice.

Several issues that are relevant to Arabic music are covered elsewhere:

• Note names and accidentals (including quarter tones) can be tailored as discussed in Section 2.10.1 [Common notation for non-Western music], page 525.
• Additional key signatures can also be tailored as described in [Key signature], page 21.
• Complex time signatures may require that notes be grouped manually as described in [Manual beams], page 103.
• Takasim which are rhythmically free improvisations may be written down omitting bar lines as described in [Unmetered music], page 82.

See also
Notation Reference: Section 2.10.1 [Common notation for non-Western music], page 525, [Key signature], page 21, [Manual beams], page 103.

Snippets: Section “World music” in Snippets.

Arabic note names
Traditional Arabic note names (like ‘rast’, ‘dukah’, ‘sikah’, etc.) can be quite long and so may not always be suitable for the purpose of music writing.

Include the file arabic.ly to write Arabic sheet music. The following example demonstrates how to write a ‘rast’ scale:

```
\include "arabic.ly"
\relative {
 \key do \rast
 do' re misb fa | sol la sisb do | sib la sol fa | misb re do
}
```

The file arabic.ly sets the note language to Italian (or Solfege), since that is the modern standard in Arabic music and is widely adopted among Arabic musicians. If you prefer to write sheet music in another language, simply change the language to your preferred language directly after including the file arabic.ly. This is a ‘rast’ scale with English note names:

```
\include "arabic.ly"
\language "english"
\relative {
 \key c \rast
 c' d eqf f | g a bqf c | bf a g f | eqf d c
}
```

“Rast” is a heptatonic scale that uses quarter tone intervals and is considered the most important and central scale of the “Arabic Maqamat”. For the full list of supported Arabic scales, see [Arabic key signatures], page 528.

The use of standard Western notation to notate non-Western music is discussed in Section 2.10.1 [Common notation for non-Western music], page 525. Also see [Note names in other languages], page 8.

The symbol for semi-flat does not match the symbol which is used in Arabic notation. The \dwn symbol defined in arabic.ly may be used preceding a flat symbol as a work around if it is important to use the specific Arabic semi-flat symbol. The appearance of the semi-flat symbol in the key signature cannot be altered by using this method.

```
\include "arabic.ly"
```
\relative {  
  \set Staff.extraNatural = ##f  
  dod' dob dosd \dwn dob dobsb dodsd do do  
}\[72x417]See also
Notation Reference: [Note names in other languages], page 8, Section 2.10.1 [Common notation for non-Western music], page 525, Section 3.4.1 [Including LilyPond files], page 570.

Installed Files: ly/arabic.ly
Snippets: Section “World music” in Snippets.

Arabic key signatures
In addition to the minor and major key signatures, LilyPond provides the most common Arabic key signatures in the file arabic.ly. With that being said LilyPond is not aiming at providing a full suite of all possible maqams. It rather defines the most common ones that are frequently used and offers key signatures by grouping maqams together. In general, a maqam uses the key signature of its family, or a neighboring family, and varying accidentals are marked throughout the music. When forming key signatures neighboring maqam families are grouped together. For example, maqam saba seldom occurs outside of the context of maqam bayati and adds only a single alteration. Although both maqams come from different maqam families they are inside the same key signature group. Arabic maqams only allow for limited modulations, due to the nature of Arabic musical instruments.

Here is an example of the key signature for a “maqam muhayer” piece of music:
\key re \bayati
Here re is the default pitch of the muhayer maqam, and bayati is the name of the base maqam in the group.

While the key signature indicates the group, it is common for the title to indicate the more specific maqam, so in this example, the name of “maqam muhayer” should also appear in the title.

Other maqams in the same bayati group, as shown in the table below (e.g., bayati, hussaini, saba, and ushaq) can be indicated in the same way. These are all variations of the base and most common maqam in the group, which is bayati. They usually differ from the base maqam in their upper tetrachords, or certain flow details that do not change their fundamental nature, as siblings.

The other maqam in the same group (nawa) is related to bayati by modulation and is shown in the table in parentheses for those that are modulations of their base maqam. Nawa, for example, can be indicated as follows:
\key sol \bayati

In Arabic music, the same term, for example bayati, that is used to indicate a maqam family, is also a maqam that is usually the most important in the family so can also be thought of as a base maqam.

Here is the grouping that maps the more common maqams to key signatures as defined in the file arabic.ly:

<table>
<thead>
<tr>
<th>maqam group</th>
<th>key</th>
<th>finalis</th>
<th>Other maqams in group (finalis)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ajam</td>
<td>major</td>
<td>sib</td>
<td>jaharka (fa)</td>
</tr>
</tbody>
</table>
Bayati  bayati  re  hussaini, muhayer, saba, ushaq, nawa (sol)
Hijaz  hijaz  re  zanjaran (do)
Hijaz kar  hijaz_kar do  shahnaz, shad arban (sol)
Huzam  huzam  misb  -
Iraq  iraq  sib  -
Kurd  kurd  re  hijazkar kurd (do)
Nahawand minor  do  busalik (re), farah faza (sol)
Nakriz  nakriz  do  nawa athar, hisar (re)
Rast  rast  do  mahur, yakah (sol)
Sikah  sikah  misb  -

In case you are missing a specific maqam, you can define it yourself in your sheet music before using it. The following example defines and then uses the zanjaran maqam.

\include "arabic.ly"

% For example on do: do reb mi fa sol la sib do
% reb and sib are FLAT
% You can also use SHARP, SEMI-FLAT, SEMI-SHARP
zanjaran = #'(
  0 ,NATURAL
  1 ,FLAT
  2 ,NATURAL
  3 ,NATURAL
  4 ,NATURAL
  5 ,NATURAL
  6 ,FLAT
)

relative {
  key do \zanjaran
  do' reb mi fa sol la sib do
}

For special cases, rare maqams are defined in the hel-arabic.ly file. Please refer to the file included with LilyPond for a full list of the provided maqams.

Selected Snippets

Non-traditional key signatures

The commonly used \key command sets the keyAlterations property, in the Staff context.

To create non-standard key signatures, set this property directly. The format of this command is a list:

\set Staff.keyAlterations =
  #'(((octave . step) . alter) ((octave . step) . alter) ...)

where, for each element in the list, octave specifies the octave (0 being the octave from middle C to the B above), step specifies the note within the octave (0 means C and 6 means B), and alter is ,SHARP ,FLAT ,DOUBLE-SHARP etc.

Alternatively, using the more concise format for each item in the list (step . alter) specifies the same alteration holds in all octaves.
For microtonal scales where a “sharp” is not 100 cents, alter refers to the alteration as a proportion of a 200-cent whole tone.

\include "arabic.ly"
\relative do' {
  \set Staff.keyAlterations = \#'((0 . \,SEMI-FLAT)
                          (1 . \,SEMI-FLAT)
                          (2 . \,FLAT)
                          (5 . \,FLAT)
                          (6 . \,SEMI-FLAT))
  \set Staff.extraNatural = ##f
  re reb \dwn reb read
  dod dob dosd \dwn dob |
  dobsb dodsd do do |
}

See also
Notation Reference: [Key signature], page 21.
Installed Files: ly/arabic.ly ly/hel-arabic.ly
Snippets: Section “World music” in Snippets, Section “Pitches” in Snippets.
Internals Reference: Section “KeySignature” in Internals Reference.

Arabic time signatures
Some Arabic and Turkish music classical forms such as Semai use unusual time signatures such as 10/8. This may lead to an automatic grouping of notes that is quite different from existing typeset music, where notes may not be grouped on the beat, but in a manner that is difficult to match by adjusting automatic beaming. The alternative is to switch off automatic beaming and beam the notes manually. Even if a match to existing typeset music is not required, it may still be desirable to adjust the automatic beaming behavior and/or use compound time signatures.

Selected Snippets

Arabic improvisation
For improvisations or taqasim which are temporarily free, the time signature can be omitted and \cadenzaOn can be used. Adjusting the accidental style might be required, since the absence of bar lines will cause the accidental to be marked only once. Here is an example of what could be the start of a hijaz improvisation:

\include "arabic.ly"
\relative sol' {
  \key re \kurd
  \accidentalStyle forget
  \cadenzaOn
Chapter 2: Specialist notation

See also


Notation Reference: [Manual beams], page 103, [Automatic beams], page 92, [Unmetered music], page 82, [Automatic accidentals], page 29, [Setting automatic beam behavior], page 95, [Time signature], page 72.

Installed Files: ly/arabic.ly

Snippets: Section “World music” in Snippets.

Arabic music example

Here is a template that also uses the start of a Turkish Semai that is familiar in Arabic music education in order to illustrate some of the peculiarities of Arabic music notation, such as medium intervals and unusual modes that are discussed in this section.

\include "arabic.ly"
\score {
    \header {
        \title = "Semai Muhayer"
        \composer = "Jamil Bek"
    }
    \relative {
        \set Staff.extraNatural = ##f
        \set Staff.autoBeaming = ##f
        \key re \bayati
        \time 10/8
        re'4 re'8 re16 [misb re do] sisb [la sisb do] re4 r8
        do4 sisb8 misb16 [re do sisb] la [do sisb la] la4 r8
    }
}

See also

Installed Files: ly/arabic.ly

Snippets: Section “World music” in Snippets.
Further reading for Arabic music

There are some variations in the details of how maqams are grouped, despite agreement of grouping maqams related through common lower tetra chords or by modulation. There are also some inconsistencies, even within the same texts, on how key signatures for a particular maqam should be specified. However, it is common to use a key signature per ‘group’ of maqams instead of individual key signatures for each maqam separately.

- There are also some web sites that explain maqams and even provide audio examples:
  - [https://www.maqamworld.com/](https://www.maqamworld.com/)
  - [https://www.turath.org/](https://www.turath.org/)
- Method books by the following authors for the oud (the Arabic lute) contain examples of mainly Turkish and Arabic compositions.
  - Charbel Rouhana
  - George Farah
  - Ibrahim Ali Darwish Al-masri

2.10.3 Turkish classical music

This section highlights issues that are relevant to notating Turkish classical music.

References for Turkish classical music

Turkish classical music developed in the Ottoman Empire at roughly the same time as classical music in Europe, and has continued on into the 20th and 21st centuries as a vibrant and distinct tradition with its own compositional forms, theory and performance styles. Among its striking features is the use of microtonal intervals based on ‘commas’ of 1/9 of a tone, from which are constructed the melodic forms known as makam (plural makamlar) are constructed.

Some issues relevant to Turkish classical music are covered elsewhere. Special note names and accidentals are explained in Section 2.10.1 [Common notation for non-Western music], page 525.

Turkish note names

Pitches in Turkish classical music traditionally have unique names and the basis of pitch on 1/9-tone divisions means that makamlar employ a completely different set of intervals compared to Western scales and modes:

- From a modern, notational point of view it is convenient to use standard, Western staff notes (c, d, e, etc.) but with custom accidentals that raise or lower notes by intervals of 1/9, 4/9, 5/9 or 8/9 of a tone.

  These custom accidentals are defined in the file *turkish-makam.ly*.

- For a more general explanation of non-Western music notation, see Section 2.10.1 [Common notation for non-Western music], page 525.

See also


Notation Reference: Section 2.10.1 [Common notation for non-Western music], page 525.

Turkish key signatures

LilyPond supports over 200 makam key signature definitions – well beyond what is used in Turkish classical music – with each makam having its own specific tonic / finalis pitch (known as ‘karar’ in Turkish).
It is important to be aware of the finalis of each makam. Here is an example where g is the default tonic and rast is the name of the makam.

\key g \rast

The correct accidentals, koma flat (b1) and koma sharp (f4), (both in relation to the tonic g), will be displayed automatically.

**Selected Snippets**

**Turkish Makam example**

This template uses the start of a well-known Turkish Saz Semai that is familiar in the repertoire in order to illustrate some of the elements of Turkish music notation.

\paper { tagline = ##f }

\% Initialize makam settings
\include "turkish-makam.ly"

\header {
  title = "Hüseyni Saz Semaisi"
  composer = "Lavtacı Andon"
}

\relative {
  \set Staff.extraNatural = ##f
  \set Staff.autoBeaming = ##f

  \key a \huseyni
  \time 10/8

  a'4 g'16 [fb] e8. [d16] d [c d e] c [d c8] bfc |
  a16 [bfc a8] bfc c16 [d c8] d16 [e d8] e4 fb8 |
  d4 a'8 a16 [g fb e] fb8 [g] a8. [b16] a16 [g] |
  g4 g16 [fb] fb8. [e16] e [g fb e] e4 r8 |
}

Hüseyni Saz Semaisi

Lavtacı Andon

Further reading for Turkish music

- *Turk Musikisi Nazariyati ve Usulleri: Kudum Veveleleri* by Ismail Hakki Ozkan [(Kultur serisi, 41) (Turkish) Paperback – 1986]
  
  contains information about the theory of makams and usul.

- *Music of the Ottoman Court* by Walter Feldman [VWB Hardback – 1996]
  
  contains information about the history of Ottoman court music.
2.10.4 Persian classical music

This section highlights issues that are relevant to notating Persian classical music.

Persian music notation

The notation for Persian classical music commonly uses two accidentals for microtones, sori and koron. Invented by Ali-Naqi Vaziri around 1935, they indicate raising and lowering a pitch by (approximately) a quarter tone, respectively.

\begin{itemize}
  \item \texttt{sori} \quad \texttt{koron}
  \item \texttt{\$} \quad \texttt{\_}
\end{itemize}

The file \texttt{persian.ly}\(^1\) provides support for koron and sori; they can be obtained by appending ‘k’ (koron) and ‘o’ (sori) to the English note symbols.

LilyPond supports tunings for all major Persian modes in all keys, sufficient to notate the gushehs (central nuclear melodies) of all dastgahs (musical modal systems).

The note immediately following a koron is sometimes\(^2\) lowered by about 20 cents. This is not notated but considered part of the tuning. However, for getting better MIDI support you can make a sound flat by appending ‘v’ to the note name (‘vat’). This note should actually also get a strong vibrato, and the vibrato and low tuning are perceptually integrated (serialism). This is just for MIDI and has no effect on the notation itself.

There are no further tuning issues in Persian music. Since the music is monophonic, the difference between just intonation (for example) and equal temperament is merely academic – there are no chords where out-of-tune intervals would be noticeable.

The following suffixes to English note names are provided.

\begin{itemize}
  \item \texttt{ff} double-flat
  \item \texttt{f} flat
  \item \texttt{k} koron (about quarter flat, -3/10 of whole tone, 60 cents)
  \item \texttt{o} sori (about quarter sharp, 2/10 of whole tone, 40 cents)
  \item \texttt{s} sharp
  \item \texttt{x} double-sharp
  \item \texttt{v} 20 cent flat-tuned note (“vat”, not notated)
  \item \texttt{fv} flat, tuned 20 cents down (notated as a normal flat)
  \item \texttt{sv} sharp, tuned 20 cents down (notated as a normal sharp; does never occur in traditional Persian music)
\end{itemize}

Persian tunings

Dastgahs can have many tunings; it has become common to name tunings after representative dastgahs featuring them. The following Persian tunings are provided to be used as the second argument of the \texttt{\key} command. Note that in practice not all tunings are used in all keys.

\begin{itemize}
  \item \texttt{\shur} ‘Shur’ gushehs with natural 5th degree
  \item \texttt{\shurk} ‘Shur’ gushehs with koron 5th degree
  \item \texttt{\esfahan} ‘Esfahan’ dastgah according to some (but not all) Persian musicians.
\end{itemize}

\(^1\) There exists another, older support file for Persian classical music also called \texttt{persian.ly} (written by Kees van den Doel) that no longer works with the current LilyPond version; while note names are compatible, the selection of key signatures is not.

\(^2\) If the interval defined by the note before the koron and after the koron is a minor third. The same is true for the note below the finalis in the ‘Esfahan’ dastgah according to some (but not all) Persian musicians.
\mokhalefsegah
\chahargah
\mahur \text{ the same as \texttt{major} but used in a completely different context}

\delkashMahur

In dastgah ‘Shur’, the 5th degree can either be natural or koron, so two tunings are provided (\shur, \shurk). Secondary dastgahs ‘Dashti’, ‘Abuata’, and ‘Bayat-e-tork’ use \shur, the derived dastgah ‘Afshari’ uses \shurk. ‘Nava’ on G is like ‘Shur’ on D (a 4th apart). The tuning of ‘Segah’ is \shurk. Other tunings are \esfahan (‘Homayoun’ on C is like ‘Esfahan’ on G, a 5th apart), \chahargah, and \mokhalefsegah. For dastgahs ‘Mahur’ and ‘Rast-panigah’ the same tuning \mahur can be used.

All the various modulatory gushehs in all dastgahs can be noted with these tunings, with the exception of ‘Delkash’ in ‘Mahur’, but traditionally the peculiar accidentals there are notated explicitly (however, persian.ly also defines a tuning \delkashMahur).

As an example, Chahargah in D can be input with the following.

\include "persian.ly"

\relative c' {\key d \chahargah
  bk'8 a gs for g ak g |
  fs ek d c d ef16 d c4 |
}

\Persian key signatures

By default, the order of accidentals in Persian key signatures is flats followed by korons, then sharps followed by soris (then double flats, then double sharps).

An alternative key order, similar to the one used in turkish-makam.ly, can be selected. Here, the order is flats or korons (or double flats), then sharps or soris (or double sharps). In other words, korons and soris are handled equal to flats and sharps, respectively.

\include "persian.ly"

{\key b \chahargah b'1 |
  \set Staff.keyAlterationOrder = \persianAltKeyAlterationOrder
  \key b \chahargah b'1 |
}

\Further reading on Persian music

- \textit{Traditional Persian Art Music} by Dariush Tala’i [Bibliotheca Persica, Costa Mesa CA, 2000]
  The provided Persian tunings closely follow this book.
- \textit{The Dastgah Concept in Persian Music} by Hormoz Farhat [Cambridge University Press, Cambridge, 1990]
• *Le répertoire-modèle de la musique iranienne* by Jean During (in French) [Sourush, Tehran, 1995]
  
  This book contains measurements of the intervals in actual practice, consistent with the tunings of Persian music.

• *Armoni-e Musiqi-e Iran* by Ali-Naqi Vaziri (in Persian) [1935]

3 General input and output

This section deals with general LilyPond input and output issues, rather than specific notation.

3.1 Input modes

The way in which the notation contained within an input file is interpreted is determined by the current input mode. In general, there are two ways of specifying the mode: a long form, e.g. \chordmode, and a short form, e.g. \chords. The long form is typically used when supplying input to a variable or when entering input directly into an explicitly created context. The short form implicitly creates a context of the correct type for the input and passes the input directly to it. It is useful in simple situations when there is no requirement to explicitly create the receiving context.

Chord mode

This is activated with the \chordmode command, and causes input to be interpreted with the syntax of chord notation, see Section 2.7 [Chord notation], page 469. Music in chord mode is rendered as chords on a staff when entered into a Staff context, as chord names when entered into a ChordNames context or as fretboards when entered into a FretBoards context.

Chord mode is also activated with the \chords command. This also causes the following input to be interpreted with the syntax of chord notation but in addition it implicitly creates a new ChordNames context and renders the input into it as chord names, see [Printing chord names], page 474.

Drum mode

This is activated with the \drummode command, and causes input to be interpreted with the syntax of drum notation, see [Basic percussion notation], page 448. Music in drum mode is rendered as percussion notes when entered into a DrumStaff context.

Drum mode is also activated with the \drums command. This also causes the following input to be interpreted with the syntax of drum notation but in addition it implicitly creates a new DrumStaff context and renders the input into it as percussion notes, see [Basic percussion notation], page 448.

Figure mode

This is activated with the \figuremode command, and causes input to be interpreted with the syntax of figured bass, see [Entering figured bass], page 486. Music in figure mode is rendered as figured bass when entered into a FiguredBass context or a Staff context.

Figure mode is also activated with the \figures command. This also causes the following input to be interpreted with the figured bass syntax but in addition it implicitly creates a new FiguredBass context and renders the input into it as figured bass, see [Introduction to figured bass], page 485.

Fret and tab modes

There are no special input modes for entering fret and tab symbols.

To create tab diagrams, enter notes or chords in note mode and render them in a TabStaff context, see [Default tablatures], page 397.

To create fret diagrams above a staff, enter notes or chords in either note mode or chord mode and render them in a FretBoards context, see [Automatic fret diagrams], page 439. Alternatively, fret diagrams can be entered as markup above the notes using the \fret-diagram command, see [Fret diagram markups], page 418.


**Lyrics mode**

This is activated with the \lyricmode command, and causes input to be interpreted as lyric syllables with optional durations and associated lyric modifiers, see Section 2.1 [Vocal music], page 314. Input in lyric mode is rendered as lyric syllables when entered into a Lyrics context.

Lyric mode is also activated with the \lyrics command. This also causes the following input to be interpreted as lyric syllables but in addition it implicitly creates a new Lyrics context and renders the input into it as lyric syllables.

Lyric mode is also activated with the \addlyrics command. This also implicitly creates a new Lyrics context and in addition it adds an implicit \lyricsto command which associates the following lyrics with the preceding music, see [Automatic syllable durations], page 318.

**Markup mode**

This is activated with the \markup command, and causes input to be interpreted with the syntax of markup, see Section A.12 [Text markup commands], page 763.

**Note mode**

This is the default mode or it may be activated with the \notemode command. Input is interpreted as pitches, durations, markup, etc and typeset as musical notation on a staff.

It is not normally necessary to specify note mode explicitly, but it may be useful to do so in certain situations, for example if you are in lyric mode, chord mode or any other mode and want to insert something that only can be done with note mode syntax.

### 3.2 Input structure

The main format of input for LilyPond are text files. By convention, these files end with .ly.

#### 3.2.1 Structure of a score

A \score block must contain a single music expression delimited by curly brackets:

\begin{verbatim}
\score {
  ...
}
\end{verbatim}

**Note:** There must be only one outer music expression in a \score block, and it must be surrounded by curly brackets.

This single music expression may be of any size, and may contain other music expressions to any complexity. All of these examples are music expressions:

\begin{verbatim}
{ c'4 c' c' c' }
{ c'4 c' c' c' }
{ d'4 d' d' d' }
\end{verbatim}

\begin{verbatim}
<<
\new Staff { c'4 c' c' c' }
\new Staff { d'4 d' d' d' }
>>
\end{verbatim}
Comments are one exception to this general rule. (For others see Section 3.2.5 [File structure], page 542.) Both single-line comments and comments delimited by %{ ... %} may be placed anywhere within an input file. They may be placed inside or outside a \score block, and inside or outside the single music expression within a \score block.

Remember that even in a file containing only a \score block, it is implicitly enclosed in a \book block. A \book block in a source file produces at least one output file, and by default the name of the output file produced is derived from the name of the input file, so fandangoforelephants.ly will produce fandangoforelephants.pdf.

(For more details about \book blocks, see Section 3.2.2 [Multiple scores in a book], page 539, Section 3.2.3 [Multiple output files from one input file], page 541, Section 3.2.5 [File structure], page 542.)

See also


3.2.2 Multiple scores in a book

A document may contain multiple pieces of music and text. Examples of these are an étude book, or an orchestral part with multiple movements. Each movement is entered with a \score block,

\score {
    ...music...
}

and texts are entered with a \markup block,

\markup {
    ...text...
}

All the movements and texts which appear in the same .ly file will normally be typeset in the form of a single output file.

\score {
One important exception is within Lilypond-book documents, where you explicitly have to add a \book block, otherwise only the first \score or \markup will appear in the output.

The header for each piece of music can be put inside the \score block. The piece name from the header will be printed before each movement. The title for the entire book can be put inside the \book, but if it is not present, the \header which is at the top of the file is inserted.

\header { 
  title = "Eight miniatures"
  composer = "Igor Stravinsky"
}
\score { 
  \header { piece = "Romanze" } 
  ...
}
\markup { 
  ...text of second verse...
}
\markup { 
  ...text of third verse...
}
\score { 
  \header { piece = "Menuetto" } 
  ...
}

Pieces of music may be grouped into book parts using \bookpart blocks. Book parts are separated by a page break, and can start with a title, like the book itself, by specifying a \header block.

\bookpart { 
  \header { 
    title = "Book title"
    subtitle = "First part"
  }
  \score { ... } 
  ...
}
\bookpart { 
  \header { 
    subtitle = "Second part"
  }
  \score { ... }
  ...
}

By design, you cannot define variables within a \book or \bookpart block (the same is true for \score, by the way); this is especially relevant if you want to use multiple files to set up your
music with variables that should be ‘local’ to single files. You can use the following structure for such situations.

\% movement1.ly
variableI = { ...
bookpartI = \bookpart { \score { ... use \variableI ... } }

\% movement2.ly
variableII = { ...
bookpartII = \bookpart { \score { ... use \variableII ... } }

\% main.ly
\include "movement1.ly"
\include "movement2.ly"
\book {
    \bookpart { \bookpartI }
    \bookpart { \bookpartII }
}

Similarly, you can’t directly have a \layout block within \book or \bookpart. Put it into a \score block instead that is included by \book or \bookpart.

3.2.3 Multiple output files from one input file

LilyPond creates one output file for each \book block. If there is no explicit \book block in the input file, LilyPond implicitly treats the whole file as a single \book block, see Section 3.2.5 [File structure], page 542.

By default, LilyPond names the output file using the input file name and, if necessary, suffixes it with an increasing number – i.e., if an output file with the same name has already been created during the run. The default behavior is to append a version number suffix for each name that may clash, so

\book {
    \score { ... }
    \paper { ... }
}
\book {
    \score { ... }
    \paper { ... }
}
\book {
    \score { ... }
    \paper { ... }
}

in source file eightminiatures.ly produces

eightminiatures.pdf
eightminiatures-1.pdf
eightminiatures-2.pdf

as output files.

3.2.4 Output file names

It is possible to override both the output file name and the suffix appended to the basic file name in \paper blocks.

\paper {
output-filename = "my_special_output"
}

\book {
  \paper {
    output-suffix = "menuetto"
  }
  ...
}
\book {
  \paper {
    output-suffix = "scherzo"
  }
  ...
}

The result are two output files named my_special_output-menuetto.pdf and my_special_output-scherzo.pdf. Be careful to select values for output-filename and output-suffix that are valid for file names on your operating system!

If this output file name already exists (this can happen, for example, if both output-filename and output-suffix are set in the global \paper block and not in any \book blocks), LilyPond appends an additional suffix with an increasing number.

Note that predefined \paper variables (see Section 4.1.1 [The \paper block], page 605) must be placed before the output-filename and output-suffix assignments, for example

bigMargin = \paper { top-margin = 10\cm }

\book {
  \paper {
    \bigMargin % must come first
    output-filename = "foo"
  }
}

### 3.2.5 File structure

A .ly file may contain any number of top-level expressions, where a top-level expression is one of the following:

- An output definition, such as \paper, \midi, and \layout. Such a definition at the top-level changes the default book-wide settings. If more than one such definition of the same type is entered at the top level the definitions are combined, but in conflicting situations the later definitions take precedence. For details of how this affects the \layout block see Section 4.2.1 [The \layout block], page 616.

- A direct scheme expression, such as #(set-default-paper-size "a7" 'landscape) or #(ly:set-option 'point-and-click #f).

- A \header block. This sets the global (i.e., the top of file) header block. This is the block containing the default settings of titling fields like composer, title, etc., for all books within the file (see [Titles explained], page 544).

- A \score block. This score will be collected with other top-level scores, and combined as a single \book. This behavior can be changed by setting the variable toplevel-score-handler at top level. (The default handler is defined in the file ../scm/lily-library.scm and set in the file ../ly/declarations-init.ly.)
• A `\book` block logically combines multiple movements (i.e., multiple `\score` blocks) in one document. If there are a number of `\scores`, one output file will be created for each `\book` block, in which all corresponding movements are concatenated. The only reason to explicitly specify `\book` blocks in a `.ly` file is if you wish to create multiple output files from a single input file. One exception is within lilypond-book documents, where you explicitly have to add a `\book` block if you want more than a single `\score` or `\markup` in the same example. This behavior can be changed by setting the variable `toplevel-book-handler` at top level. The default handler is defined in the init file `../scm/lily.scm`.

• A `\bookpart` block. A book may be divided into several parts, using `\bookpart` blocks, in order to ease the page breaking, or to use different `\paper` settings in different parts.

• A compound music expression, such as

```
{ c'4 d' e'2 }
```

This will add the piece in a `\score` and format it in a single book together with all other top-level `\scores` and music expressions. In other words, a file containing only the above music expression will be translated into

```
\book {
 \score {
 \new Staff {
 \new Voice {
 { c'4 d' e'2 }
 }
 }
 \layout { }
 }
 \paper { }
 \header { }
}
```

This behavior can be changed by setting the variable `toplevel-music-handler` at top level. The default handler is defined in the init file `../scm/lily.scm`.

• A `\markup` text, a verse for example

```
\markup {
 2. The first line verse two.
}
```

Markup texts are rendered above, between or below the scores or music expressions, wherever they appear.

• A variable, such as

```
foo = { c4 d e d }
```

This can be used later on in the file by entering `\foo`. The name of a variable should not contain (ASCII) numbers, multiple underscores, multiple dashes or space characters. All other characters Unicode provides are allowed, for example Latin, Greek, Chinese or Cyrillic. Non-adjacent single underscores and dashes are allowed, too. In other words, variable names like `HornIII` or `αβγXII` work.

Any combination of characters is allowed if the variable name is enclosed in double quotation marks. In this case backslashes and double quotation marks need to be escaped with backslashes (not that you actually should use them). Examples: "foo bar", "a-b-c", "Horn 3".

The following example shows three things that may be entered at top level.

```
\layout {
```
At any point in a file, any of the following lexical instructions can be entered:

- \version
- \include
- \sourcefilename
- \sourcefileline
- A single-line comment, introduced by a leading % sign.
- A multi-line comment delimited by %{$\}$.

Whitespace between items in the input stream is generally ignored, and may be freely omitted or extended to enhance readability. However, whitespace should always be used in the following circumstances to avoid errors:

- Around every opening and closing curly bracket.
- After every command or variable, i.e., every item that begins with a \ sign.
- After every item that is to be interpreted as a Scheme expression, i.e., every item that begins with a # sign.
- To separate all elements of a Scheme expression.
- In lyricmode before and after \set and \override commands.

See also


Notation Reference: [Titles explained], page 544, Section 4.2.1 [The \layout block], page 616.

3.3 Titles and headers

Almost all printed music includes a title and the composer’s name; some pieces include a lot more information.

3.3.1 Creating titles headers and footers

Titles explained

Each \book block in a single input file produces a separate output file, see Section 3.2.5 [File structure], page 542. Within each output file three types of titling areas are provided: Book Titles at the beginning of each book, Bookpart Titles at the beginning of each bookpart and Score Titles at the beginning of each score.

Values of titling fields such as title and composer are set in \header blocks. (For the syntax of \header blocks and a complete list of the fields available by default see [Default layout of bookpart and score titles], page 547). Book Titles, Bookpart Titles and Score Titles can all contain the same fields, although by default the fields in Score Titles are limited to piece and opus.
\header blocks may be placed in four different places to form a descending hierarchy of \header blocks:

- At the top of the input file, before all \book, \bookpart, and \score blocks.
- Within a \book block but outside all the \bookpart and \score blocks within that book.
- Within a \bookpart block but outside all \score blocks within that bookpart.
- Within a \score block.

The values of the fields filter down this hierarchy, with the values set higher in the hierarchy persisting unless they are overridden by a value set lower in the hierarchy, so:

- A Book Title is derived from fields set at the top of the input file, modified by fields set in the \book block. The resulting fields are used to print the Book Title for that book, providing that there is other material which generates a page at the start of the book, before the first bookpart. A single \pagebreak will suffice.
- A Bookpart Title is derived from fields set at the top of the input file, modified by fields set in the \book block, and further modified by fields set in the \bookpart block. The resulting values are used to print the Bookpart Title for that bookpart.
- A Score Title is derived from fields set at the top of the input file, modified by fields set in the \book block, further modified by fields set in the \bookpart block and finally modified by fields set in the \score block. The resulting values are used to print the Score Title for that score. Note, though, that only piece and opus fields are printed by default in Score Titles unless the \paper variable, print-all-headers, is set to #t.

It is not necessary to provide \header blocks in all four places: any or even all of them may be omitted. Similarly, simple input files may omit the \book and \bookpart blocks, leaving them to be created implicitly.

If the book has only a single score, the \header block should normally be placed at the top of the file so that just a Bookpart Title is produced, making all the titling fields available for use.

If the book has multiple scores a number of different arrangements of \header blocks are possible, corresponding to the various types of musical publications. For example, if the publication contains several pieces by the same composer a \header block placed at the top of the file specifying the book title and the composer with \header blocks in each \score block specifying the piece and/or opus would be most suitable, as here:

\header {
  title = "SUITE I."
  composer = "J. S. Bach."
}

\score {
  \header {
    piece = "Prélude."
  }
  \new Staff \relative { \clef bass \key g \major \repeat unfold 2 { g,16( d' b') a b d, b' d, } | \repeat unfold 2 { g,16( e' c') b c e, c' e, } | 
  }
}

\score {
More complicated arrangements are possible. For example, text fields from the \header block in a book can be displayed in all Score Titles, with some fields overridden and some manually suppressed:

\book {
  \paper {
    print-all-headers = ##t
  }
  \header {
    title = "DAS WOHLTEMPERIRTE CLAVIER"
    subtitle = "TEIL I"
    % Do not display the default LilyPond footer for this book
    tagline = ##f
  }
  \markup { \vspace #1 }
}
\score {
  \header {
    title = "PRAELUDIUM I"
    opus = "BWV 846"
    % Do not display the subtitle for this score
    subtitle = ##f
  }
  \new PianoStaff <<
  \new Staff { s1 }
  \new Staff { \clef "bass" s1 }
DAS WOHLTEMPERIRTE CLAVIER
TEIL I

PRAELUDIUM I

\timesig.C44
\brace177
\clefs.G
\clefs.F
\timesig.C44

FUGA I
A 4 VOCI

See also
Notation Reference: Section 3.2.5 [File structure], page 542, [Default layout of bookpart and score titles], page 547, [Custom layout for titles], page 552.

Default layout of bookpart and score titles
The next examples demonstrates all printed \header variables. Note that the vertical spacing between the various header elements in the default layout is optimized for single-line entries. If you need multi-line elements, say, a two-line composer entry, try to append \vspace to the field
if necessary to adjust the vertical spacing. An alternative is to define your own, custom layout, see [Custom layout for titles], page 552.

\book {
  \header {
    % The following fields are centered
    dedication = "Dedication"
    title = "Title"
    subtitle = "Subtitle"
    subsubtitle = "Subsubtitle"
    
    % The following fields are evenly spread on one line;
    % the field "instrument" also appears on following pages
    instrument = \markup \with-color #green "Instrument"
    poet = "Poet"
    composer = "Composer"
    
    % The following fields are placed at opposite ends
    % of the same line
    meter = "Meter"
    arranger = "Arranger"
    
    % The following fields are centered at the bottom
    tagline = "The tagline goes at the bottom of the last page"
    copyright = "The copyright goes at the bottom of the first page"
  }

  \score {
    \header {
      % The following fields are placed at opposite ends
      % of the same line
      piece = "Piece 1"
      opus = "Opus 1"
    }
    { s1 }
  }

  \score {
    \header {
      % The following fields are placed at opposite ends
      % of the same line
      piece = "Piece 2 on the same page"
      opus = "Opus 2"
    }
    { s1 }
  }

  \pageBreak

  \score {
    \header {
      % The following fields are placed at opposite ends
      % of the same line
      piece = "Piece 3 on a new page"
      opus = "Opus 3"
    }
  }
The tagline goes at the bottom of the last page

Note that

- The instrument name will be repeated on every page.
- Only piece and opus are printed in a \score when the paper variable print-all-headers is set to \#f (the default).
- Text fields left unset in a \header block are replaced with \null markups so that the space is not wasted.
• The default settings for scoreTitleMarkup place the piece and opus text fields at opposite ends of the same line.

To change the default layout see [Custom layout for titles], page 552.

If a \book block starts immediately with a \bookpart block, no Book Title will be printed, as there is no page on which to print it. If a Book Title is required, begin the \book block with some markup material or a \pageBreak command.

Use the breakbefore variable inside a \header block that is itself in a \score block, to make the higher-level \header block titles appear on the first page on their own, with the music (defined in the \score block) starting on the next.

\book {
  \header {
    title = "This is my Title"
    subtitle = "This is my Subtitle"
    copyright = "This is the bottom of the first page"
  }
  \score {
    \header {
      piece = "This is the Music"
      breakbefore = ##t
    }
    \repeat unfold 4 { e'' e'' e'' e'' }
  }
}

This is my Title
This is my Subtitle

This is the bottom of the first page
This is the Music

\book{
  \header{
  tagline = "... music notation for Everyone"
  }
  \score{
  \relative {c'4 d e f}
  }
}
To remove the default LilyPond footer text, the tagline can be set to \#f.

### 3.3.2 Custom titles, headers and footers

#### Custom text formatting for titles

Standard \markup commands can be used to customize any header, footer and title text within the \header block.

\begin{verbatim}
\score {
  \header {
    piece = \markup { \fontsize #4 \bold "PRAELUDIUM I" }
    opus = \markup { \italic "BWV 846" }
  }
  \version 3.1
}
\end{verbatim}

**PRAELUDIUM I**

BWV 846

See also

Notation Reference: Section 1.8.2 \{Formatting text\}, page 293.

#### Custom layout for titles

\markup commands in the \header block are useful for simple text formatting, but they do not allow precise control over the placement of titles. To customize the placement of the text fields, change either or both of the following \paper variables:

- bookTitleMarkup
- scoreTitleMarkup

The placement of titles when using the default values of these \markup variables is shown in the examples in [Default layout of bookpart and score titles], page 547.

The default settings for scoreTitleMarkup as defined in ly/titling-init.ly are:

```ly
scoreTitleMarkup = \markup { \column { \if \should-print-all-headers { \bookTitleMarkup \hspace #1 } \fill-line { } }
```
This places the piece and opus text fields at opposite ends of the same line:

```latex
\texttt{score \{ \\header \{ \piece = "PRAELUDIUM I" \opus = "BWV 846" \} \} \header \{ \tagline = ##f \} \score \{ \header \{ \piece = "PRAELUDIUM I" \opus = "BWV 846" \} \} \}
```

This example redefines scoreTitleMarkup so that the piece text field is centered and in a large, bold font.

```latex
\texttt{book \{ \paper \{ \indent = 0\text{mm} \\scoreTitleMarkup = \markup \{ \fill-line \{ \null \fontsize #4 \textbf \fromproperty #'header:piece \fromproperty #'header:opus \} \} \} \header \{ \tagline = ##f \} \score \{ \header \{ \piece = "PRAELUDIUM I" \opus = "BWV 846" \} \} \}}
```

Text fields not normally effective in score \header blocks can be printed in the Score Title area if print-all-headers is placed inside the \paper block. A disadvantage of using this method is that text fields that are intended specifically for the Bookpart Title area need to be manually suppressed in every \score block. See [Titles explained], page 544.
To avoid this, add the desired text field to the \scoreTitle\Definition. In the following example, the composer text field (normally associated with \bookTitle\Definition) is added to \scoreTitle\Definition, allowing each score to list a different composer:

```plaintext
\book {
 \paper {
 indent = 0\mm
 scoreTitleMarkup = \markup {
 \fill-line {
 \null
 \fontsize #4 \bold \fromproperty #'header:piece
 \fromproperty #'header:composer
 }
 }
 }
 \header { tagline = ##f }
 \score {
 \header {
 piece = "MENUET"
 composer = "Christian Petzold"
 }
 { s1 }
 }
 \score {
 \header {
 piece = "RONDEAU"
 composer = "François Couperin"
 }
 { s1 }
 }
}
```

![MENUET](image1)

![RONDEAU](image2)

It is also possible to create your own custom text fields, and refer to them in the markup definition.

```plaintext
\book {
 \paper {
 indent = 0\mm
 scoreTitleMarkup = \markup {
 \fill-line {
 \null
 \override #`(direction . ,UP)
```
Custom layout for headers and footers

\markup commands in the \header block are useful for simple text formatting, but they do not allow precise control over the placement of headers and footers. To customize the placement of the text fields, use either or both of the following \paper variables:

- \oddHeaderMarkup
- \evenHeaderMarkup
- \oddFooterMarkup
- \evenFooterMarkup

The \markup command \if can be used to add markup conditionally to header and footer text defined within the \paper block, using the following syntax within \markup:

\if condition argument

The condition is tested each time the markup is interpreted. The resulting markup is argument if the condition is true, but empty if false. Typical conditions include tests for page numbers (first page, last page, specific page, ...). To test for the condition being false, replace \if with \unless.

The following example centers page numbers at the bottom of every page. First, the default settings for \oddHeaderMarkup and \evenHeaderMarkup are removed by defining each as a null markup. Then, \oddFooterMarkup is redefined with the page number centered. Finally, \evenFooterMarkup is given the same layout by defining it as \oddFooterMarkup:

\book {
Here is a list of all predefined procedures available for use with \if and \unless.

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Condition tested</th>
</tr>
</thead>
<tbody>
<tr>
<td>\on-first-page</td>
<td>First page in the book?</td>
</tr>
<tr>
<td>\on-last-page</td>
<td>Last page in the book?</td>
</tr>
<tr>
<td>\on-first-page-of-part</td>
<td>First page in the book part?</td>
</tr>
<tr>
<td>\on-last-page-of-part</td>
<td>Last page in the book part?</td>
</tr>
<tr>
<td>\on-page n</td>
<td>On page number n?</td>
</tr>
<tr>
<td>\single-page</td>
<td>Does the book fit on just one page?</td>
</tr>
<tr>
<td>\should-print-page-numbers-global</td>
<td>Print page numbers in the book?</td>
</tr>
<tr>
<td>\should-print-page-number</td>
<td>Print the number of the current page?</td>
</tr>
<tr>
<td>\should-print-all-headers</td>
<td>Is print-all-headers true?</td>
</tr>
</tbody>
</table>

\footnote{\should-print-page-numbers-global can differ from \should-print-page-number for the first page in the book, depending on the print-first-page-number setting of the \paper block.}
3.3.3 Creating output file metadata

In addition to being shown in the printed output, \header variables are also used to set metadata for output files. For example, with PDF files, this metadata could be displayed by PDF readers as the properties of the PDF file. For each type of output file, only the \header definitions of blocks that define separate files of that type, and blocks higher in the block hierarchy, will be consulted. Therefore, for PDF files, only the \book level and the top level \header definitions affect the document-wide PDF metadata, whereas for MIDI files, all headers above or at the \score level are used.

For example, setting the \texttt{title} property of the header block to ‘Symphony I’ will also give this title to the PDF document, and use it as the sequence name of the MIDI file.

\header {
  title = "Symphony I"
}

If you want to set the title of the printed output to one value, but have the title property of the PDF to have a different value, you can use \texttt{pdftitle}, as below.

\header {
  title = "Symphony I"
  pdftitle = "Symphony I by Beethoven"
}

The variables title, subject, keywords, subtitle, composer, arranger, poet, author and copyright all set PDF properties and can all be prefixed with ‘pdf’ to set a PDF property to a value different from the printed output.

The PDF property Creator is automatically set to ‘LilyPond’ plus the current LilyPond version, and CreationDate and ModDate are both set to the current date and time. ModDate can be overridden by setting the header variable \texttt{moddate} (or \texttt{pdfmoddate}) to a valid PDF date string.

The title variable sets also the sequence name for MIDI. The \texttt{midititle} variable can be used to set the sequence name independently of the value used for typeset output.

3.3.4 Creating footnotes

Footnotes may be used in many different situations. In all cases, a ‘footnote mark’ is placed as a reference in text or music, and the corresponding ‘footnote text’ appears at the bottom of the same page, separated from the music by a horizontal line. The appearance of this separator can be changed by setting the paper variable footnote-separator-markup, see [\paper variables concerning headers and markups], page 615.

Footnotes within music expressions and footnotes in stand-alone text outside music expressions are created in different ways.

Footnotes in music expressions

\textbf{Music footnotes overview}

Footnotes in music expressions fall into two categories:
Event-based footnotes
are attached to a particular event. Examples for such events are single notes, articulations (like fingering indications, accents, dynamics), and post-events (like slurs and manual beams). The general form for event-based footnotes is as follows:

\[ \text{direction} \ \footnote \ [\text{mark}] \ \text{offset} \ \text{footnote} \ \text{music} \]

Time-based footnotes
are bound to a particular point of time in a musical context. Some commands like \time and \clef don't actually use events for creating objects like time signatures and clefs. Neither does a chord create an event of its own: its stem or flag is created at the end of a time step (nominally through one of the note events inside). Exactly which of a chord's multiple note events will be deemed the root cause of a stem or flag is undefined. So for annotating those, time-based footnotes are preferable as well.

A time-based footnote allows such layout objects to be annotated without referring to an event. The general form for time-based footnotes is:

\footnote [\text{mark}] \ \text{offset} \ \text{footnote} [\text{Context}], \text{GrobName}

The elements for both forms are:

direction
If (and only if) the \footnote is being applied to a post-event or articulation, it must be preceded with a direction indicator ('-', ' ', '^') in order to attach music (with a footnote mark) to the preceding note or rest.

mark
is a markup or string specifying the footnote mark which is used for marking both the reference point and the footnote itself at the bottom of the page. It may be omitted (or equivalently replaced with \default) in which case a number in sequence will be generated automatically. By default, such numerical sequences restart on each page containing a footnote. Footnotes may be numbered consecutively across page beaks by setting the variable \reset-footnotes-on-new-page to #f, see \[\text{paper variables concerning headers and markups}], page 615.

offset
is a number pair such as '\#(2 . 1)' specifying the X and Y offsets in units of staff spaces from the boundary of the object where the mark should be placed. Positive values of the offsets are taken from the right/top edge, negative values from the left/bottom edge and zero implies the mark is centered on the edge.

Context
is the context in which the grob being footnoted is created. It may be omitted if the grob is in a bottom context, e.g., a Voice context.

GrobName
specifies a type of grob to mark (like 'Flag'). If it is specified, the footnote is not attached to a music expression in particular, but rather to all grobs of the type specified which occur at that moment of musical time.

footnote
is the markup or string specifying the footnote text to use at the bottom of the page.

music
is the music event or post-event or articulation that is being annotated.

Event-based footnotes
A footnote may be attached to a layout object directly caused by the event corresponding to music with the syntax:

\footnote [\text{mark}] \ \text{offset} \ \text{footnote} \ \text{music}

\book {
  \header { \text{tagline} = ##f }"
Chapter 3: General input and output

If a chord is marked with an event-based footnote, each chord note gets a separate but identical footnote, which is undesired normally. However, it is possible to create footnotes for individual notes inside of a chord.

If the footnote is to be attached to a post-event or articulation the \footnote command must be preceded by a direction indicator (\-, \_, ^\-), and followed by the post-event or articulation to be annotated as the music argument. In this form the \footnote can be considered to be simply a copy of its last argument with a footnote mark attached to it. The syntax is:

\begin{verbatim}
direction \footnote [mark] offset footnote music
\end{verbatim}
Chapter 3: General input and output

\markup \null
\relative c'4
   \footnote #'(0 . -1) "A slur forced down." (b8\footnote #'(1 . 0.5) "A manual beam forced up." [b8]
c4)
c \footnote #'(1 . 1) "Tenuto." --
}

event-based footnotes

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{event_based_footnotes}
\end{figure}

1A slur forced down.
2A manual beam forced up.
3Tenuto.

Time-based footnotes

If the layout object being footmarked is indirectly caused by an event (like an Accidental or Stem caused by a NoteHead event), the GrobName of the layout object is required after the footnote text instead of music:

\begin{verbatim}
\book {
   \header { tagline = ##f }
   \markup "time-based footnotes"
   \markup \null
   \relative c'4 {
      \footnote #'-1 \-3) "A flat." Accidental
      aes4 c
      \footnote #'-1 . 0.5) "Another flat." Accidental
      ees
      \footnote 1 \-2) "A stem." Stem
      aes
   }
}
\end{verbatim}

\begin{figure}
\centering
\includegraphics[width=0.5\textwidth]{time_based_footnotes}
\end{figure}

1A flat.
2Another flat.
3A stem.

Note, however, that when a GrobName is specified, a footnote is attached to all grobs of that type at the current time step:

\begin{verbatim}
\book {
\end{verbatim}
A note inside of a chord can be given an individual (event-based) footnote. A ‘NoteHead’ is the only grob directly caused from a chord note, so an event-based footnote command is only suitable for adding a footnote to the ‘NoteHead’ within a chord. All other chord note grobs are indirectly caused. The \footnote command itself offers no syntax for specifying both a particular grob type as well as a particular event to attach to. However, one can use a time-based \footnote command for specifying the grob type, and then prefix this command with \single in order to have it applied to just the following event:

```latex
\header { tagline = ##f }
\markup "time-based footnotes"
\markup \null
\markup \null
\relative c' {
 \footnote #'(1 . -2) "An A." a
 \single \footnote #'(1 . -1) "A sharp." Accidental cis
 \single \footnote #'(0.5 . 0.5) "A flat." Accidental ees fis
}
```

1A flat.
2A sharp.
3An A.

A note inside of a chord can be given an individual (event-based) footnote. A ‘NoteHead’ is the only grob directly caused from a chord note, so an event-based footnote command is only suitable for adding a footnote to the ‘NoteHead’ within a chord. All other chord note grobs are indirectly caused. The \footnote command itself offers no syntax for specifying both a particular grob type as well as a particular event to attach to. However, one can use a time-based \footnote command for specifying the grob type, and then prefix this command with \single in order to have it applied to just the following event:

```latex
\header { tagline = ##f }
\markup "time-based footnotes"
\markup \null
\relative c' {
 < \footnote #'(1 . -2) "An A." a
 \single \footnote #'(1 . -1) "A sharp." Accidental cis
 \single \footnote #'(0.5 . 0.5) "A flat." Accidental ees fis
 >2
}
```

1A flat.
2A sharp.
3An A.
Note: When footnotes are attached to several musical elements at the same musical moment, as they are in the example above, the footnotes are numbered from the higher to the lower elements as they appear in the printed output, not in the order in which they are written in the input stream.

Layout objects like clefs and key change signatures are mostly caused as a consequence of changed properties rather than actual events. Others, like bar lines and bar numbers, are a direct consequence of timing. For this reason, footnotes on such objects have to be based on their musical timing. Time-based footnotes are also preferable when marking features like stems and beams on chords: while such per-chord features are nominally assigned to one event inside the chord, relying on a particular choice would be imprudent.

The layout object in question must always be explicitly specified for time-based footnotes, and the appropriate context must be specified if the grob is created in a context other than the bottom context.

\book{
  \header{tagline = ##f}
  \markup "time-based footnotes"
  \relative c' {
    r1 |
    \footnote #'(-0.5 . -1) "Meter change." Staff.TimeSignature
    \time 3/4
    \footnote #(1 . -1) "Chord stem." Stem
    c e g>4 q q
    \footnote #'(-0.5 . 2) "Bar line." Staff.BarLine
    q q
    \footnote #(0.5 . -1) "Key change." Staff.KeySignature
    \key c \minor

  }
}

1 Meter change.
2 Chord stem.
3 Bar line.
4 Key change.

Custom marks can be used as alternatives to numerical marks, and the annotation line joining the marked object to the mark can be suppressed:

\book{
  \header{tagline = ##f}
  \markup "footnotes with custom marks"
  \markup \null
  \relative c' {
    \footnote "*" #(0.5 . -2) \markup { italic "* The first note" }
  }

Footnotes with custom marks

\footnote \markup \super "$" #'(0.5 . 1)
\markup { \super "$" \italic " The second note." } e c4
\once \override Score.Footnote.annotation-line = ##f
b-\footnote \markup \tiny "+" #'(0.1 . 0.1)
\markup { \super "+" \italic " Editorial." } \p

More examples of custom marks are shown in [Footnotes in stand-alone text], page 563.

Footnotes in stand-alone text

These are for use in markup outside of music expressions. They do not have a line drawn to their point of reference: their marks simply follow the referenced markup. Marks can be inserted automatically, in which case they are numerical. Alternatively, custom marks can be provided manually.

Footnotes to stand-alone text with automatic and custom marks are created in different ways.

Footnotes in stand-alone text with automatic marks

The syntax of a footnote in stand-alone text with automatic marks is

\markup { ... \auto-footnote text footnote ... }

The elements are:

text the markup or string to be marked,

footnote the markup or string specifying the footnote text to use at the bottom of the page.

For example:

\book {
  \header { tagline = ##f }
  \markup {
    "A simple"
    \auto-footnote "tune" \italic " By me."
    "is shown below. It is a"
    \auto-footnote "recent" \italic " Aug 2012."
    "composition."
  }
  \relative {
    a'4 b8 e c4 d
  }
}
A simple tune\textsuperscript{1} is shown below. It is a recent\textsuperscript{2} composition.

\footnote{\text{*} By me.}
\footnote{Aug 2012.}

**Footnotes in stand-alone text with custom marks**

The syntax of a footnote in stand-alone text with custom marks is

\[
\text{\textbackslash markup} \{ \text{...} \text{\textbackslash footnote mark text} \text{...} \}\text{ }
\]

The elements are:

- **mark**: is a markup or string specifying the footnote mark which is used for marking the reference point. Note that this mark is *not* inserted automatically before the footnote itself.

- **footnote**: is the markup or string specifying the footnote text to use at the bottom of the page, preceded by the mark.

Any easy to type character such as ‘*’ or ‘+’ may be used as a mark, as shown in [Footnotes in music expressions], page 557. Alternatively, ASCII aliases may be used (see [ASCII aliases], page 585):

\[
\text{\textbackslash book} \{ \\
\text{\textbackslash paper} \{ \text{$\#$(include-special-characters)} \} \\
\text{\textbackslash header} \{ \text{tagline = $\#$f} \} \\
\text{\textbackslash markup} \{ \\
\text{"A simple tune"} \\
\text{\textbackslash footnote "*" \text{\textbackslash italic } " By me."} \\
\text{"is shown below. It is a recent"} \\
\text{\textbackslash footnote \text{\textbackslash super} &\text{\textbackslash dagger}; \text{\textbackslash concat} \{ \\
\text{\textbackslash super} &\text{\textbackslash dagger}; \text{\textbackslash italic } " Aug 2012."} \\
\} \\
\text{"composition."} \\
\} \\
\text{\textbackslash relative} \{ \\
\text{a'4 b8 e c4 d} \\
\} \\
\}
\]
A simple tune * is shown below. It is a recent † composition.

\begin{verbatim}
\book
  \header { tagline = ##f }
  \markup
    "A simple tune"
  \footnote \super \char\#x00a7 \concat {
    \super \char\#x00a7 \italic " By me."
  }
  "is shown below. It is a recent"
  \footnote \super \char\#x00b6 \concat {
    \super \char\#x00b6 \italic " Aug 2012."
  }
  "composition."
\end{verbatim}

A simple tune § is shown below. It is a recent ¶ composition.

---

* By me.
† Aug 2012.

Unicode character codes may also be used to specify marks (see [Unicode], page 584):

---

§ By me.
¶ Aug 2012.

See also

Chapter 3: General input and output

Notation Reference: [ASCII aliases], page 585, [Balloon help], page 274, Section A.14 [List of special characters], page 831, [Text marks], page 287, [Text scripts], page 283, [Unicode], page 584.

Internals Reference: Section “FootnoteEvent” in Internals Reference, Section “Footnote” in Internals Reference, Section “Footnote_engraver” in Internals Reference.

Known issues and warnings
Multiple footnotes for the same page can only be stacked, one above the other; they cannot be printed on the same line.

Footnote marks may collide with staves, \markup objects, other footnote marks and annotation lines.

3.3.5 Creating in-notes
In-notes function like footnotes in that they serve to annotate music, but are different in that they are typeset either above or below the system to which the grob being annotated belongs.

To create an in-note, set the footnote property of the Footnote grob to #f. The distance between two in-notes can be controlled with the paper variable in-note-padding, the distance between the in-note and its associated system by in-note-system-padding. If you want in-notes positioned below its associated system, set paper variable in-note-direction to DOWN.

```
music = { a4 b8 e c4 d }

\book {
 \relative c' {
 \override Score.Footnote.footnote = #f
 \repeat unfold 5 \music
 \footnote #'(1 . 1) "An in-note." NoteHead
 <--> \repeat unfold 4 \music
 \footnote "'(0 . 0) "An in-note without number." NoteHead
 <--> \repeat unfold 2 \music
 \footnote "'(0 . 0) "Another numberless in-note." NoteHead
 <--> \music
 }
}

\paper {
 in-note-system-padding = 5
 in-note-padding = 2
 tagline = #f
}
```
3.3.6 Reference to page numbers

A particular place of a score can be marked using the \label command, either at top level or inside music. This label can then be referred to in a markup, to get the number of the page where the marked point is placed, using the \page-ref markup command.

\header { tagline = ##f }
\book {
  \label #'firstScore
  \score {
    { c'1
      \pageBreak \mark A \label #'markA 
    c'1
    }
  }
  \markup { The first score begins on page \page-ref #'firstScore "0" "?" }
  \markup { Mark A is on page \page-ref #'markA "0" "?" }
}

The first score begins on page 1
Mark A is on page 2
The \page-ref markup command takes three arguments:
1. the label, a Scheme symbol, for example #'firstScore;
2. a markup that will be used as a gauge to estimate the dimensions of the markup;
3. a markup that will be used in place of the page number if the label is not known.

The reason why a gauge is needed is that, at the time markups are interpreted, the page breaking has not yet occurred, so the page numbers are not yet known. To work around this issue, the actual markup interpretation is delayed to a later time; however, the dimensions of the markup have to be known before, so a gauge is used to decide these dimensions. If the book has between 10 and 99 pages, it may be “00”, i.e., a two digit number.

**Predefined commands**

\label, \page-ref.

### 3.3.7 Table of contents

A table of contents is included using the \markuplist \table-of-contents command. The elements which should appear in the table of contents are entered with the \tocItem command, which may be used either at top level, or inside a music expression.

\markuplist \table-of-contents
\pageBreak

\tocItem \markup "First score"
\score {
  \c'4 % ... 
  \tocItem \markup "Some particular point in the first score"
  \d'4 % ...
}

\tocItem \markup "Second score"
\score {
  \e'4 % ... 
  \tocItem \markup "Act I"
  \f'4 % ... 
  \tocItem \markup "Scene 1"
  \g'4 % ... 
  \tocItem \markup "Recit."
  \a'4 % ...
}

Optionally, a label can be associated with a particular item, or a hierarchical list of existing labels, finishing with that item’s label. That latter case allows to mark the item as a ‘child’ of the preceding labeled items, thus making the score’s structure apparent in the table of contents.

Markups used for formatting the table of contents are defined in the \paper block. There are three ‘predefined’ markups already available:

- \tocTitleMarkup
  Used for formatting the title of the table of contents.

\tocTitleMarkup = \markup \huge \column {

• \texttt{tocItemMarkup}
  Used for formatting the elements within the table of contents.
  \begin{verbatim}
  tocItemMarkup = \markup \fill-line {
                   \fromproperty #'toc:text \fromproperty #'toc:page
  }
  \end{verbatim}

• \texttt{tocFormatMarkup}
  How the table's top level entries will be formatted (if there are several hierarchical levels).
  This is actually a procedure, as explained in Section “Markup construction in Scheme” in \textit{Extending}.
  \begin{verbatim}
  tocFormatMarkup = #make-bold-markup
  \end{verbatim}

• \texttt{tocIndentMarkup}
  Used to define how the outline's hierarchy will be made apparent. This markup is printed zero, one or several times depending on the level of each entry.
  \begin{verbatim}
  tocIndentMarkup = \markup \hspace #4
  \end{verbatim}

Any of these variables can be changed.

Here is an example translating the table of contents' title into French:
\begin{verbatim}
  \paper{
    tocTitleMarkup = \markup \huge \column {
                   \fill-line { \null "Table des matières" \null }
                   \hspace #1
    }
  }

  Here is an example changing the font size of the elements in the table of contents:
  tocItemMarkup = \markup \large \fill-line {
                   \fromproperty #'toc:text \fromproperty #'toc:page
  }

  Note how the element text and page numbers are referred to in the \texttt{tocItemMarkup} definition.

  The \texttt{tocItemWithDotsMarkup} command can be included within the \texttt{tocItemMarkup} to fill the line, between a table of contents item and its corresponding page number, with dots:
  \begin{verbatim}
  \header { tagline = ##f }
  \paper{
    tocItemMarkup = \tocItemWithDotsMarkup
  }
  \end{verbatim}

\begin{verbatim}
\book{
  \markuplist \table-of-contents
  \tocItem \markup { Allegro }
  \tocItem \markup { Largo }
  \null
}
\end{verbatim}

\begin{center}
\textbf{Table of Contents}
\begin{tabular}{ll}
Allegro & 1 \\
Largo & 1
\end{tabular}
\end{center}
In addition to the built-in outline mechanism, custom commands can also be defined to build a more personalized table of contents with different markups. In the following example, a new style is defined for entering acts and scenes in the table of contents of an opera:

A new markup variable (called `tocActMarkup`) is defined in the `\paper` block:

```latex
\paper {
 tocActMarkup = \markup \large \column {
 \hspace #1
 \fill-line { \null \italic \fromproperty #'toc:text \null }
 \hspace #1
 }
}
```

A custom music function (`tocAct`) is then created – which uses the new `tocActMarkup` markup definition, and allows to specify a label for each act.

```latex
tocAct =
 #(define-music-function (label text) (symbol? markup?)
 (add-toc-item! 'tocActMarkup text label))
```

Using these custom definitions and modifying some of the existing definitions, the source file could then be written as follows:

**Table of Contents**

**Atto Primo**

<table>
<thead>
<tr>
<th>Scene</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coro. Viva il nostro Alcide</td>
<td>. . . . . . . . . . 1</td>
<td></td>
</tr>
<tr>
<td>Cesare. Presti omai l’Egizia terra</td>
<td>. . . . . . . . 1</td>
<td></td>
</tr>
<tr>
<td>Recit. Curio, Cesare venne, e vide, e vinse.</td>
<td>. . . . 1</td>
<td></td>
</tr>
</tbody>
</table>

**Atto Secondo**

<table>
<thead>
<tr>
<th>Scene</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sinfonia</td>
<td>. . . . . . . . . . . . . . . . . . . . . . . . . . 1</td>
<td></td>
</tr>
<tr>
<td>Cleopatra. V’adoro, pupille, saette d’Amore</td>
<td>. . . . 1</td>
<td></td>
</tr>
</tbody>
</table>

The previous example also demonstrates how to use the `\fill-with-pattern` markup command within the context of a table of contents.

**See also**

Installed Files: ly/toc-init.ly.

**Predefined commands**

`\table-of-contents, \tocItem, tocItemMarkup, tocTitleMarkup, tocFormatMarkup, tocIndentMarkup`. 

### 3.4 Working with input files

**3.4.1 Including LilyPond files**

A large project may be split up into separate files. To refer to another file, use

```latex
\include "otherfile.ly"
```

The line `\include "otherfile.ly"` is equivalent to pasting the contents of `otherfile.ly` into the current file at the place where the `\include` appears. For example, in a large project
you might write separate files for each instrument part and create a “full score” file which
brings together the individual instrument files. Normally the included file will define a number
of variables which then become available for use in the full score file. Tagged sections can
be marked in included files to assist in making them usable in different places in a score, see
Section 3.4.2 [Different editions from one source], page 572.

Files in the current working directory may be referenced by specifying just the file name
after the \include command. Files in other locations may be included by giving either a full
path reference or a relative path reference (but use the UNIX forward slash, /, rather than the
DOS/Windows back slash, \\, as the directory separator.) For example, if stuff.ly is located
one directory higher than the current working directory, use

\include "./stuff.ly"

or if the included orchestral parts files are all located in a subdirectory called parts within the
current directory, use

\include "parts/VI.ly"
\include "parts/VII.ly"
... etc

Files which are to be included can also contain \include statements of their own. These
second-level \include statements are then interpreted relatively to the path of the file containing
that command, which is convenient for multiple files located in the same subdirectory. For
example, a general library, 'libA', may itself use subfiles which are \included by the entry file
of that library, like this:

libA/
   libA.ly
   A1.ly
   A2.ly
   ...

then the entry file, libA.ly, will contain

\include "A1.ly"
\include "A2.ly"
...

Any .ly file can then include the entire library simply with

\include "~/libA/libA.ly"

However, that behavior can be changed globally by passing the command-line option
-drelative-includes=#f, or by adding #(ly:set-option 'relative-includes #f) at the
top of the main input file. In that case, each file will be included relatively to the location of
the main file, regardless of where its \include statement is located. Complex file structures,
that require to \include both files relative to the main directory and files relative to some
other directory, may even be devised by setting relative-includes to #f or #t at appropriate
places in the files.

Files can also be included from a directory in a search path specified as an option when
invoking LilyPond from the command line. The included files are then specified using just their
file name. For example, to compile main.ly which includes files located in a subdirectory called
parts by this method, change to the directory containing main.ly and enter

lilypond --include=parts main.ly

and in main.ly write

\include "VI.ly"
\include "VII.ly"
... etc
Files which are to be included in many scores may be placed in the LilyPond directory \.\ly. (The location of this directory is installation-dependent – see Section “Other sources of information” in Learning Manual). These files can then be included simply by naming them on an \include statement. This is how the language-dependent files like \english\ly are included.

LilyPond includes a number of files by default when you start the program. These includes are not apparent to the user, but the files may be identified by running lilypond --verbose from the command line. This will display a list of paths and files that LilyPond uses, along with much other information. Alternatively, the more important of these files are discussed in Section “Other sources of information” in Learning Manual. These files may be edited, but changes to them will be lost on installing a new version of LilyPond.

Some simple examples of using \include are shown in Section “Scores and parts” in Learning Manual.

See also


Known issues and warnings

If an included file is given a name which is the same as one in LilyPond’s installation files, LilyPond’s file from the installation files takes precedence.

3.4.2 Different editions from one source

Several methods can be used to generate different versions of a score from the same music source. Variables are perhaps the most useful for combining lengthy sections of music and/or annotation. Tags are more useful for selecting one section from several alternative shorter sections of music, and can also be used for splicing pieces of music together at different points.

Whichever method is used, separating the notation from the structure of the score will make it easier to change the structure while leaving the notation untouched.

Using variables

If sections of the music are defined in variables they can be reused in different parts of the score, see Section “Organizing pieces with variables” in Learning Manual. For example, an a cappella vocal score frequently includes a piano reduction of the parts for rehearsal purposes which is identical to the vocal music, so the music need be entered only once. Music from two variables may be combined on one staff, see [Automatic part combining], page 212. Here is an example:

```lilypond
\begin
\variable\ sopranoMusic = \relative { a'4 b c b8(a) }
\variable\ altoMusic = \relative { e'4 e e f }
\variable\ tenorMusic = \relative { c'4 b e d8(c) }
\variable\ bassMusic = \relative { a4 gis a d, }
\variable\ allLyrics = \lyricmode { King of glo -- ry }
<<
\new Staff = "Soprano" \sopranoMusic
\new Lyrics \allLyrics
\new Staff = "Alto" \altoMusic
\new Lyrics \allLyrics
\new Staff = "Tenor" {
 \clef "treble_8"
 \tenorMusic
}
\new Lyrics \allLyrics
```
Separate scores showing just the vocal parts or just the piano part can be produced by changing just the structural statements, leaving the musical notation unchanged.

For lengthy scores, the variable definitions may be placed in separate files which are then included, see Section 3.4.1 [Including LilyPond files], page 570.

Using tags
The \tag \texttt{partA} command marks a music expression with the name \texttt{partA}. Expressions tagged in this way can be selected or filtered out by name later, using either \texttt{\keepWithTag \#'name} or \texttt{\removeWithTag \#'name}. The result of applying these filters to tagged music is as follows:
Filter

Tagged music preceded by
\texttt{\\keepWithTag \#'(name1 name2...)}

Untagged music and music tagged with any of the given tag names is included; music tagged with any other tag name is excluded.

Tagged music preceded by
\texttt{\\removeWithTag \#'(name1 name2...)}

Untagged music and music not tagged with any of the given tag names is included; music tagged with any of the given tag names is excluded.

Tagged music not preceded by either
\texttt{\\keepWithTag} or \texttt{\\removeWithTag}

All tagged and untagged music is included.

The arguments of the \texttt{\tag}, \texttt{\keepWithTag} and \texttt{\removeWithTag} commands should be a symbol or list of symbols (such as \texttt{#'score} or \texttt{#'(violinI violinII)}, followed by a music expression. If \textit{and only if} the symbols are valid LilyPond identifiers (alphabetic characters only, no numbers, underscores, or dashes) which cannot be confused with notes, the \texttt{#'} may be omitted and, as a shorthand, a list of symbols can use the dot separator: i.e., \texttt{\tag #'(violinI violinII)} can be written \texttt{\tag violinI.violinII}. The same applies to \texttt{\keepWithTag} and \texttt{\removeWithTag}. Tagging commands are music functions, thus they cannot be used to filter items that are not music expressions, such as \texttt{\book} or \texttt{\score} blocks.

In the following example, we see two versions of a piece of music, one showing trills with the usual notation, and one with trills explicitly expanded:

\begin{verbatim}
\texttt{\relative \\g'8. \c32 \d \tag \#'trills \{ \d8.\trill \} \tag \#'expand \{ \\repeat unfold 3 \{ \e32 \d \} \} \c32 \d }
\end{verbatim}

\begin{verbatim}
\texttt{\score \{ \\keepWithTag \#'trills \music \} \score \{ \\keepWithTag \#'expand \music \}}
\end{verbatim}

Alternatively, it is sometimes easier to exclude sections of music:

\begin{verbatim}
\texttt{\music = \relative \{ \g'8. \c32 \d \tag \#'trills \{ \d8.\trill \} \tag \#'expand \{ \\repeat unfold 3 \{ \e32 \d \} \}}
\end{verbatim}
Tagged filtering can be applied to articulations, texts, etc., by prepending 
-\tag #'
your-tag
to an articulation. For example, this would define a note with a conditional fingering indication and a note with a conditional annotation:
c1-\tag #'finger \"4\"
c1-\tag #'warn \"Watch!\"

Multiple tags may be placed on expressions with multiple \tag entries, or by combining multiple tags into one symbol list:

\begin{verbatim}
\relative c'' {
  \tag #'a \tag #'both { a\!a a a }
  \tag #'b (both) { b\!4 b b b }
}
\end{verbatim}

Multiple \removeWithTag filters may be applied to a single music expression to remove several differently named tagged sections. Alternatively, you can use a single \removeWithTag with a list of tags.

\begin{verbatim}
music = \relative c'' {
\end{verbatim}
Using two or more \keepWithTag filters on a single music expression will cause all of the tagged sections to be removed. The first filter will remove all except the one named and any subsequent filters will remove the rest. Using one \keepWithTag command with a list of multiple tags will only remove tagged sections that are not specified in that list.

\new Voice
\removeWithTag #'B
\removeWithTag #'C
\music
\removeWithTag #'(B C)
\music

\new Staff
\keepWithTag #'(violinI violinII)
\music

will print \tags violinI and violinII but not viola or cello.

While \keepWithTag is convenient when dealing with one set of alternatives, the removal of music tagged with unrelated tags is problematic when using them for more than one purpose. In that case ‘groups’ of tags can be declared:

\tagGroup #'(violinI violinII viola cello)

Now all the different tags belong to a single ‘tag group’. Note that individual tags cannot be members of more than one tag group.

\keepWithTag #'violinI ...

will now only show music tagged from violinI’s tag group and any music tagged with one of the other tags will removed.

\music = \relative { 
\tagGroup #'(violinI violinII viola cello)
\tag #'violinI \{ c''4"violinI" c c c \}
\tag #'violinII \{ a2 a \}
\tag #'viola \{ e8 e e2. \}
When using the `\keepWithTag` command, only tags from the tag groups of the tags given in the command are visible.

Sometimes you want to splice some music at a particular place in an existing music expression. You can use `\pushToTag` and `\appendToTag` for adding material at the front or end of various music constructs. The supported places are:

- **Sequential and simultaneous music**
  - If you tagged an entire `{...}` or `<<...>>` construct, you can add music expressions at its front or back.

- **Chords**
  - If you tagged a chord `<...>`, you can either add notes at its front or back, or articulations for the whole chord.

- **Notes and rests**
  - If you tagged a note (also inside of a chord) or a rest, you can add articulations to the front or back of its existing articulations. Note that to add other notes, you rather have to put the note inside of a chord and tag the chord. Also note that you cannot tag a single articulation and add to it since it isn’t inherently a list. Instead, tag the note.

```latex
\tag #'cello { d'2 d4 d }
R1="untagged"

\new Voice {
 \keepWithTag #'violinI
 \music
}
```

```
\begin{music}
\textbf{untagged}
\end{music}
```

Both commands get a tag, the material to splice in at every occurrence of the tag, and the tagged expression.

**See also**

- Notation Reference: [Automatic part combining], page 212, Section 3.4.1 [Including LilyPond files], page 570.
Known issues and warnings
Calling \relative on a music expression obtained by filtering music through \keepWithTag or \removeWithTag might cause the octave relations to change, as only the pitches actually remaining in the filtered expression will be considered. Applying \relative first, before \keepWithTag or \removeWithTag, avoids this danger as \relative then acts on all the pitches as input.

Using global settings
Global settings can be included from a separate file:

```bash
lilypond -dinclude-settings=MY_SETTINGS.ly MY_SCORE.ly
```

Groups of settings such as page size, font or type face can be stored in separate files and loaded with several -dinclude-settings options. This allows different editions from the same score as well as standard settings to be applied to many scores, simply by specifying the proper settings file.

This technique also works well with the use of style sheets, as discussed in Section “Style sheets” in Learning Manual.

See also

Notation Reference: Section 3.4.1 [Including LilyPond files], page 570.

3.4.3 Using music functions
Where tweaks need to be reused with different music expressions, it is often convenient to make the tweak part of a music function. In this section, we discuss only substitution functions, where the object is to substitute a variable into a piece of LilyPond input code. Other more complex functions are described in Section “Music functions” in Extending.

Substitution function syntax
Making a function that substitutes a variable into LilyPond code is easy. The general form of these functions is

```lilypond
function =
#(define-music-function
 (arg1 arg2 ...)
 (type1? type2? ...)
#{
 ...
music...
}#)
```

where

- `argN` The nth argument.
- `typeN?` A Scheme type predicate for which `argN` must return `#t`.
- `...music...` Normal LilyPond input, using `$` (in places where only LilyPond constructs are allowed) or `#` (to use it as a Scheme value or music function argument or music inside of music lists) to reference arguments (e.g., `'#arg1`).

The list of type predicates is required. Some of the most common type predicates used in music functions are:

- `boolean?`
cheap-list? (use instead of ‘list?’ for faster processing)
ly:duration?
ly:music?
ly:pitch?
markup?
number?
pair?
string?
symbol?

For a list of available type predicates, see Section A.25 [Predefined type predicates], page 871. User-defined type predicates are also allowed.

See also
Notation Reference: Section A.25 [Predefined type predicates], page 871.
Extending LilyPond: Section “Music functions” in Extending.
Installed Files: lily/music-scheme.cc, scm/c++.scm, scm/lily.scm.

Substitution function examples
This section introduces some substitution function examples. These are not intended to be exhaustive, but rather to demonstrate some of the possibilities of simple substitution functions.

In the first example, a function is defined that simplifies setting the padding of a TextScript grob:

```
\relative {
 c'4"piu mosso" b a b
 \padText #1.8
 c4"piu mosso" b a b
 \padText #2.6
 c4"piu mosso" b a b
}
```

```
\relative {
 \once \override TextScript.padding = \number #}
```

In addition to numbers, we can use music expressions such as notes for arguments to music functions:

```
custosNote =
 #(define-music-function (note) (ly:music?))
```
Both of those functions are simple single expressions where only the last element of a function call or override is missing. For those particular function definitions, there is a simpler alternative syntax, namely just writing out the constant part of the expression and replacing its final missing element with \etc:

```latex
\padText = \once \override TextScript.padding = \etc
```

Substitution functions with multiple arguments can be defined:

```latex
\tempoPadded =
#(define-music-function (padding tempotext)
 (number? markup?)
 #{
 \once \override Score.MetronomeMark.padding = #padding
 }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```

```
\relative { c'4 d e f \custosNote g }
```
How to prevent sharing of music expressions

When writing music functions, it is important to abide by a rule: the same music expressions must not be shared in several places. As an example, here is a problematic function:

\begin{verbatim}
    #bass-1 #chord #bass-2 #chord
}
\foreach {c g, <e g> \simpleAccompaniment \simpleAccompaniment d g, <f g>}
\end{verbatim}

The problem with this function becomes clear if the result is transposed:

\begin{verbatim}
\transpose c e {
\foreach \simpleAccompaniment \simpleAccompaniment \simpleAccompaniment \simpleAccompaniment}
\end{verbatim}
While the bass notes are correct, the chord is not transposed properly – in fact, it is being transposed twice. The reason for this is that the music expression chord was used twice in the result of the function, without copying it. Functions such as \transpose modify the music object directly (in the case of \transpose, the pitches are changed). If the same music object is reused, modifications made in one place where it is used affect both places, since they hold the same object. In this case, \transpose encounters the object twice and transposes it twice.

One way to fix this function is to use `$` instead of `#` to reference the variables, which makes a copy. The difference between `#` and `$` is detailed in Section “LilyPond Scheme syntax” in Extending.

```
simpleAccompaniment =
#(define-music-function
 #{
 $bass-1 $chord $bass-2 $chord
 })
\transpose c e {
 \clef bass
 \simpleAccompaniment c g, <e' g>
 \simpleAccompaniment d g, <f' g>
}
```

Substitution functions and relative octave entry

When \relative is applied to a music expression, it traverses it searching for pitched notes, and modifies the pitches in the order they are found, changing the octave of each pitch according to its octave marks (‘ ‘) and the previous pitch. When writing substitution functions, this may lead to the situation that a music expression is ‘relativized’ in a surprising way because the output of the function uses the parameters several times and/or in a different order. Consider this function and how its output reacts to \relative:

```
simpleAccompaniment =
#(define-music-function
 #{
 $bass-1 $chord $bass-2 $chord
 })
\relative {
 \clef bass
 \simpleAccompaniment c g <e' g>
 \simpleAccompaniment d g, <f' g>
}
```
In this example, the output is the same as that of
\relative {
  \clef bass
  c <e' g> g <e' g>
  d <f' g> g, <f' g>
}

However, this is not the desired output when using the \simpleAccompaniment function. The pitch \textit{g}, is relative to the first note of the chord that precedes it, \textit{<e' g>}, although it comes after \textit{c} in the input. Clearly, the pitches should be made relative according to the order in which they are input when using the function, not in the order they appear in the output of the function. This can be achieved using the make-relative Scheme macro. Its arguments are: a list of variables, a reference expression, and a main music expression. The reference expression is intended to be a mock-up of how the variables were entered in the input. Most of the time, it can be a simple expression made with \#\{ \ldots \#\} containing the variables in order. Beware not to make copies in the reference expression (in particular, use ‘\#’, not ‘\$’). The example above can be fixed using make-relative in this way:

\begin{verbatim}
simpleAccompaniment =
  #(define-music-function
    (make-relative
      (bass-1 bass-2 chord)
      \#( \#bass-1 \#bass-2 \#chord \#)
      \#( \$bass-1 \$chord \$bass-2 \$chord \#))))
\end{verbatim}

\relative {
  \clef bass
  \simpleAccompaniment c g <e' g>
  \simpleAccompaniment d g, <f' g>
}

3.4.4 Special characters

Text encoding

LilyPond uses the character repertoire defined by the Unicode consortium and ISO/IEC 10646. This defines a unique name and code point for the character sets used in virtually all modern languages and many others too. Unicode can be implemented using several different encodings. LilyPond uses the UTF-8 encoding (UTF stands for Unicode Transformation Format) which represents all common Latin characters in one byte, and represents other characters using a variable length format of up to four bytes.

The actual appearance of the characters is determined by the glyphs defined in the particular fonts available – a font defines the mapping of a subset of the Unicode code points to glyphs. LilyPond uses the Pango library to layout and render multi-lingual texts.
LilyPond does not perform any input encoding conversions. This means that any text, be it title, lyric text, or musical instruction containing non-ASCII characters, must be encoded in UTF-8. The easiest way to enter such text is by using a Unicode-aware editor and saving the file with UTF-8 encoding. Most popular modern editors have UTF-8 support, for example, vim, Emacs, jEdit, and Gedit do. All MS Windows systems later than NT use Unicode as their native character encoding, so even Notepad can edit and save a file in UTF-8 format. A more functional alternative for Windows is BabelPad.

If a LilyPond input file containing a non-ASCII character is not saved in UTF-8 format the error message

```
FT_Get_Glyph_Name () error: invalid argument
```

will be generated.

Here is an example showing Cyrillic, Hebrew and Portuguese text:

```
пухът,
תنصرת
ião
can
איך
че
който
дюля
à
בוש
Жълтата дюля беше щастлива, че пухът, който
krëf mënta ĺü'lsmiit sëmît kër hì
à vo - cê uma can-ção legal
```

### Unicode

To enter a single character for which the Unicode code point is known but which is not available in the editor being used, use either `\char ##xhhhh` or `\char #dddd` within a `\markup` block, where hhhh is the hexadecimal code for the character required and dddd is the corresponding decimal value. Leading zeroes may be omitted, but it is usual to specify all four characters in the hexadecimal representation. (Note that the UTF-8 encoding of the code point should not be used after `\char`, as UTF-8 encodings contain extra bits indicating the number of octets.) Unicode code charts and a character name index giving the code point in hexadecimal for any character can be found on the Unicode Consortium website, [https://www.unicode.org/](https://www.unicode.org/).

For example, `\char ##x03BE` and `\char #958` would both enter the Unicode U+03BE character, which has the Unicode name “Greek Small Letter Xi”.

Any Unicode code point may be entered in this way and if all special characters are entered in this format it is not necessary to save the input file in UTF-8 format. Of course, a font containing all such encoded characters must be installed and available to LilyPond.

The following example shows Unicode hexadecimal values being entered in four places – in a text mark, as articulation text, in lyrics and as stand-alone text below the score:

```
\score {
 \relative {
 c'1
 \textMark \markup { \char ##x03A8 }
 c1_ \markup { \tiny { \char ##x03B1 " to " \char ##x03C9 } }
 }
 \addlyrics { O \markup { \concat { Ph \char ##x0153 be! } } }
}
\markup { "Copyright 2008--2023" \char ##x00A9 }
```

```
ψ
α to ω
```

O Phœbe!
Copyright 2008--2023 ©

To enter the copyright sign in the copyright notice use:
\header {
  copyright = \markup { \char ##x00A9 "2008" }
}

ASCII aliases

A list of ASCII aliases for special characters can be included:
\paper {
  #(include-special-characters)
}
\markup "&flqq; &ndash; &OE;uvre incomplète&hellip; &frqq;"
\score {
  \new Staff { \repeat unfold 9 a'4 }
  \addlyrics {
    This is al -- so wor -- kin'-in ly -- rics: &ndash; &OE; &hellip;
  }
}
\markup \column {
  "The replacement can be disabled:" 
  "&ndash; &OE; &hellip;"
  \override #'(replacement-alist . ()) "&ndash; &OE; &hellip;"
}
« – Œuvre incomplète... »

This is al-so workin' in lyrics: – Œ...

The replacement can be disabled:
– Œ...
&ndash; &OE; &hellip;

You can also make your own aliases, either globally:
\paper {
  #(add-text-replacements!
    '(('"100" . "hundred")
      ("dpi" . "dots per inch"))
  }
}\markup "A 100 dpi."

A hundred dots per inch.

or locally:
\markup \replace #'("100" . "hundred")
  ("dpi" . "dots per inch")) "A 100 dpi."
A hundred dots per inch.

The replacement is not necessarily a string; it can be an arbitrary markup. On the syntax level, this requires using Scheme quasi-quoting syntax, with a backtick ‘‘ instead of a quote ‘’ to write the alist.

```markdown
\replace #"(""2nd" . ,#\concat { 2 \super nd } #)) "2nd time"
```

2\textsuperscript{nd} time

Aliases themselves are not further processed for replacements.

**See also**

Notation Reference: Section A.14 [List of special characters], page 831.

Installed Files: ly/text-replacements.ly.

### 3.5 Controlling output

#### 3.5.1 Extracting fragments of music

It is possible to output one or more fragments of a score. To do so, use the `clip-regions` variable within the `\layout` or `\paper` block to define a list of explicit location of the music to be extracted, then execute LilyPond with the `-dclip-systems` option.

```lilypond
\layout {
 clip-regions = #(list (cons (make-rhythmic-location 5 1 2)
 (make-rhythmic-location 7 3 4)))
}
```

This example extracts a single fragment of the input file starting after a half note duration in fifth measure (5 1 2) and ending after the third quarter note in the seventh measure (7 3 4).

Additional fragments can be extracted by adding more pairs of `make-rhythmic-location` entries to the `clip-regions` list. If system starts and ends are included, they include extents of the System grob, e.g., instrument names.

Grace notes at the end point of the region are not included.

Each music fragment gets written as a separate file. The extracted music is output as if it had been literally ’cut’ from the original printed score, so if a fragment runs over one or more lines, a separate output file for each line is generated. Assuming that the above example covers two lines in the PDF output of input file `foo.ly`, the output files for the music fragments would be called `foo-from-5.1.2-to-7.3.4-clip.pdf` and `foo-from-5.1.2-to-7.3.4-clip-1.pdf`.

**See also**

Notation Reference: Section 4.2.1 [The `\layout` block], page 616.

Application Usage: Section “Command-line usage” in Application Usage.

#### 3.5.2 Skipping corrected music

When entering or copying music, usually only the music near the end (where new notes are being added) is interesting to view and correct. To speed up this correction process, it is possible to skip typesetting of all but the last few measures. This is achieved by defining a special variable at the source file’s top level, as follows:

```lilypond
showLastLength = R1*5
```
\score { ... }

In this instance, nothing will be rendered but the last five measures (assuming 4/4 time signature) of every \score in the input file. For longer pieces, rendering only a small part is often an order of magnitude quicker than rendering it completely. When working on the beginning of a score that has already been typeset (for example to add a new part), the showFirstLength property may be useful as well.

Skipping parts of a score can be controlled in a more fine-grained fashion with the property Score.skipTypesetting. When it is set, no typesetting is performed at all. As a property of the Score context, it affects all voices and staves; see [Score – the master of all contexts], page 664.

This property is also used to control output to the MIDI file. If some event in the skipped section alters some of its context properties, for example a tempo or instrument change, then that new setting will take effect only at the point in time where skipTypesetting is disabled again:

\relative c' {
  c4 c c c c
  \set Score.skipTypesetting = ##t
  d4 d d d
  \tempo 4 = 80
  e4 e e e
  \set Score.skipTypesetting = ##f
  f4 f f f
}

Predefined commands

showLastLength, showFirstLength.

See also

Notation Reference: Section 5.1 [Interpretation contexts], page 663, [Score – the master of all contexts], page 664.

Internals Reference: Section “All context properties” in Internals Reference.

3.5.3 Alternative output formats

The default output formats for the printed score are Portable Document Format (PDF) and PostScript (PS). Portable Network Graphics (PNG), Scalable Vector Graphics (SVG) and Encapsulated PostScript (EPS) output formats are available through command-line options, see Section “Basic command-line options for LilyPond” in Application Usage.

SVG Output

SVG output can optionally contain metadata for graphical objects (grobs) like note heads, rests, etc. This metadata can be standard SVG attributes like id and class, or non-standard custom attributes. Specify the attributes and their values by overriding a grob’s output-attributes property with a Scheme association list (alist). The values can be numbers, strings, or symbols. For example:

{
The input above will produce the following `<g>` (group) tag in the SVG file:

```
<g id="123" class="this that" data-whatever="something">
 ...NoteHead grob SVG elements...
</g>
```

The `<g>` tag contains all of the SVG elements for a given grob. (Some grobs generate multiple SVG elements.) In SVG syntax the `data-` prefix is used for non-standard custom metadata attributes.

### 3.5.4 Embedding files in PDF output

Command-line option `-dembed-source-code` makes LilyPond embed all (user) source files needed for compilation in the final output PDF (see Section “Advanced command-line options for LilyPond” in Application Usage); a PDF viewer can then extract these attachments for further use.

In a similar vein it is possible to embed arbitrary files in the PDF output with function `ly:note-extra-source-file` (see Section “Scheme functions” in Internals Reference).

### 3.5.5 Replacing the notation font

Gonville is an alternative set of glyphs to *Feta* – part of the Emmentaler font – and used in LilyPond. They can be downloaded from:

```
http://www.chiark.greenend.org.uk/~sgtatham/gonville/ (http://www.chiark.greenend.org.uk/~sgtatham/gonville/)
```

Here are a few sample bars of music set in Gonville:

![Sample music set in Gonville](image)

Here are a few sample bars of music set in LilyPond’s Feta glyphs:

![Sample music set in LilyPond’s Feta glyphs](image)
Installation Instructions

- Download and extract the font files.
- Copy the files
  
  - gonville-11.otf
  - gonville-13.otf
  - gonville-14.otf
  - gonville-16.otf
  - gonville-18.otf
  - gonville-20.otf
  - gonville-23.otf
  - gonville-26.otf
  - gonville-brace.otf
  
  to directory .../share/lilypond/current/fonts/otf or .../share/lilypond/X.Y.Z/fonts/otf.

- If you have gonville-*.svg files, copy them to directory .../share/lilypond/current/fonts/svg or .../share/lilypond/X.Y.Z/fonts/svg.

  For more information, see Section “Other sources of information” in Learning Manual.

Note: gonville-*.otf files are for the ps and cairo backend (for PDF and PostScript outputs, as well as all output formats when using the Cairo backend). gonville-*.svg files are for the svg backend. For more information, see Section “Advanced command-line options for LilyPond” in Application Usage.

The following code changes the notation font to the Gonville font.

```
\paper {
 property-defaults.fonts.music = "gonville"
}
```

For more information, see [Changing fonts], page 312.

See also


Notation Reference: Section A.8 [The Emmentaler font], page 743, [Changing fonts], page 312.

Known issues and warnings

Gonville cannot be used to typeset ‘Ancient Music’ notation and it is likely newer glyphs in later releases of LilyPond may not exist in the Gonville font family. Please refer to the author’s website for more information on these and other specifics, including licensing of Gonville.
Other notation fonts

If you have other notation fonts like `fontname-*.otf` and `fontname-*.svg`, you can use them in the same way as Gonville.

That is, copy the `fontname-*.otf` files to `.../share/lilypond/current/fonts/otf` or `.../share/lilypond/X.Y.Z/fonts/otf`. If you have `fontname-*.svg` files, copy them to `.../share/lilypond/current/fonts/svg` or `.../share/lilypond/X.Y.Z/fonts/svg`.

Note: At the moment, LilyPond expects the font file names to have the following suffixes, all of which must be present in the above installation folder(s) to work properly: -11, -13, -14, -16, -18, -20, -23, -26, -brace. For example, `emmentaler-11.otf`, `emmentaler-20.svg`, etc.

The following code changes the notation font to the `fontname` font.

```latex
\paper {
 \% font file name without suffix and extension
 property-defaults.fonts.music = "fontname"
}
```

3.6 Creating MIDI output

LilyPond can produce files that conform to the MIDI (Musical Instrument Digital Interface) standard and so allow for the checking of the music output aurally (with the help of an application or device that understands MIDI). Listening to MIDI output may also help in spotting errors such as notes that have been entered incorrectly or are missing accidentals and so on.

MIDI files do not contain sound (like AAC, MP3 or Vorbis files) but require additional software to produce sound from them.

3.6.1 Supported notation for MIDI

The following musical notation can be used with LilyPond’s default capabilities to produce MIDI output:

- Breath marks
- Chords entered as chord names
- Crescendi, decrescendi over multiple notes. The volume is altered linearly between the two extremes
- Dynamic markings from `ppppp` to `fffff`, including `mp`, `mf` and `sf`
- Lyrics
- Markers: rehearsal marks, segni, coda marks, and section labels
- Microtones but not microtonal chords. A MIDI player that supports pitch bending will also be required.
- Pitches
- Rhythms entered as note durations, including tuplets
- ‘Simple’ articulations; staccato, staccatissimo, accent, marcato and portato
- Tempo changes using the `\tempo` function
- Ties
- Tremolos that are not entered with a ‘:`[number]`’ value

Panning, balance, expression, reverb and chorus effects can also be controlled by setting context properties, see Section 3.6.8 [Context properties for MIDI effects], page 600.

When combined with the `articulate` script the following, additional musical notation can be output to MIDI:
• Appoggiaturas. These are made to take half the value of the note following (without taking dots into account). For example:
  \appoggiatura c8 d2.
  The c will take the value of a crotchet.
• Ornaments (i.e., mordents, trills and turns et al.)
• Rallentando, accelerando, ritardando and a tempo
• Slurs, including phrasing slurs
• Tenuto

See Section 3.6.9 [Enhancing MIDI output], page 601.

3.6.2 Unsupported notation for MIDI
The following items of musical notation cannot be output to MIDI:
• Articulations other than staccato, staccatissimo, accent, marcato and portato
• Crescendi and decrescendi over a single note
• Fermata
• Figured bass
• Glissandi
• Falls and doits
• Microtonal chords
• Rhythms entered as annotations, e.g., swing
• Tempo changes without \tempo (e.g., entered as annotations)
• Tremolos that are entered with a ‘:[number]’ value

3.6.3 The MIDI block
To create a MIDI output file from a LilyPond input file, insert a \midi block, which can be empty, within the \score block:
\score {
  ... music ...
  \layout { }
  \midi { }
}

Note: A \score block that, as well as the music, contains only a \midi block (i.e., without the \layout block), will only produce MIDI output files. No notation will be printed.

The default output file extension (.midi) can be changed by using the -dmidi-extension option with the lilypond command:
  lilypond -dmidi-extension=mid MyFile.ly
Alternatively, add the following Scheme expression before the start of either the \book, \bookpart or \score blocks. See Section 3.2.5 [File structure], page 542.
  #(ly:set-option 'midi-extension "mid")

See also
Notation Reference: Section 3.2.5 [File structure], page 542, Section 3.3.3 [Creating output file metadata], page 557.

Installed Files: scm/midi.scm.
Known issues and warnings
There are fifteen MIDI channels available and one additional channel (#10) for drums. Staves are assigned to channels in sequence, so a score that contains more than fifteen staves will result in the extra staves sharing (but not overwriting) the same MIDI channel. This may be a problem if the sharing staves have conflicting, channel-based, MIDI properties – such as different MIDI instruments – set.

3.6.4 Controlling MIDI dynamics
It is possible to control the overall MIDI volume, the relative volume of dynamic markings and the relative volume of different instruments.

Dynamic marks translate automatically into volume levels in the available MIDI volume range whereas crescendi and decrescendi vary the volume linearly between their two extremes. It is possible to control the relative volume of dynamic markings, and the overall volume levels of different instruments.

Dynamic marks in MIDI
Only the dynamic markings from ppppp to fffff, including mp, mf and sf have values assigned to them. This value is then applied to the value of the overall MIDI volume range to obtain the final volume included in the MIDI output for that particular dynamic marking. The default fractions range from 0.25 for ppppp to 0.95 for fffff. The complete set of dynamic marks and their associated fractions can be found in scm/midi.scm.

Selected Snippets

Creating custom dynamics in MIDI output
The following example shows how to create a dynamic marking, not included in the default list, and assign it a specific value so that it can be used to affect MIDI output.

The dynamic mark \rfz is assigned a value of 0.9.

\{define (myDynamics dynamic)
  (if (equal? dynamic "rfz")
    0.9
    (default-dynamic-absolute-volume dynamic))\}

\score {
  \new Staff {
    \set Staff.midiInstrument = #"cello"
    \set Score.dynamicAbsoluteVolumeFunction = #myDynamics
    \new Voice {
      \relative {a'4\pp b c-\rfz
      }
    }
  }
  \layout {}
  \midi {}
}
Setting MIDI volume

The minimum and maximum overall volume of MIDI dynamic markings is controlled by setting the properties \texttt{midiMinimumVolume} and \texttt{midiMaximumVolume} at the Score level. These properties have an effect only at the start of a voice and on dynamic marks. The fraction corresponding to each dynamic mark is modified with this formula:

\[
\text{midiMinimumVolume} + (\text{midiMaximumVolume} - \text{midiMinimumVolume}) \times \text{fraction}
\]

In the following example the dynamic range of the overall MIDI volume is limited to the range 0.2–0.5.

\begin{verbatim}
\score {
  \new Staff {
    \set Staff.midiInstrument = "flute"
    \set Staff.midiInstrument = "clarinet"
  }
  \context {
    \Score
    midiMinimumVolume = #0.2
    midiMaximumVolume = #0.5
  }
}
\end{verbatim}

Simple MIDI instrument equalization can be achieved by setting \texttt{midiMinimumVolume} and \texttt{midiMaximumVolume} properties within the Staff context.

\begin{verbatim}
\score {
  \new Staff {
    \set Staff.midiInstrument = "flute"
    \set Staff.midiMinimumVolume = #0.7
    \set Staff.midiMaximumVolume = #0.9
    \set Staff.midiInstrument = "clarinet"
    \set Staff.midiMinimumVolume = #0.7
    \set Staff.midiMaximumVolume = #0.9
  }
  \midi { }
}
\end{verbatim}

For scores with multiple staves and multiple MIDI instruments, the relative volumes of each instrument can be set individually;

\begin{verbatim}
\score {
  \new Staff {
    \set Staff.midiInstrument = "flute"
    \set Staff.midiMinimumVolume = #0.7
    \set Staff.midiMaximumVolume = #0.9
    \set Staff.midiInstrument = "clarinet"
    \set Staff.midiMinimumVolume = #0.7
    \set Staff.midiMaximumVolume = #0.9
  }
  \midi { }
}
\end{verbatim}
... music ...
}
\new Staff {
  \set Staff.midiInstrument = "clarinet"
  \set Staff.midiMinimumVolume = #0.3
  \set Staff.midiMaximumVolume = #0.6
  ... music ...
}
>>
\midi { }
}

In this example the volume of the clarinet is reduced relative to the volume of the flute.
If these volumes properties are not set then LilyPond still applies a ‘small degree’ of equalization to certain instruments. See scm/midi.scm.

Installed Files: scm/midi.scm.

See also
Notation Reference: Section 4.2 [Score layout], page 616.

Selected Snippets

Replacing default MIDI instrument equalization
The default MIDI instrument equalizer can be replaced by setting the instrumentEqualizer property in the Score context to a user-defined Scheme procedure that uses a MIDI instrument name as its argument along with a pair of fractions indicating the minimum and maximum volumes respectively to be applied to that specific instrument.

The following example sets the minimum and maximum volumes for flute and clarinet respectively."

#(define my-instrument-equalizer-alist '())

#(set! my-instrument-equalizer-alist
  (append
   '( ("flute" . (0.7 . 0.9))
     ("clarinet" . (0.3 . 0.6)))
   my-instrument-equalizer-alist))

#(define (my-instrument-equalizer s)
  (let ((entry (assoc s my-instrument-equalizer-alist)))
    (if entry
      (cdr entry)))))

\score {
  \new Staff {
    \key g \major
    \time 2/2
    \set Score.instrumentEqualizer = #my-instrument-equalizer
    \set Staff.midiInstrument = "flute"}
Known issues and warnings

Changes in the MIDI volume take place only on starting a note, so crescendi and decrescendi cannot affect the volume of a single note.

Setting MIDI block properties

The \midi block can contain context rearrangements, new context definitions or code that sets the values of certain properties.

```
\score { ... music ...
 \midi {
 \tempo 4 = 72
 }
}
```

Here the tempo is set to 72 quarter note beats per minute. The tempo mark in the \midi block will not appear in the printed score. Although any other \tempo indications specified within the \score block will also be reflected in the MIDI output.

In a \midi block the \tempo command is setting properties during the interpretation of the music and in the context of output definitions; so it is interpreted as if it were a context modification.

Context definitions follow the same syntax as those in a \layout block;

```
\score { ... music ...
 \midi {
```
This example removes the effect of dynamics from the MIDI output. Note: LilyPond’s translation modules used for sound are called ‘performers’.

See also
Notation Reference: Section 1.3 [Expressive marks], page 140, Section 4.2 [Score layout], page 616.
Installed Files: ly/performer-init.ly.
Snippets: Section “MIDI” in Snippets.

Known issues and warnings
Some MIDI players do not always correctly handle tempo changes in the MIDI output.
Changes to the midiInstrument, as well as some MIDI options, at the beginning of a staff may appear twice in the MIDI output.

3.6.5 Using MIDI instruments
MIDI instruments are set using the midiInstrument property within a Staff context.

```
\score {
 \new Staff {
 \set Staff.midiInstrument = "glockenspiel"
 ... music ...
 }
 \midi { }
}
```

or

```
\score {
 \new Staff \with {midiInstrument = "cello"} {
 ... music ...
 }
 \midi { }
}
```

If the instrument name does not match any of the instruments listed in the ‘MIDI instruments’ section, the acoustic grand instrument will be used instead. See Section A.6 [MIDI instruments], page 737.

See also
Notation Reference: Section A.6 [MIDI instruments], page 737, Section 4.2 [Score layout], page 616.
Installed Files: scm/midi.scm.
Known issues and warnings

Percussion instruments that are notated in a DrumStaff context will be output, correctly, to MIDI channel 10 but some pitched, percussion instruments like the xylophone, marimba, vibraphone or timpani, are treated as “normal” instruments so the music for these should be entered in a Staff (not DrumStaff) context to obtain correct MIDI output. A full list of channel 10 drum-kits entries can be found in scm/midi.scm. See Section “Other sources of information” in Learning Manual.

3.6.6 Using repeats with MIDI

Repeats can be represented in the MIDI output by applying the \unfoldRepeats command.

\score {
  \unfoldRepeats {
    \repeat tremolo 8 { c'32 e' }
    \repeat percent 2 { c'8 d'' }
    \repeat volta 2 { c'4 d' e' f' }
    \alternative {
      \volta 1 { g' a' a' g' }
      \volta 2 { f' e' d' c' }
    }
  }
  \midi { }
}

In order to restrict the effect of \unfoldRepeats to the MIDI output only, while also generating printable scores, it is necessary to make two \score blocks; one for MIDI (with unfolded repeats) and one for the notation (with volta, tremolo, and percent repeats);

\score {
  ... music ...
  \layout { }
}
\score {
  \unfoldRepeats {
    ... music ...
  }
  \midi { }
}

When using multiple voices, each of the voices must contain completely unfolded repeats for correct MIDI output.

See also

Notation Reference: Section 1.4 [Repeats], page 171.

3.6.7 MIDI channel mapping

When generating a MIDI file from a score, LilyPond will automatically assign every note in the score to a MIDI channel, the one on which it should be played when it is sent to a MIDI device. A MIDI channel has a number of controls available to select, for example, the instrument to be used to play the notes on that channel, or to request the MIDI device to apply various effects to the sound produced on the channel. At all times, every control on a MIDI channel can have only a single value assigned to it (which can be modified, however, for example, to switch to another instrument in the middle of a score).
The MIDI standard supports only 16 channels per MIDI device. This limit on the number of channels also limits the number of different instruments which can be played at the same time.

LilyPond creates separate MIDI tracks for each staff, (or discrete instrument or voice, depending on the value of Score.midiChannelMapping), and also for each lyrics context. There is no limit to the number of tracks.

To work around the limited number of MIDI channels, LilyPond supports a number of different modes for MIDI channel allocation, selected using the Score.midiChannelMapping context property. In each case, if more MIDI channels than the limit are required, the allocated channel numbers wrap around back to 0, possibly causing the incorrect assignment of instruments to some notes. This context property can be set to one of the following values:

'staff
Allocate a separate MIDI channel to each staff in the score (this is the default). All notes in all voices contained within each staff will share the MIDI channel of their enclosing staff, and all are encoded in the same MIDI track.
The limit of 16 channels is applied to the total number of staff and lyrics contexts, even though MIDI lyrics do not take up a MIDI channel.

'instrument
Allocate a separate MIDI channel to each distinct MIDI instrument specified in the score. This means that all the notes played with the same MIDI instrument will share the same MIDI channel (and track), even if the notes come from different voices or staves.
In this case the lyrics contexts do not count towards the MIDI channel limit of 16 (as they will not be assigned to a MIDI instrument), so this setting may allow a better allocation of MIDI channels when the number of staves and lyrics contexts in a score exceeds 16.

'voice
Allocate a separate MIDI channel to each voice in the score that has a unique name among the voices in its enclosing staff. Voices in different staves are always assigned separate MIDI channels, but any two voices contained within the same staff will share the same MIDI channel if they have the same name. Because midiInstrument and the several MIDI controls for effects are properties of the staff context, they cannot be set separately for each voice. The first voice will be played with the instrument and effects specified for the staff, and voices with a different name from the first will be assigned the default instrument and effects.
Note: different instruments and/or effects can be assigned to several voices on the same staff by moving the Staff_performer from the Staff to the Voice context, and leaving midiChannelMapping to default to 'staff or set to 'instrument; see the snippet below.

For example, the default MIDI channel mapping of a score can be changed to the 'instrument setting as shown:

\score {
  \context {
    \Score
      midiChannelMapping = #'instrument
  }
}

Note: different instruments and/or effects can be assigned to several voices on the same staff by moving the Staff_performer from the Staff to the Voice context, and leaving midiChannelMapping to default to 'staff or set to 'instrument; see the snippet below.
Selected Snippets

Changing MIDI output to one channel per voice

When outputting MIDI, the default behavior is for each staff to represent one MIDI channel, with all the voices on a staff amalgamated. This minimizes the risk of running out of MIDI channels, since there are only 16 available per track.

However, by moving the Staff_performer to the Voice context, each voice on a staff can have its own MIDI channel, as is demonstrated by the following example: despite being on the same staff, two MIDI channels are created, each with a different midiInstrument.

\score {  
\new Staff <<  
\new Voice \relative c''' {  
\set midiInstrument = #"flute"  
\voiceOne  
\key g \major  
\time 2/2  
r2 g-"Flute" ~  
g fis ~  
fis4 g8 fis e2 ~  
e4 d8 cis d2  
}  
\new Voice \relative c'' {  
\set midiInstrument = #"clarinet"  
\voiceTwo  
b1-"Clarinet"  
a2. b8 a  
g2. fis8 e  
fis2 r  
}  
} >>  
\layout { }  
\midi {  
\context {  
\Staff  
\remove "Staff_performer"  
}  
\context {  
\Voice  
\consists "Staff_performer"  
}  
\tempo 2 = 72  
}  
}
3.6.8 Context properties for MIDI effects

The following context properties can be used to apply various MIDI effects to notes played on the MIDI channel associated with the current staff, MIDI instrument or voice (depending on the value of the Score.midiChannelMapping context property and the context in which the Staff_performer is located; see Section 3.6.7 [MIDI channel mapping], page 597).

Changing these context properties will affect all notes played on the channel after the change, however some of the effects may even apply also to notes which are already playing (depending on the implementation of the MIDI output device).

The following context properties are supported:

Staff.midiPanPosition
The pan position controls how the sound on a MIDI channel is distributed between left and right stereo outputs. The context property accepts a number between -1.0 (#LEFT) and 1.0 (#RIGHT); the value -1.0 will put all sound power to the left stereo output (keeping the right output silent), the value 0.0 (#CENTER) will distribute the sound evenly between the left and right stereo outputs, and the value 1.0 will move all sound to the right stereo output. Values between -1.0 and 1.0 can be used to obtain mixed distributions between left and right stereo outputs.

Staff.midiBalance
The stereo balance of a MIDI channel. Similarly to the pan position, this context property accepts a number between -1.0 (#LEFT) and 1.0 (#RIGHT). It varies the relative volume sent to the two stereo speakers without affecting the distribution of the stereo signals.

Staff.midiExpression
Expression level (as a fraction of the maximum available level) to apply to a MIDI channel. A MIDI device combines the MIDI channel's expression level with a voice's current dynamic level (controlled using constructs such as \p or \ff) to obtain the total volume of each note within the voice. The expression control could be used, for example, to implement crescendo or decrescendo effects over single sustained notes (not supported automatically by LilyPond).

The expression level ranges from 0.0 (no expression, meaning zero volume) to 1.0 (full expression).

Staff.midiReverbLevel
Reverb level (as a fraction of the maximum available level) to apply to a MIDI channel. This property accepts numbers between 0.0 (no reverb) and 1.0 (full effect).

Staff.midiChorusLevel
Chorus level (as a fraction of the maximum available level) to apply to a MIDI channel. This property accepts numbers between 0.0 (no chorus effect) and 1.0 (full effect).

Known issues and warnings
As MIDI files do not contain any actual audio data, changes in these context properties translate only to requests for changing MIDI channel controls in the outputted MIDI files. Whether a particular MIDI device (such as a software MIDI player) can actually handle any of these requests in a MIDI file is entirely up to the implementation of the device: a device may choose to ignore some or all of these requests. Also, how a MIDI device will interpret different values for these controls (generally, the MIDI standard fixes the behavior only at the endpoints of the value range available for each control), and whether a change in the value of a control will affect notes already playing on that MIDI channel or not, is also specific to the MIDI device implementation.
When generating MIDI files, LilyPond will simply transform the fractional values within each range linearly into values in a corresponding (7-bit, or 14-bit for MIDI channel controls which support fine resolution) integer range (0-127 or 0-32767, respectively), rounding fractional values towards the nearest integer away from zero. The converted integer values are stored as-is in the generated MIDI file. Please consult the documentation of your MIDI device for information about how the device interprets these values.

### 3.6.9 Enhancing MIDI output

The default MIDI output is basic but can be improved by setting MIDI instruments and various `\midi` block properties.

Additional scripts allow to fine-tune the way dynamics, articulations and rhythm are rendered in MIDI: the `articulate` script and the `swing` script.

**The articulate script**

To use the `articulate` script add the appropriate `\include` command at the top of the input file:

```latex
\include "articulate.ly"
```

The script creates MIDI output into appropriately 'time-scaled' notes to match many articulation and tempo indications. Engraved output however, will also be altered to literally match the MIDI output.

```latex
\score {
 \articulate <<
 ... music ...
 >>
 \midi { }
}
```

The `\articulate` command enables abbreviations (such as trills and turns) to be processed. A full list of supported items can be found in the script itself. See `ly/articulate.ly`.

**See also**


Notation Reference: Section 4.2 [Score layout], page 616.

Installed Files: `ly/articulate.ly`.

```
Note: The `articulate` script may shorten chords, which might not be appropriate for some types of instrument, such as organ music. Notes that do not have any articulations attached to them may also be shortened; so to allow for this, restrict the use of the `\articulate` function to shorter segments of music, or modify the values of the variables defined in the `articulate` script to compensate for the note-shortening behavior.
```

### The swing script

The `swing` script provides additional functions allowing for regular durations to be played with an unequal rhythm. The most obvious example is ‘swing’ interpretation commonly found in jazz music where binary eighth notes should be played in a ternary fashion; however additional interpretations are also supported.

This script has to be `\include-d` at the beginning of the input file:

```latex
\include "swing.ly"
```
Three commands are provided:

- \tripletFeel creates a triplet-feel swing. It takes two arguments: the durations that should be affected by it (typically 8 for eighth notes), and then the music expression to which it should be applied.

- \applySwing takes an additional argument prior to the music expression: a ‘weight list’ of $n$ number ratios expressing the way regular notes should be played: for example, $'(2 1)$ indicates that every other note should be played twice as long as the following note (in fact, \tripletFeel duration \{music\} is actually a shortcut for \applySwing duration $'(2 1) \{music\}$). Smoother swung eighths may be obtained with a weight list of $'(3 2)$, or other values depending on taste.

That list may include more than two values, which allows for longer and more sophisticated groove patterns; for example, a samba feel for sixteenth notes may be obtained as follows:

```lily
\score {
 \applySwing 16 #'(3 2 2 3) {
 ... music ...
 }
 \midi { }
}
```

- \applySwingWithOffset adds yet another argument between the ‘weight list’ and the music expression: an offset length. This command should be used when the music expression has to start off-beat, with a partial swing cycle.

```lily
\score {
 \applySwingWithOffset 16 #'(3 2 2 3) {
 ... music ...
 }
 \midi { }
}
```

**Note:** As with the articulate script, all swing commands are also rendered in the engraved output, which results in irregular note spacing. This can be avoided by using them only in a \score block dedicated to MIDI output, rather than to printed music.

Additional help and information is included in the script file: see ly/swing.ly.

See also


Notation Reference: Section 1.2 [Rhythms], page 48.

Installed Files: ly/swing.ly.

Known issues and warnings

- \repeat constructs in music (even \repeat unfold) are not taken into consideration when determining note timing. This will lead to problems unless the durations of all repeated parts are integer multiples of the swing cycle duration.

- These functions are oblivious to time signatures and measures. That is why offsets need to be supplied by using \applySwingWithOffset if music starts off-beat.

- Grace notes are ignored and simply left unaffected; so are tuplets.

3.7 Extracting musical information

In addition to creating graphical output and MIDI, LilyPond can display musical information as text.
3.7.1 Displaying LilyPond notation

Displaying a music expression in LilyPond notation can be done with the music function `\displayLilyMusic`. To see the output, you will typically want to call LilyPond using the command line. For example,

```
\{ \displayLilyMusic \transpose c a, \{ c4 e g a bes \} \}
```

will display

```
\{ a,4 cis4 e4 fis4 g4 \}
```

By default, LilyPond will print these messages to the console along with all the other LilyPond compilation messages. To split up these messages and save the results of `\displayLilyMusic`, redirect the output to a file.

```
lilypond file.ly >display.txt
```

Note that LilyPond does not just display the music expression, but also interprets it (since `\displayLilyMusic` returns it in addition to displaying it). Just insert `\displayLilyMusic` into the existing music in order to get information about it.

To interpret and display a music section in the console but, at the same time, remove it from the output file use the `\void` command.

```
\{ \void \displayLilyMusic \transpose c a, \{ c4 e g a bes \}
c1\}
```

3.7.2 Displaying scheme music expressions

See Section “Displaying music expressions” in Extending.

3.7.3 Saving music events to a file

Music events can be saved to a file on a per-staff basis by including a file in your main score.

```
\include "event-listener.ly"
```

This creates file(s) called `FILENAME-STAFFNAME.notes` or `FILENAME-unnamed-staff.notes` for each staff. Note that if you have multiple unnamed staves, the events for all staves are mixed together in the same file. The output looks like this:

```
0.000 note 57 4 p-c 2 12
0.000 dynamic f
0.250 note 62 4 p-c 7 12
0.500 note 66 8 p-c 9 12
0.625 note 69 8 p-c 14 12
0.750 rest 4
0.750 breathe
```

The syntax is a tab-delimited line, with two fixed fields on each line followed by optional parameters.

```
time type ...params...
```

This information can easily be read into other programs such as python scripts, and can be very useful for researchers wishing to perform musical analysis or playback experiments with LilyPond.
Known issues and warnings

Not all lilypond music events are supported by event-listener.ly. It is intended to be a well-crafted “proof of concept”. If some events that you want to see are not included, copy event-listener.ly into your lilypond directory and modify the file so that it outputs the information you want.
4 Spacing issues

The global paper layout is determined by three factors: the page layout, the line breaks, and the spacing. These all influence each other. The choice of spacing determines how densely each system of music is set. This influences where line breaks are chosen, and thus ultimately, how many pages a piece of music takes.

Globally speaking, this procedure happens in four steps: first, flexible distances (‘springs’) are chosen, based on durations. All possible line breaking combinations are tried, and a ‘badness’ score is calculated for each. Then the height of each possible system is estimated. Finally, a page breaking and line breaking combination is chosen so that neither the horizontal nor the vertical spacing is too cramped or stretched.

Two types of blocks can contain layout settings: \paper {...} and \layout {...}. The \paper block contains page layout settings that are expected to be the same for all scores in a book or book part, such as the paper height, or whether to print page numbers, etc. See Section 4.1 [Page layout], page 605. The \layout block contains score layout settings, such as the number of systems to use, or the space between staff groups, etc. See Section 4.2 [Score layout], page 616.

4.1 Page layout

This section discusses page layout options for the \paper block.

4.1.1 The \paper block

\paper blocks may be placed in three different places to form a descending hierarchy of \paper blocks:

- At the top of the input file, before all \book, \bookpart, and \score blocks.
- Within a \book block but outside all the \bookpart and \score blocks within that book.
- Within a \bookpart block but outside all \score blocks within that book part.

A \paper block cannot be placed within a \score block.

The values of the fields filter down this hierarchy, with the values set higher in the hierarchy persisting unless they are overridden by a value set lower in the hierarchy.

Several \paper blocks can appear at each of the levels, for example as parts of several \include files. If so, the fields at each level are merged, with values encountered last taking precedence if duplicated fields appear.

Settings that can appear in a \paper block include:

- the \set-paper-size scheme function,
- \paper variables used for customizing page layout, and
- markup definitions used for customizing the layout of headers, footers, and titles.

The \set-paper-size function is discussed in the next section, Section 4.1.2 [Paper size and automatic scaling], page 606. The \paper variables that deal with page layout are discussed in later sections. The markup definitions that deal with headers, footers, and titles are discussed in Section 3.3.2 [Custom titles headers and footers], page 552.

Most \paper variables will only work in a \paper block. The few that will also work in a \layout block are listed in Section 4.2.1 [The \layout block], page 616.

Except when specified otherwise, all \paper variables that correspond to distances on the page are measured in millimeters, unless a different unit is specified by the user. For example, the following declaration sets top-margin to ten millimeters:

\paper {
top-margin = 10
}

To set it to 0.5 inches, use the \in unit suffix:
\paper {
  top-margin = 0.5\in
}

The available unit suffixes are \mm, \cm, \in, \pt, and \bp. These units are simple values for converting from millimeters; they are defined in ly/paper-defaults-init.ly. For the sake of clarity, when using millimeters, the \mm is typically included in the code, even though it is not technically necessary.

It is also possible to define \paper values using Scheme. The Scheme equivalent of the above example is:
\paper {
  (define top-margin (* 0.5 in))
}

Finally, you can also predefine paper variables.
bigMargin = \paper { top-margin = 10\cm }

\paper {
  \bigMargin
  indent = 0\mm
}

See also
Notation Reference: Section 4.1.2 [Paper size and automatic scaling], page 606, Section 3.3.2 [Custom titles headers and footers], page 552, Section 4.2.1 [The \layout block], page 616.


4.1.2 Paper size and automatic scaling

Setting the paper size
‘A4’ is the default value when no explicit paper size is set. However, there are two functions that can be used to change it:
set-default-paper-size
  #(set-default-paper-size "quarto")
  which must always be placed at the top-level scope, and
set-paper-size
\paper {
  #(set-paper-size "tabloid")
}
  which must always be placed in a \paper block.

If the set-default-paper-size function is used in the top-level scope, it must come before any \paper block. set-default-paper-size sets the paper size for all pages, whereas set-paper-size only sets the paper size for the pages that the \paper block applies to. For example, if the \paper block is at the top of the file, then it applies the paper size to all pages. If the \paper block is inside a \book, then the paper size applies only to that book.

When the set-paper-size function is used, it must be placed before any other functions used within the same \paper block. See [Automatic scaling to paper size], page 607.
Paper sizes are defined in file `scm/paper.scm`; see Section A.5 [Predefined paper sizes], page 735, for a complete list.

Both `set-default-paper-size` and `set-paper-size` also accept a quoted number pair as its argument to set a custom paper size. For example,

```
(set-default-paper-size '(cons (* 100 mm) (* 50 mm)))
```

sets the paper width and height to 100 mm and 50 mm, respectively.

Possible units are in (inches), cm (centimeters), mm (millimeters), pt (points), and bp (big points).

If the symbol `'landscape` is added to the paper size function as a second argument, pages are rotated by 90 degrees, and wider line widths are set accordingly.

```
(set-default-paper-size "a6" 'landscape)
```

Swapping the paper dimensions without having the print rotated (like when printing to postcard size, or creating graphics for inclusion rather than a stand-alone document) can be achieved by appending `'landscape` to the name of the paper size itself:

```
(set-default-paper-size "a6landscape")
```

When the paper size ends with an explicit `'landscape` or `'portrait`, the presence of a `'landscape` symbol only affects print orientation, not the paper dimensions used for layout.

**See also**

Notation Reference: [Automatic scaling to paper size], page 607, Section A.5 [Predefined paper sizes], page 735.

Installed Files: `scm/paper.scm`.

**Automatic scaling to paper size**

If the paper size is changed with one of the scheme functions (`set-default-paper-size` or `set-paper-size`), the values of several `\paper` variables are automatically scaled to the new size. To bypass the automatic scaling for a particular variable, set the variable after setting the paper size. Note that the automatic scaling is not triggered by setting the `paper-height` or `paper-width` variables, even though `paper-width` can influence other values (this is separate from scaling and is discussed below). The `set-default-paper-size` and `set-paper-size` functions are described in [Setting the paper size], page 606.

The vertical dimensions affected by automatic scaling are `top-margin` and `bottom-margin` (see Section 4.1.3 [Fixed vertical spacing `\paper` variables], page 608). The horizontal dimensions affected by automatic scaling are `left-margin`, `right-margin`, `inner-margin`, `outer-margin`, `binding-offset`, `indent`, and `short-indent` (see Section 4.1.5 [Horizontal spacing `\paper` variables], page 610).

The default values for these dimensions are set in `ly/paper-defaults-init.ly`, using internal variables named `top-margin-default`, `bottom-margin-default`, etc. These are the values that result at the default paper size `a4`. For reference, with `a4` paper the `paper-height` is 297 mm and the `paper-width` is 210 mm.

**See also**

Notation Reference: Section 4.1.3 [Fixed vertical spacing `\paper` variables], page 608, Section 4.1.5 [Horizontal spacing `\paper` variables], page 610.

4.1.3 Fixed vertical spacing \texttt{paper} variables

\begin{quote}
\textbf{Note:} Some \texttt{paper} dimensions are automatically scaled to the paper size, which may lead to unexpected behavior. See [Automatic scaling to paper size], page 607.
\end{quote}

Default values (before scaling) are defined in file \texttt{ly/paper-defaults-init.ly}.

\texttt{paper-height}

The height of the page, unset by default. Note that the automatic scaling of some vertical dimensions is not affected by this.

\texttt{top-margin}

The margin between the top of the page and the top of the printable area. If the paper size is modified, this dimension’s default value is scaled accordingly.

\texttt{bottom-margin}

The margin between the bottom of the printable area and the bottom of the page. If the paper size is modified, this dimension’s default value is scaled accordingly.

\texttt{ragged-bottom}

If this is set to true, systems will be set at their natural spacing, neither compressed nor stretched vertically to fit the page.

\texttt{ragged-last-bottom}

If this is set to false, then the last page, and the last page in each section created with a \texttt{\bookpart} block, will be vertically justified in the same way as the earlier pages.

\textbf{See also}

Notation Reference: [Automatic scaling to paper size], page 607.


Snippets: Section “Spacing” in Snippets.

\textbf{Known issues and warnings}

The titles (from the \texttt{\header} block) are treated as a system, so \texttt{ragged-bottom} and \texttt{ragged-last-bottom} will add space between the titles and the first system of the score.

Explicitly defined paper sizes will override any user-defined top or bottom margin settings.

4.1.4 Flexible vertical spacing \texttt{paper} variables

In most cases, it is preferable for the vertical distances between certain items (such as margins, titles, systems, and separate scores) to be flexible, so that they stretch and compress nicely according to each situation. A number of \texttt{paper} variables (listed below) are available to fine-tune the stretching behavior of these dimensions.

Note that the \texttt{paper} variables discussed in this section do not control the spacing of staves within individual systems. Within-system spacing is controlled by grob properties, with settings typically entered inside a \texttt{\score} or \texttt{\layout} block, and not inside a \texttt{paper} block. See Section 4.4.1 [Flexible vertical spacing within systems], page 628.

\textbf{Structure of flexible vertical spacing alists}

Each of the flexible vertical spacing \texttt{paper} variables is an alist (association list) containing four keys:
Chapter 4: Spacing issues

- basic-distance – the vertical distance, measured in staff spaces, between the reference points of the two items, when no collisions would result, and no stretching or compressing is in effect. The reference point of a (title or top-level) markup is its highest point, and the reference point of a system is the vertical center of the nearest StaffSymbol – even if a non-staff line (such as a Lyrics context) is in the way. Values for basic-distance that are less than either padding or minimum-distance are not meaningful, since the resulting distance will never be less than either padding or minimum-distance.

- minimum-distance – the smallest allowable vertical distance, measured in staff spaces, between the reference points of the two items, when compressing is in effect. Values for minimum-distance that are less than padding are not meaningful, since the resulting distance will never be less than padding.

- padding – the minimum required amount of unobstructed vertical whitespace between the bounding boxes (or skylines) of the two items, measured in staff spaces.

- stretchability – a unitless measure of the dimension’s relative propensity to stretch. If zero, the distance will not stretch (unless collisions would result). When positive, the significance of a particular dimension’s stretchability value lies only in its relation to the stretchability values of the other dimensions. For example, if one dimension has twice the stretchability of another, it will stretch twice as easily. Values should be non-negative and finite. The value +inf.0 triggers a programming_error and is ignored, but 1.0e7 can be used for an almost infinitely stretchable spring. If unset, the default value is set to basic-distance. Note that the dimension’s propensity to compress cannot be directly set by the user and is equal to (basic-distance – minimum-distance).

If a page has a ragged bottom, the resulting distance is the largest of:

- basic-distance,
- minimum-distance, and
- padding plus the smallest distance necessary to eliminate collisions.

For multi-page scores with a ragged bottom on the last page, the last page uses the same spacing as the preceding page, provided there is enough space for that.

Specific methods for modifying alists are discussed in Section 5.3.8 [Modifying alists], page 695. The following example demonstrates the two ways these alists can be modified. The first declaration updates one key value individually, and the second completely redefines the variable:

```latex
\paper {
 system-system-spacing.basic-distance = #8
 score-system-spacing =
 '#((basic-distance . 12)
 (minimum-distance . 6)
 (padding . 1)
 (stretchability . 12))
}
```

**List of flexible vertical spacing \paper variables**

The names of these variables follow the format upper-lower-spacing, where upper and lower are the items to be spaced. Each distance is measured between the reference points of the two items (see the description of the alist structure above). Note that in these variable names, the term ‘markup’ refers to both title markups (bookTitleMarkup or scoreTitleMarkup) and top-level markups (see Section 3.2.5 [File structure], page 542). All distances are measured in staff spaces.
Default settings are defined in ly/paper-defaults-init.ly.

markup-system-spacing
the distance between a (title or top-level) markup and the system that follows it.

score-markup-spacing
the distance between the last system of a score and the (title or top-level) markup that follows it.

score-system-spacing
the distance between the last system of a score and the first system of the score that follows it, when no (title or top-level) markup exists between them.

system-system-spacing
the distance between two systems in the same score.

markup-markup-spacing
the distance between two (title or top-level) markups.

last-bottom-spacing
the distance from the last system or top-level markup on a page to the bottom of the printable area (i.e., the top of the bottom margin).

top-system-spacing
the distance from the top of the printable area (i.e., the bottom of the top margin) to the first system on a page, when there is no (title or top-level) markup between the two.

top-markup-spacing
the distance from the top of the printable area (i.e., the bottom of the top margin) to the first (title or top-level) markup on a page, when there is no system between the two.

See also
Notation Reference: Section 4.4.1 [Flexible vertical spacing within systems], page 628.

Snippets: Section “Spacing” in Snippets.

4.1.5 Horizontal spacing \paper variables

\begin{boxednote}
\textbf{Note:} Some \paper dimensions are automatically scaled to the paper size, which may lead to unexpected behavior. See [Automatic scaling to paper size], page 607.
\end{boxednote}

\paper variables for widths and margins
Default values (before scaling) that are not listed here are defined in file ly/paper-defaults-init.ly.

\begin{itemize}
\item \textbf{paper-width}
The width of the page, unset by default. While \texttt{paper-width} has no effect on the automatic scaling of some horizontal dimensions, it does influence the \texttt{line-width} variable. If both \texttt{paper-width} and \texttt{line-width} are set, then \texttt{left-margin} and \texttt{right-margin} will also be updated. Also see \texttt{check-consistency}.
\end{itemize}
line-width
When specified in a \paper block this defines the horizontal extent available for
the staff lines in unindented systems. If left unspecified, the paper's line-width is
determined from (paper-width − left-margin − right-margin). If the paper's
line-width is specified, and both left-margin and right-margin are not, then
the margins will be updated to center the systems on the page automatically. Also
see check-consistency.

line-widths for individual scores can be specified in the scores’ \layout blocks.
These values control the width of the lines produced on a score-by-score basis. If
line-width is not specified for a score, it defaults to the paper's line-width. Setting
a score’s line-width has no effect on the paper margins. Staff lines, of a length
determined by the score’s line-width, are left-aligned within the paper area defined
by the paper's line-width. If the score and paper line-widths are equal, the staff
lines will extend exactly from the left margin to the right margin, but if the score’s
line-width is greater than the paper’s line-width the staff lines will run over into
the right margin.

left-margin
The margin between the left edge of the page and the start of the staff
lines in unindented systems. If the paper size is modified, this dimen-
sion’s default value is scaled accordingly. If left-margin is unset, and
both line-width and right-margin are set, then left-margin is set to
(paper-width − line-width − right-margin). If only line-width is set, then
both margins are set to ((paper-width − line-width) / 2), and the systems
are consequently centered on the page. Also see check-consistency.

right-margin
The margin between the right edge of the page and the end of the staff
lines in non-ragged systems. If the paper size is modified, this dimen-
sion’s default value is scaled accordingly. If right-margin is unset, and
both line-width and left-margin are set, then right-margin is set to
(paper-width − line-width − left-margin). If only line-width is set, then
both margins are set to ((paper-width − line-width) / 2), and the systems
are consequently centered on the page. Also see check-consistency.

check-consistency
If this is true (the default value), print a warning if left-margin, line-width,
and right-margin do not exactly add up to paper-width, and replace each of
these (except paper-width) with their default values (scaled to the paper size if
necessary). If set to false, ignore any inconsistencies and allow systems to run off
the edge of the page.

ragged-right
If set to true, systems will not fill the line width. Instead, systems end at their
natural horizontal length. Default: #t for scores with only one system, and #f for
scores with two or more systems. This variable can also be set in a \layout block.

ragged-last
If set to true, the last system in the score will not fill the line width. Instead the
last system ends at its natural horizontal length. Default: #f. This variable can
also be set in a \layout block.

See also
Notation Reference: [Automatic scaling to paper size], page 607.
**Known issues and warnings**

Explicitly defined paper sizes will override any user-defined left or right margin settings.

\texttt{\textbackslash paper variables for two-sided mode}

Default values (before scaling) are defined in \texttt{ly/paper-defaults-init.ly}.

\texttt{two-sided}

If set to true, use \texttt{inner-margin}, \texttt{outer-margin} and \texttt{binding-offset} to determine margins depending on whether the page number is odd or even. This overrides \texttt{left-margin} and \texttt{right-margin}.

\texttt{inner-margin}

The margin all pages have at the inner side if they are part of a book. If the paper size is modified, this dimension’s default value is scaled accordingly. Works only with \texttt{two-sided} set to true.

\texttt{outer-margin}

The margin all pages have at the outer side if they are part of a book. If the paper size is modified, this dimension’s default value is scaled accordingly. Works only with \texttt{two-sided} set to true.

\texttt{binding-offset}

The amount \texttt{inner-margin} is increased to make sure nothing will be hidden by the binding. If the paper size is modified, this dimension’s default value is scaled accordingly. Works only with \texttt{two-sided} set to true.

**See also**

Notation Reference: [Automatic scaling to paper size], page 607.

Installed Files: \texttt{ly/paper-defaults-init.ly}.

\texttt{\textbackslash paper variables for shifts and indents}

Default values (before scaling) that are not listed here are defined in \texttt{ly/paper-defaults-init.ly}.

\texttt{horizontal-shift}

The amount that all systems (including titles and system separators) are shifted to the right. Default: 0.0\texttt{\textbackslash mm}.

\texttt{indent}

The level of indentation for the first system in a score. If the paper size is modified, this dimension’s default value is scaled accordingly. The space within \texttt{line-width} available for the first system is reduced by this amount. \texttt{indent} may also be specified in \texttt{\layout blocks} to set indents on a score-by-score basis.

\texttt{short-indent}

The level of indentation for all systems in a score besides the first system. If the paper size is modified, this dimension’s default value is scaled accordingly. The space within \texttt{line-width} available for systems other than the first is reduced by this amount. \texttt{short-indent} may also be specified in \texttt{\layout blocks} to set short indents on a score-by-score basis.

**See also**

Notation Reference: [Automatic scaling to paper size], page 607.

Installed Files: \texttt{ly/paper-defaults-init.ly}.

Snippets: Section “Spacing” in \textit{Snippets}. 
4.1.6 Other \paper variables

\paper variables for line breaking

**max-systems-per-page**

The maximum number of systems that will be placed on a page. This is currently supported only by the ly:optimal-breaking algorithm. Default: unset.

**min-systems-per-page**

The minimum number of systems that will be placed on a page. This may cause pages to be overfilled if it is made too large. This is currently supported only by the ly:optimal-breaking algorithm. Default: unset.

**systems-per-page**

The number of systems that should be placed on each page. This is currently supported only by the ly:optimal-breaking algorithm. Default: unset.

**system-count**

The number of systems to be used for a score. Default: unset. This variable can also be set in a \layout block.

See also

Notation Reference: Section 4.3.1 [Line breaking], page 621.

\paper variables for page breaking

Default values not listed here are defined in ly/paper-defaults-init.ly

**page-breaking**


**page-breaking-system-system-spacing**

Tricks the page breaker into thinking that system-system-spacing is set to something different than it really is. For example, if page-breaking-system-system-spacing.padding is set to something substantially larger than system-system-spacing.padding, then the page breaker will put fewer systems on each page. Default: unset.

**page-count**

The number of pages to be used for a score. Default: unset.

**page-spacing-weight**

When using the ly: optimal-breaking algorithm for page breaking, LilyPond has to make trade-offs between horizontal and vertical stretching so that the overall spacing is more acceptable. This parameter controls the relative importance of page (vertical) spacing and line (horizontal) spacing. High values will make page spacing more important. Default: 10.

The following variables are effective only when page-breaking is set to ly:page-turn-breaking. Page breaks are then chosen to minimize the number of page turns. Since page turns are required on moving from an odd-numbered page to an even-numbered one, a layout in which the last page is odd-numbered will usually be favored. Places where page turns are preferred can be indicated manually by inserting \allowPageTurn or automatically by including the Page_turn_engraver (see [Optimal page turning], page 627).
If there are insufficient choices available for making suitable page turns, LilyPond may insert a blank page either within a score, between scores (if there are two or more scores), or by ending a score on an even-numbered page. The values of the following three variables may be increased to make these actions less likely.

The values are penalties, i.e., the higher the value the less likely will be the associated action relative to other choices.

**blank-page-penalty**

The penalty for having a blank page in the middle of a score. If `blank-page-penalty` is large and `ly:page-turn-breaking` is selected, then LilyPond will be less likely to insert a page in the middle of a score. Instead, it will space out the music further to fill the blank page and the following one. Default: 5.

**blank-last-page-penalty**

The penalty for ending the score on an even-numbered page. If `blank-last-page-penalty` is large and `ly:page-turn-breaking` is selected, then LilyPond will be less likely to produce a score in which the last page is even-numbered. Instead, it will adjust the spacing in order to use one page more or one page less. Default: 0.

**blank-after-score-page-penalty**

The penalty for having a blank page after the end of one score and before the next. By default, this is smaller than `blank-page-penalty`, so that blank pages after scores are inserted in preference to blank pages within a score. Default: 2.

**See also**

Notation Reference: Section 4.3.2 [Page breaking], page 625, [Optimal page breaking], page 626, [Optimal page turning], page 627, [Minimal page breaking], page 626, [One-page page breaking], page 627, [One-line page breaking], page 627, [One-line-auto-height page breaking], page 627.


**

\paper variables for page numbering

Default values not listed here are defined in `ly/paper-defaults-init.ly`

**auto-first-page-number**

The page breaking algorithm is affected by the first page number being odd or even. If set to true, the page breaking algorithm will decide whether to start with an odd or even number. This will result in the first page number remaining as is or being increased by one. Default: #f.

**first-page-number**

The value of the page number on the first page.

**print-first-page-number**

If set to true, a page number is printed on the first page.

**print-page-number**

If set to false, page numbers are not printed.

**page-number-type**


**bookpart-level-page-numbering**

If set to true, each book part has its independent sequence of page numbers, starting at `first-page-number` (1 by default).
This may also be used for one book part only. The typical use case is numbering pages of the first book part independently and in roman numerals, as may be wished for an analytical introduction to the work being published.

\book {
  \bookpart {
    \paper {
      bookpart-level-page-numbering = ##t
      page-number-type = #'roman-lower
    }
    \markuplist \wordwrap-lines {
      Lorem ipsum dolor sit amet.
    }
  }
  \bookpart {
    ...
  }
}

See also


Known issues and warnings

Odd page numbers are always on the right. If you want the music to start on page 1 there must be a blank page on the back of the cover page so that page 1 is on the right-hand side.

\paper variables concerning headers and markups

print-all-headers
  If set to true, this will print all headers for each \score in the output. Normally only the piece and opus header variables are printed. For use cases see Section 3.3 [Titles and headers], page 544. Default: #f.
reset-footnotes-on-new-page
  If set to true, footnote numbers are reset on each page break. For footnotes numbered consecutively across page breaks, set to #f. Default: #t.
system-separator-markup
  A markup object that is inserted between systems, often used for orchestral scores. Default: unset. The \slashSeparator markup, defined in ly/titling-init.ly, is provided as a sensible default, for example:

#(set-default-paper-size "a8")

\book {
  \paper {
    system-separator-markup = \slashSeparator
  }
  \header {
    tagline = ##f
  }
  \score {
    \relative { c''1 \break c1 \break c1 }
  }
}


footnote-separator-markup
A markup object that is inserted above the footnote texts at the bottom of the page.
Default: a centered horizontal line, defined in ly/paper-defaults-init.ly.

See also
Snippets: Section “Spacing” in Snippets.

Known issues and warnings
The default page header puts the page number and the instrument field from the \header block on a line.

\paper variables for debugging
The variables debug-beam-scoring, debug-slur-scoring and debug-tie-scoring allow to print debugging output for beam, slur and tie scoring. See Section “Debugging scoring algorithms” in Contributor’s Guide for a detailed explanation, what these variables do.

4.2 Score layout
This section discusses score layout options for the \layout block.

4.2.1 The \layout block
While the \paper block contains settings that relate to the page formatting of the whole document, the \layout block contains settings for score-specific layout. To set score layout options globally, enter them in a top-level \layout block. To set layout options for an individual score, enter them in a \layout block inside the \score block, after the music. Settings that can appear in a \layout block include:

- the \layout-set-staff-size scheme function,
- context modifications in \context blocks, and
- \paper variables that affect score layout.

The \layout-set-staff-size function is discussed in the next section, Section 4.2.2 [Setting the staff size], page 618. Context modifications are discussed in a separate chapter; see Section 5.1.4 [Modifying context plug-ins], page 671, and Section 5.1.5 [Changing context default settings], page 672.

The \paper variables that can appear in a \layout block, with default values taken from the \paper block are:

- line-width, ragged-right and ragged-last (see \paper variables for widths and margins, page 610)
• indent and short-indent (see \[paper variables for shifts and indents\], page 612)
• system-count (see \[paper variables for line breaking\], page 613)

Here is an example \layout block:
\layout {
  indent = 2\cm
  \context {
    \StaffGroup
    \override StaffGrouper.staff-staff-spacing.basic-distance = #8
  }
  \context {
    \Voice
    \override TextScript.padding = #1
    \override Glissando.thickness = #3
  }
}

Multiple \layout blocks can be entered as top-level expressions. This can, for example, be useful if different settings are stored in separate files and included optionally. Internally, when a \layout block is evaluated, a copy of the current \layout configuration is made, then any changes defined within the block are applied and the result is saved as the new current configuration. From the user’s perspective the \layout blocks are combined, but in conflicting situations (when the same property is changed in different blocks) the later definitions take precedence.

For example, if this block:
\layout {
  \context {
    \Voice
    \override TextScript.color = #magenta
    \override Glissando.thickness = #1.5
  }
}

is placed after the one from the preceding example the padding and color overrides for TextScript are combined, but the later thickness override for Glissando replaces (or hides) the earlier one.

\layout blocks may be assigned to variables for reuse later, but the way this works is slightly but significantly different from writing them literally.

If a variable is defined like this:
layoutVariable = \layout {
  \context {
    \Voice
    \override NoteHead.font-size = #4
  }
}

it will hold the current \layout configuration with the NoteHead.font-size override added, but this combination is not saved as the new current configuration. Be aware that the ‘current configuration’ is read when the variable is defined and not when it is used, so the content of the variable is dependent on its position in the source.

The variable can then be used inside another \layout block, for example:
\layout {
  \layoutVariable
A `\layout` block containing a variable, as in the example above, does not copy the current configuration but instead uses the content of `\layoutVariable` as the base configuration for the further additions. This means that any changes defined between the definition and the use of the variable are lost.

If `layoutVariable` is defined (or `\include`) immediately before being used, its content is just the current configuration plus the overrides defined within it. So in the example above showing the use of `\layoutVariable` the final `\layout` block would consist of:

- `TextScript.padding = #1`
- `TextScript.color = #magenta`
- `Glissando.thickness = #1.5`
- `NoteHead.font-size = #4`
- `NoteHead.color = #red`

plus the indent and the `StaffGrouper` overrides.

But if the variable had already been defined before the first `\layout` block the current configuration would now contain only

- `NoteHead.font-size = #4` % (written in the variable definition)
- `NoteHead.color = #red` % (added after the use of the variable)

If carefully planned, `\layout` variables can be a valuable tool to structure the layout design of sources, and also to reset the `\layout` configuration to a known state.

**See also**

Notation Reference: Section 5.1.5 [Changing context default settings], page 672.

Snippets: Section “Spacing” in Snippets.

### 4.2.2 Setting the staff size

The default staff size is 20 points, which corresponds to a staff height of 7.03 mm (one point is equal to 100/7227 of an inch, or 2540/7227 mm). The staff size may be changed in three ways:

1. To set the staff size globally for all scores in a file (or in a `\book` block, to be precise), use `set-global-staff-size`:
   ```latex
 #(set-global-staff-size 14)
   ```
   The above example sets the global default staff size to 14 pt (4.92 mm) and scales all fonts accordingly.

2. To set the staff size for a single score within a book, use `layout-set-staff-size` inside that score’s `\layout` block:
   ```latex
 \score {
 ...
 \layout {
 #(layout-set-staff-size 14)
 }
 }
   ```

3. To set the staff size for a single staff within a system, use the `\magnifyStaff` command. For example, traditionally engraved chamber music scores with piano often used 7 mm piano
staves while the other staves were typically between 3/5 and 5/7 as large (between 60% and 71%). To achieve the 5/7 proportion, use:

\score {
  <<
    \new Staff \with {
      \magnifyStaff #5/7
    } { ... }
    \new PianoStaff { ... }
  >>
}

If you happen to know which fontSize you wish to use, you could use the following form:

\score {
  <<
    \new Staff \with {
      \magnifyStaff #(magstep -3)
    } { ... }
    \new PianoStaff { ... }
  >>
}

To emulate the look of traditional engraving, it is best to avoid reducing the thickness of the staff lines.

**Automatic font weight at different sizes**

The Emmentaler font provides the set of Feta musical glyphs in eight different sizes; each one tuned for a different staff size. The smaller the glyph size, the “heavier” it becomes, so as to match the relatively thicker staff lines. Recommended glyphs sizes are listed in the following table:

<table>
<thead>
<tr>
<th>font name</th>
<th>staff height (pt)</th>
<th>staff height (mm)</th>
<th>use</th>
</tr>
</thead>
<tbody>
<tr>
<td>feta11</td>
<td>11.22</td>
<td>3.9</td>
<td>pocket scores</td>
</tr>
<tr>
<td>feta13</td>
<td>12.60</td>
<td>4.4</td>
<td></td>
</tr>
<tr>
<td>feta14</td>
<td>14.14</td>
<td>5.0</td>
<td></td>
</tr>
<tr>
<td>feta16</td>
<td>15.87</td>
<td>5.6</td>
<td></td>
</tr>
<tr>
<td>feta18</td>
<td>17.82</td>
<td>6.3</td>
<td>song books</td>
</tr>
<tr>
<td>feta20</td>
<td>20</td>
<td>7.0</td>
<td>standard parts</td>
</tr>
<tr>
<td>feta23</td>
<td>22.45</td>
<td>7.9</td>
<td></td>
</tr>
<tr>
<td>feta26</td>
<td>25.2</td>
<td>8.9</td>
<td></td>
</tr>
</tbody>
</table>

**See also**

Notation Reference: [Selecting notation font size], page 254, Section A.8 [The Emmentaler font], page 743.

Snippets: Section “Spacing” in Snippets.

**Known issues and warnings**

When using \magnifyStaff only for some staves in a StaffGroup, BarLine grobs do not align any more, due to the changed BarLine properties thick-thickness, hair-thickness and kern.

\new StaffGroup

<<
  \new Staff \with { \magnifyStaff #1/2 } { b1 \bar "|." }
  \new Staff { b }
>>
You may want to cancel magnifying BarLine grobs, mimic them on the other staves or apply intermediate values for every Staff.

```
#(define bar-line-props
 '((BarLine thick-thickness)
 (BarLine hair-thickness)
 (BarLine kern)))

mus = { b1 \bar "|."}

\markup "Cancel \magnifyStaff for bar lines:"
\new StaffGroup
 \new Staff
 \with { \magnifyStaff #1/2 #\(\texttt{revert-props} \ 'magnifyStaff 0 bar-line-props) }
 \mus
 \new Staff
 \mus
>>

\markup "Mimic \magnifyStaff on other staves:"
\new StaffGroup
 \new Staff
 \with { \magnifyStaff #1/2 }
 \mus
 \new Staff
 \with { #(\texttt{scale-props} \ 'magnifyStaff 1/2 #t bar-line-props) }
 \mus
>>

\markup "Apply an intermediate value to all staves:"
\new StaffGroup
 \new Staff
 \with { \magnifyStaff #1/2
 #(\texttt{scale-props} \ 'magnifyStaff 3/2 #t bar-line-props) }
 \mus
 \new Staff
```
4.3 Breaks

4.3.1 Line breaking
Line breaks are normally determined automatically. They are chosen so that lines look neither cramped nor loose, and consecutive lines have similar density.

To manually force a line break at a bar line, use the \break command:

\relative c'' {  
c4 c c c | \break  
c4 c c c |  
}
By default, breaks are only allowed at bar lines. There are also a few other factors that can prevent a break from being allowed at a certain bar line:

- a note head or rest continuing over the bar line,
- the presence of an ‘unbreakable’ spanner, such as a beam or a glissando, crossing the bar line.

The \break command forces a break in all cases, regardless of the presence of a bar line or any other factor. It is also possible to bypass all these factors using the \allowBreak command. In the following example, breaks are allowed everywhere, even in the middle of a measure, and despite the presence of beams.

\repeat unfold 56 \{ c'8 \allowBreak \}

If you find yourself using \allowBreak often, you may want to prevent some of the factors mentioned above from disabling breaks.

- Bar_engraver forbids breaks between bar lines when forbidBreakBetweenBarLines is set to true. To inhibit this, set the property to false.

\layout \{ \context \{ \Score forbidBreakBetweenBarLines = ##f \} \} \fixed c' \{ c4 d \}

- Note heads and rests extending over bar lines can be made not to suppress breaks by removing the Forbid_line_break_engraver from the Voice context.

\new Voice \with { \remove Forbid_line_break_engraver } \relative { c''2. \tuplet 3/2 \{ c4 c c \} c2. }
The presence of beams and other unbreakable spanners over bar lines is ignored if their breakable property is set to true.

\relative c' {
    \override Beam.breakable = ##t
c2. c8[ c ]
c8 c] c2. |
}

The \noBreak command will prevent a line break at the bar line where it is inserted.

Within a score, automatic line breaking is prevented within music lying between \autoLineBreaksOff and \autoLineBreaksOn commands. If automatic page breaks should also be prevented, the commands \autoBreaksOff and \autoBreaksOn should be used. Manual breaks are unaffected by these commands. Note that inhibiting automatic line breaks may cause music to run over the right margin if it cannot all be contained within one line.

Automatic line breaks (but not page breaks) may be enabled at single bar lines by using \once \autoLineBreaksOn at a bar line. This identifies a permitted rather than a forced line break.

The most basic settings influencing line spacing are indent and line-width. They are set in the \layout block. They control the indentation of the first line of music, and the lengths of the lines.

If ragged-right is set to true in the \layout block, then systems end at their natural horizontal length, instead of being spread horizontally to fill the whole line. This is useful for short fragments, and for checking how tight the natural spacing is.

The option ragged-last is similar to ragged-right, but affects only the last line of the piece.

\layout {
    indent = 0\mm
    line-width = 150\mm
    ragged-last = ##t
}

For line breaks at regular intervals use \break separated by skips and repeated with \repeat.

For example, this would cause the following 28 measures (assuming 4/4 time) to be broken every 4 measures, and only there:

<<
    \repeat unfold 7 {
Predefined commands
\break, \allowBreak, \noBreak, \autoBreaksOff, \autoBreaksOn, \autoLineBreaksOff, \autoLineBreaksOn.

Selected Snippets

Using an extra voice for breaks
Often it is easier to manage line and page-breaking information by keeping it separate from the music by introducing an extra voice containing only skips along with the \break, pageBreak and other layout information.

This pattern becomes especially helpful when overriding line-break-system-details and the other useful but long properties of NonMusicalPaperColumnGrob.

\score {  
  \new Staff <<  
  \new Voice {  
    s1 * 2 \break  
    s1 * 3 \break  
    s1 * 6 \break  
    s1 * 5 \break  
  }  
  \new Voice {  
    \repeat unfold 2 { \music }  
    \repeat unfold 3 { \music }  
    \repeat unfold 6 { \music }  
    \repeat unfold 5 { \music }  
  }  
  >>  
  }
See also
Notation Reference: [\paper variables for line breaking], page 613, Section 4.2.1 [The \layout block], page 616.

Snippets: Section “Spacing” in Snippets.
Internals Reference: Section “LineBreakEvent” in Internals Reference.

Known issues and warnings
Placing \autoLineBreaksOff or \autoBreaksOff before any music will cause error messages to appear. Always place these commands after some music.

4.3.2 Page breaking
This section describes the different page breaking methods, and how to modify them.

Manual page breaking
The default page breaking may be overridden by inserting \pageBreak or \noPageBreak commands. These commands are analogous to \break and \noBreak. They should be inserted at a bar line. These commands force and forbid a page break from happening at that bar line. Of course, the \pageBreak command also forces a line break.

The \pageBreak and \noPageBreak commands may also be inserted at top-level, between scores and top-level markups.

Within a score, automatic page breaks are prevented within music lying between \autoPageBreaksOff and \autoPageBreaksOn commands. Manual page breaks are unaffected by these commands.

There are also analogous settings to ragged-right and ragged-last which have the same effect on vertical spacing. If ragged-bottom is set to \#t the systems will not be justified vertically. When ragged-last-bottom is set to \#t, as it is by default, empty space is allowed at the bottom of the final page (or the final page in each \bookpart). See Section 4.1.3 [Fixed vertical spacing \paper variables], page 608.

Page breaks are computed by the page-breaking function. LilyPond provides several algorithms for computing page breaks, including ly:optimal-breaking, ly:page-turn-breaking and ly:minimal-breaking. The default is ly:optimal-breaking, but the value can be changed in the \paper block:

\paper {
    page-breaking = #ly:page-turn-breaking
}

When a book has many scores and pages, the page breaking problem may be difficult to solve, requiring large processing time and memory. To ease the page breaking process, \bookpart blocks are used to divide the book into several parts: the page breaking occurs separately on each part. Different page breaking functions may also be used in different book parts.

\bookpart {
    \header {
        subtitle = "Preface"
    }
    \paper {
        \%
        In a part consisting mostly of text,
Predefined commands

\pageBreak, \noPageBreak, \autoPageBreaksOn, \autoPageBreaksOff.

See also

Notation Reference: [\paper variables for page breaking], page 613.

Snippets: Section “Spacing” in Snippets.

Known issues and warnings

The \once prefix is ineffective with \autoPageBreaksOn and \autoPageBreaksOff. If automatic page breaking is off and is then turned on to permit a page break, it must remain on for a few bars (the precise number of bars depends on the score) before being turned off, else the opportunity to break the page will not be taken.

Optimal page breaking

The ly:optimal-breaking function is LilyPond’s default method of determining page breaks. It attempts to find a page breaking that minimizes cramping and stretching, both horizontally and vertically. Unlike ly:page-turn-breaking, it has no concept of page turns.

See also

Snippets: Section “Spacing” in Snippets.

Minimal page breaking

The ly:minimal-breaking function performs minimal computations to calculate the page breaking: it fills a page with as many systems as possible before moving to the next one. Thus, it may be preferred for scores with many pages, where the other page breaking functions could be too slow or memory demanding, or a lot of texts. It is enabled using:

\paper {
    page-breaking = #ly:minimal-breaking
}
Chapter 4: Spacing issues

One-page page breaking

The ly:one-page-breaking function is a special-purpose page breaking algorithm that automatically adjusts the page height to fit the music, so that everything fits on a single page. The paper-height variable in the paper block is ignored, but other settings work as usual. In particular, the spacing between the last system (or top level markup) and the footer can be customized with last-bottom-spacing in the paper block. The width of the page is left unmodified by default but can be set with paper-width in the paper block.

Known issues and warnings

ly:one-page-breaking is not currently compatible with \bookpart.

One-line page breaking

The ly:one-line-breaking function is a special-purpose page breaking algorithm that puts each score on its own page, and on a single line. No titles or margins are typeset; only the score is displayed.

The page width is adjusted so that the longest score fits on one line. In particular, paper-width, line-width and indent variables in the \paper block are ignored, although left-margin and right-margin are still honored. The height of the page is left unmodified.

One-line-auto-height page breaking

The ly:one-line-auto-height-breaking function works just like ly:one-line-breaking except the page height is automatically modified to fit the height of the music. Specifically, the paper-height variable in the \paper block is set so that it spans the height of the tallest score plus the top-margin and bottom-margin.

Note that the top-system-spacing setting will affect the vertical position of the music. Set it to #f in a paper block to simply place the music between the top and bottom margins.

Optimal page turning

Often it is necessary to find a page breaking configuration so that there is a rest at the end of every second page. This way, the musician can turn the page without having to miss notes. The ly:page-turn-breaking function attempts to find a page breaking minimizing cramping and stretching, but with the additional restriction that it is only allowed to introduce page turns in specified places.

There are two steps to using this page breaking function. First, you must enable it in the \paper block, as explained in Section 4.3.2 [Page breaking], page 625. Then you must tell the function where you would like to allow page breaks.

There are two ways to achieve the second step. First, you can specify each potential page turn manually, by inserting \allowPageTurn into your input file at the appropriate places.

If this is too tedious, you can add a Page_turn_ engraver to a Staff or Voice context. The Page_turn_ engraver will scan the context for sections without notes (note that it does not scan for rests; it scans for the absence of notes. This is so that single-staff polyphony with rests in one of the parts does not throw off the Page_turn_ engraver). When it finds a sufficiently long section without notes, the Page_turn_ engraver will insert an \allowPageTurn at the final bar line in that section, unless there is a ‘special’ bar line (such as a double bar), in which case the \allowPageTurn will be inserted at the final ‘special’ bar line in the section.

The Page_turn_ engraver reads the context property minimumPageTurnLength to determine how long a note-free section must be before a page turn is considered. The default value for minimumPageTurnLength is \musicLength 1. If you want to disable page turns, set it to something ‘very large’.

\new Staff \with { \consists Page_turn_ engraver }
When using volta repeats, the \PageTurnEngraver will only allow a page turn during the repeat if there is enough time at the beginning and end of the repeat to turn the page back. If the repeat is too short then the \PageTurnEngraver can be used to disable page turns by setting an appropriate value for the context property minimumRepeatLengthForPageTurn. In this case the \PageTurnEngraver will only allows turns in repeats whose duration is longer than the value specified.

The page turning commands, \pageTurn, \noPageTurn and \allowPageTurn, may also be used at top-level, in top-level markups and between scores.

**Predefined commands**

\pageTurn, \noPageTurn, \allowPageTurn.

**See also**

Notation Reference: [\paper variables for line breaking], page 613.

Snippets: Section “Spacing” in Snippets.

**Known issues and warnings**

Use only one \PageTurnEngraver per score. If there are more, they will interfere with each other.

**See also**

Notation Reference: Section 4.4 [Vertical spacing], page 628.

Snippets: Section “Spacing” in Snippets.

### 4.4 Vertical spacing

Vertical spacing is controlled by three things: the amount of space available (i.e., paper size and margins), the amount of space between systems, and the amount of space between staves inside a system.

#### 4.4.1 Flexible vertical spacing within systems

Three separate mechanisms control the flexible vertical spacing within systems, one for each of the following categories:

- **ungrouped staves**,  
- **grouped staves** (staves within a staff group such as ChoirStaff, etc.), and  
- **non-staff lines** (such as Lyrics, ChordNames, etc.).

The height of each system is determined in two steps. First, all of the staves are spaced according to the amount of space available. Then, the non-staff lines are distributed between the staves.
Note that the spacing mechanisms discussed in this section only control the vertical spacing of staves and non-staff lines within individual systems. The vertical spacing between separate systems, scores, markups, and margins is controlled by `\paper` variables, which are discussed in Section 4.1.4 [Flexible vertical spacing `\paper` variables], page 608.

### Within-system spacing properties

The within-system vertical spacing mechanisms are controlled by two sets of grob properties. The first set is associated with the `VerticalAxisGroup` grob, which is created by all staves and non-staff lines. The second set is associated with the `StaffGrouper` grob, which can be created by staff groups, but only if explicitly called. These properties are described individually at the end of this section.

The names of these properties (except for `staff-affinity`) follow the format `item1-item2-spacing`, where `item1` and `item2` are the items to be spaced. Note that `item2` is not necessarily below `item1`; for example, `nonstaff-related-staff-spacing` will measure upwards from the non-staff line if `staff-affinity` is `UP`.

Each distance is measured between the **reference points** of the two items. The reference point for a staff is the vertical center of its `StaffSymbol` (i.e., the middle line if `line-count` is odd; the middle space if `line-count` is even). The reference points for individual non-staff lines are given in the following table:

<table>
<thead>
<tr>
<th>Non-staff line</th>
<th>Reference point</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChordNames</td>
<td>baseline</td>
</tr>
<tr>
<td>NoteNames</td>
<td>baseline</td>
</tr>
<tr>
<td>Lyrics</td>
<td>baseline</td>
</tr>
<tr>
<td>Dynamics</td>
<td>mid-height of <code>m</code></td>
</tr>
<tr>
<td>FiguredBass</td>
<td>highest point</td>
</tr>
<tr>
<td>FretBoards</td>
<td>top line</td>
</tr>
</tbody>
</table>

In the following image, horizontal lines indicate the positions of these reference points:

```
<table>
<thead>
<tr>
<th>baseline</th>
<th>ChordNames</th>
<th>NoteNames</th>
<th>Lyrics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g</td>
<td>g</td>
<td>ghijk</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>mid-height</th>
<th>Dynamics</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mp</td>
</tr>
<tr>
<td></td>
<td>fp</td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>highest point</th>
<th>FiguredBass</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

```
<table>
<thead>
<tr>
<th>top line</th>
<th>FretBoards</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

Each of the vertical spacing grob properties (except `staff-affinity`) uses the same alist structure as the `\paper` spacing variables discussed in Section 4.1.4 [Flexible vertical spacing `\paper` variables], page 608. Specific methods for modifying alists are discussed in Section 5.3.8 [Modifying alists], page 695. Grob properties should be adjusted with an `\override` inside a `\score` or `\layout` block, and not inside a `\paper` block.

The following example demonstrates the two ways these alists can be modified. The first declaration updates one key value individually, and the second completely redefines the property:

```latex
\new Staff \with {
 \override VerticalAxisGroup
 .default-staff-staff-spacing.basic-distance = #10
}
```
\new Staff \with {
\override VerticalAxisGroup.default-staff-staff-spacing =
\#'((basic-distance . 10)
  (minimum-distance . 9)
  (padding . 1)
  (stretchability . 10))
} { ... }

To change any spacing settings globally, put them in the \layout block:

\layout {
\context {
  \Staff
  \override VerticalAxisGroup
    .default-staff-staff-spacing
    .basic-distance = #10
}
}

Standard settings for the vertical spacing grob properties are listed in Section “Vertical-
AxisGroup” in Internals Reference and Section “StaffGrouper” in Internals Reference. Default
overrides for specific types of non-staff lines are listed in the relevant context descriptions in
Section “Contexts” in Internals Reference.

Properties of the VerticalAxisGroup grob

VerticalAxisGroup properties are typically adjusted with an \override at the Staff level (or
equivalent).

staff-staff-spacing
 Used to determine the distance between the current staff and the staff just below it
in the same system, even if one or more non-staff lines (such as Lyrics) are placed
between the two staves. Does not apply to the bottom staff of a system.

Initially, the staff-staff-spacing of a VerticalAxisGroup is a Scheme function
that applies the properties of the StaffGrouper if the staff is part of a group,
or the default-staff-staff-spacing of the staff otherwise. This allows staves
to be spaced differently when they are grouped. For uniform spacing regardless
of grouping, this function may be replaced by a flexible-spacing alist, using the
complete-redefinition form of override shown above. If only some values are specified
in an override, missing values will be taken from default-staff-staff-spacing
(if it has values for them).

default-staff-staff-spacing
 A flexible-spacing alist defining the staff-staff-spacing used for ungrouped
staves, unless staff-staff-spacing has been explicitly set with an \override.

staff-affinity
 The direction of the staff to use for spacing the current non-staff line. Choices are UP,
DOWN, and CENTER. If CENTER, the non-staff line will be placed equidistant between
the two nearest staves on either side, unless collisions or other spacing constraints
prevent this. Adjacent non-staff lines should have non-increasing staff-affinity
from top to bottom, e.g., a non-staff line set to UP should not immediately follow
one that is set to DOWN. Non-staff lines at the top of a system should use DOWN; those
at the bottom should use UP. Setting staff-affinity for a staff causes it to be
treated as a non-staff line. Setting staff-affinity to #f causes a non-staff line to
be treated as a staff. Setting `staff-affinity` to `UP`, `CENTER`, or `DOWN` causes a staff to be spaced as a non-staff line.

**nonstaff-relatedstaff-spacing**

The distance between the current non-staff line and the nearest staff in the direction of `staff-affinity`, if there are no non-staff lines between the two, and `staff-affinity` is either `UP` or `DOWN`. If `staff-affinity` is `CENTER`, then `nonstaff-relatedstaff-spacing` is used for the nearest staves on both sides, even if other non-staff lines appear between the current one and either of the staves. This means that the placement of a non-staff line depends on both the surrounding staves and the surrounding non-staff lines. Setting the stretchability of one of these types of spacing to a small value will make that spacing dominate. Setting the stretchability to a large value will make that spacing have little effect.

**nonstaff-nonstaff-spacing**

The distance between the current non-staff line and the next non-staff line in the direction of `staff-affinity`, if both are on the same side of the related staff, and `staff-affinity` is either `UP` or `DOWN`.

**nonstaff-unrelatedstaff-spacing**

The distance between the current non-staff line and the staff in the opposite direction from `staff-affinity`, if there are no other non-staff lines between the two, and `staff-affinity` is either `UP` or `DOWN`. This can be used, for example, to require a minimum amount of padding between a `Lyrics` line and the staff to which it does not belong.

**Properties of the StaffGrouper grob**

StaffGrouper properties are typically adjusted with an `\override` at the StaffGroup level (or equivalent).

**staff-staff-spacing**

The distance between consecutive staves within the current staff group. The `staff-staff-spacing` property of an individual staff’s `VerticalAxisGroup` grob can be overridden with different spacing settings for that staff.

**staffgroup-staff-spacing**

The distance between the last staff of the current staff group and the staff just below it in the same system, even if one or more non-staff lines (such as `Lyrics`) exist between the two staves. Does not apply to the bottom staff of a system. The `staff-staff-spacing` property of an individual staff’s `VerticalAxisGroup` grob can be overridden with different spacing settings for that staff.

**Spacing of ungrouped staves**

*Staves* (such as `Staff`, `DrumStaff`, `TabStaff`, etc.) are contexts that can contain one or more voice contexts, but cannot contain any other staves.

The following properties affect the spacing of *ungrouped* staves:
• **VerticalAxisGroup** properties:
  
  • `default-staff-staff-spacing`
  
  • `staff-staff-spacing`

  These grob properties are described individually above; see [Within-system spacing properties], page 629.

  Additional properties are involved for staves that are part of a staff group; see [Spacing of grouped staves], page 633.

  The following example shows how the `default-staff-staff-spacing` property can affect the spacing of ungrouped staves. The same overrides applied to `staff-staff-spacing` would have the same effect, but would also apply in cases where the staves are combined in a group or groups.

```
\layout {
\context {\Staff {\override VerticalAxisGroup.default-staff-staff-spacing = #'((basic-distance . 8) (minimum-distance . 7) (padding . 1)) }}
}

<<
% The very low note here needs more room than 'basic-distance % can provide, so the distance between this staff and the next % is determined by 'padding.
\new Staff { b,2 r | }

% Here, 'basic-distance provides enough room, and there is no % need to compress the space (towards 'minimum-distance) to make % room for anything else on the page, so the distance between % this staff and the next is determined by 'basic-distance.
\new Staff { \clef bass g2 r | }

% By setting 'padding to a negative value, staves can be made to % collide. The lowest acceptable value for 'basic-distance is 0.
\new Staff \with {
\override VerticalAxisGroup.default-staff-staff-spacing = #'((basic-distance . 3.5) (padding . -10))}{ \clef bass g2 r | }
\new Staff { \clef bass g2 r | }
>>
```
Spacing of grouped staves

In orchestral and other large scores, it is common to place staves in groups. The space between groups is typically larger than the space between staves of the same group.

Staff-groups (such as StaffGroup, ChoirStaff, etc.) are contexts that can contain one or more staves simultaneously.

The following properties affect the spacing of staves inside staff groups:

- VerticalAxisGroup properties:
  - staff-staff-spacing
- StaffGrouper properties:
  - staff-staff-spacing
  - staffgroup-staff-spacing

These grob properties are described individually above; see [Within-system spacing properties], page 629.

The following example shows how properties of the StaffGrouper grob can affect the spacing of grouped staves:

\layout {
  \context {
    \Score
    \override StaffGrouper.staff-staff-spacing.padding = #0
    \override StaffGrouper.staff-staff-spacing.basic-distance = #1
  }
}

<<
\new PianoStaff \with {
  \override StaffGrouper
    .staffgroup-staff-spacing
    .basic-distance = #20
} <<
\new Staff { c'1 }
\new Staff { c'1 }
>>

\new StaffGroup <<
Spacing of non-staff lines

Non-staff lines (such as Lyrics, ChordNames, etc.) are contexts whose layout objects are engraved like staves (i.e., in horizontal lines within systems). Specifically, non-staff lines are non-staff contexts that contain the Section “Axis_group engraver” in Internals Reference.

The following properties affect the spacing of non-staff lines:

- \textit{VerticalAxisGroup} properties:
  - staff-affinity
  - nonstaff-relatedstaff-spacing
  - nonstaff-nonstaff-spacing
  - nonstaff-unrelatedstaff-spacing

These grob properties are described individually above; see [Within-system spacing properties], page 629.

The following example shows how the nonstaff-nonstaff-spacing property can affect the spacing of consecutive non-staff lines. Here, by setting the stretchability key to a very high value, the lyrics are able to stretch much more than usual:

```latex
\layout {
 \context {
 \Lyrics
 \override VerticalAxisGroup.
 .nonstaff-nonstaff-spacing
 .stretchability = #1000
 }
}
```
\new StaffGroup
<<
\new Staff \with {
  \override VerticalAxisGroup.staff-staff-spacing =
    #'((basic-distance . 30))
} { c'1 }
\new Lyrics \with {
  \override VerticalAxisGroup.staff-affinity = #UP
} \lyricmode { up }
\new Lyrics \with {
  \override VerticalAxisGroup.staff-affinity = #CENTER
} \lyricmode { center }
\new Lyrics \with {
  \override VerticalAxisGroup.staff-affinity = #DOWN
} \lyricmode { down }
\new Staff { c'1 }
>>

See also


Snippets: Section “Spacing” in Snippets.

Internals Reference: Section “Contexts” in Internals Reference, Section “VerticalAxisGroup” in Internals Reference.

4.4.2 Explicit staff and system positioning

One way to understand the flexible vertical spacing mechanisms explained above is as a collection of settings that control the amount of vertical padding between staves and systems.

It is possible to approach vertical spacing in a different way using property NonMusicalPaperColumn.line-break-system-details. While the flexible vertical spacing mechanisms specify vertical padding, NonMusicalPaperColumn.line-break-system-details can specify exact vertical positions on the page.

NonMusicalPaperColumn.line-break-system-details accepts an associative list of four different settings:

- X-offset
- Y-offset
- extra-offset
- alignment-distances
\once \override NonMusicalPaperColumn.line-break-system-details = #'((X-offset . 20))
\once \override NonMusicalPaperColumn.line-break-system-details = #'((Y-offset . 40))
\once \override NonMusicalPaperColumn.line-break-system-details = #'((X-offset . 20)  
(Y-offset . 40))
\once \override NonMusicalPaperColumn.line-break-system-details = #'((alignment-distances . (15)))
\once \override NonMusicalPaperColumn.line-break-system-details =  
#'((X-offset . 20)  
(Y-offset . 40)  
(alignment-distances . (15)))

To understand how each of these different settings work, we begin by looking at an example  
that includes no overrides at all.

\header { tagline = ##f }  
\paper { left-margin = 0\mm }  
\book {  
\score {  
<<<<  
\new Staff <<  
\new Voice {  
  s1*5 \break  
  s1*5 \break  
  s1*5 \break  
}  
\new Voice { \repeat unfold 15 { c'4 c' c' c' } }  
>>  
\new Staff {  
  \repeat unfold 15 { d'4 d' d' d' }  
}  
>>  
}  
}
This score isolates both line breaking and page breaking information in a dedicated voice. This technique of creating a breaks voice will help keep layout separate from music entry as our example becomes more complicated. Also see Section 4.3 [Breaks], page 621.

By using explicit \break commands, the music is divided into five measures per line. Vertical spacing is from LilyPond's own defaults but the vertical start point of each system is set explicitly using the Y-offset pair in the line-break-system-details attribute of the NonMusicalPaperColumn grob:

\header { tagline = ##f }
\paper { left-margin = 0\mm }
\book {
  \score {
    \new Staff <<
    \new Voice {
      \once \override Score.NonMusicalPaperColumn
        .line-break-system-details = #'((Y-offset . 0))
    s1\*5 \break
      \once \override Score.NonMusicalPaperColumn
        .line-break-system-details = #'((Y-offset . 40))
    s1\*5 \break
      \once \override Score.NonMusicalPaperColumn
        .line-break-system-details = #'((Y-offset . 60))
    s1\*5 \break
    }
    \new Voice { \repeat unfold 15 { c'4 c' c' c' } }
    >>
  }
  \new Staff { 
    \repeat unfold 15 { d'4 d' d' d' }
  }
  >>
}
Note that `line-break-system-details` takes an associative list of potentially many values, but that we set only one value here. Note, too, that the Y-offset property here determines the exact vertical position on the page at which each new system will render.

In contrast to the absolute positioning available through Y-offset and X-offset, relative positioning is possible with the extra-offset property of `line-break-system-details`. Placement is relative to the default layout or to the absolute positioning created by setting X-offset and Y-offset. The property extra-offset accepts a pair consisting of displacements along the X-axis and Y-axis.

```
\header { tagline = ##f }
\paper { left-margin = 0\mm }
\book { }
\score { }
<<
\new Staff <<
\new Voice { }
s1*5 \break
\once \override Score .NonMusicalPaperColumn .line-break-system-details = #'(extra-offset . (0 . 10)))
\once \new Staff <<
\new Voice { s1*5 \break }
\once \override Score .NonMusicalPaperColumn .line-break-system-details = #'(extra-offset . (0 . 10)))
```
Now that we have set the vertical start point of each system explicitly, we can also set
the vertical distances between staves within each system manually. We do this using the
alignment-distances subproperty of line-break-system-details.

\header { tagline = ##f }
\paper { left-margin = 0\mm }
\book {
  \score {
      \new Staff <<
      \new Voice {
        \once \override Score .NonMusicalPaperColumn
        .line-break-system-details
        = #'((Y-offset . 20)
          (alignment-distances . (10)))
        s1*5 \break
        \once \override Score
      }
      \new Voice { \repeat unfold 15 { c'4 c' c' c' } }
    }\new Staff {
    \repeat unfold 15 { d'4 d' d' d' }
  }
}
\once \override Score .NonMusicalPaperColumn .line-break-system-details = #'((Y-offset . 60) (alignment-distances . (15))) s1*5 \break
\once \override Score .NonMusicalPaperColumn .line-break-system-details = #'((Y-offset . 85) (alignment-distances . (20))) s1*5 \break
\new Voice { \repeat unfold 15 { c'4 c' c' c' } }
>>
\new Staff {
\repeat unfold 15 { d'4 d' d' d' }
}
>>

\new Voice {
\repeat unfold 15 { c'4 c' c' c' } }

\repeat unfold 15 { d'4 d' d' d' }

\new Staff {
\repeat unfold 15 { c'4 c' c' c' } }

\repeat unfold 15 { d'4 d' d' d' }

\new Staff {
\repeat unfold 15 { c'4 c' c' c' } }

\repeat unfold 15 { d'4 d' d' d' }

\new Staff {
\repeat unfold 15 { c'4 c' c' c' } }

\repeat unfold 15 { d'4 d' d' d' }
Note that here we assign two different values to the `line-break-system-details` attribute of the `NonMusicalPaperColumn` grob. Though the `line-break-system-details` attribute list accepts many additional spacing parameters (including, for example, a corresponding X-offset pair), we need only set the Y-offset and alignment-distances pairs to control the vertical start point of every system and every staff. Finally, note that alignment-distances specifies the vertical positioning of staves but not of staff groups.

\header { tagline = ##f }
\paper { left-margin = 0\mm }
\book {
  \score {
    \new Staff <<
    \new Voice {
      \once \override Score .NonMusicalPaperColumn .line-break-system-details = #'((Y-offset . 0)
        (alignment-distances . (30 10)))
    s1*5 \break
    \once \override Score .NonMusicalPaperColumn .line-break-system-details = #'((Y-offset . 60)
        (alignment-distances . (10 10)))
    s1*5 \break
    \once \override Score .NonMusicalPaperColumn .line-break-system-details = #'((Y-offset . 100)
        (alignment-distances . (10 30)))
    s1*5 \break
    } \new Voice { \repeat unfold 15 { c'4 c' c' c' } } >>
    \new StaffGroup <<
    \new Staff { \repeat unfold 15 { d'4 d' d' d' } } \new Staff { \repeat unfold 15 { e'4 e' e' e' } }
    >>
  } >>
}
Some points to consider:

- When using alignment-distances, lyrics and other non-staff lines do not count as a staff.
- The units of the numbers passed to X-offset, Y-offset, extra-offset and alignment-distances are interpreted as multiples of the distance between adjacent staff lines. Positive values move staves and lyrics up, negative values move staves and lyrics down.
• Because the NonMusicalPaperColumn.line-break-system-details settings given here allow the positioning of staves and systems anywhere on the page, it is possible to violate paper or margin boundaries or even to print staves or systems on top of one another. Reasonable values passed to these different settings will avoid this.

See also
Snippets: Section “Spacing” in Snippets.

4.4.3 Vertical collision avoidance

Intuitively, there are some objects in musical notation that belong to the staff and there are other objects that should be placed outside the staff. Objects belonging outside the staff include things such as rehearsal marks, text and dynamic markings (from now on, these will be called outside-staff objects). LilyPond’s rule for the vertical placement of outside-staff objects is to place them as close to the staff as possible but not so close that they collide with another object.

LilyPond uses the outside-staff-priority property to determine whether a grob is an outside-staff object: if outside-staff-priority is a number, the grob is an outside-staff object. In addition, outside-staff-priority tells LilyPond in which order the objects should be placed.

First, LilyPond places all the objects that do not belong outside the staff. Then it sorts the outside-staff objects according to their outside-staff-priority (in increasing order). One by one, LilyPond takes the outside-staff objects and places them so that they do not collide with any objects that have already been placed. That is, if two outside-staff grobs are competing for the same space, the one with the lower outside-staff-priority will be placed closer to the staff.

A listing of defaults for outside-staff-priority may be found in Section A.19 [Default values for outside-staff-priority], page 842.

\relative c' {
    c4_"Text"\pp
    r2.
    \once \override TextScript.outside-staff-priority = #1
    c4_"Text"\pp % this time the text will be closer to the staff
    r2.
    % by setting outside-staff-priority to a non-number,
    % we disable the automatic collision avoidance
    \once \override TextScript.outside-staff-priority = ##f
    \once \override DynamicLineSpanner.outside-staff-priority = ##f
    c4_"Text"\pp % now they will collide
}

The vertical padding around outside-staff objects can be controlled with property outside-staff-padding.

\relative {
    \once \override TextScript.outside-staff-padding = #0
    a'4="outside-staff-padding = #0"
    \once \override TextScript.outside-staff-padding = #3
    d="outside-staff-padding = #3"
By default, outside-staff objects are placed so they avoid a horizontal collision with previously-positioned grobs. This can lead to situations in which objects are placed close to each other horizontally. As shown in the example below, setting `outside-staff-horizontal-padding` increases the horizontal spacing required, and in this case moves the text up to prevent it from getting too close to the ledger lines.

```
\relative {
 c''4"Word" c c''2
 \once \override TextScript.outside-staff-horizontal-padding = #1
 c,,4"Word" c c''2
}
```

See also
Snippets: Section “Spacing” in Snippets.

4.5 Horizontal spacing

4.5.1 Horizontal spacing overview

The spacing engine translates differences in durations into stretchable distances (‘springs’) of differing lengths. Longer durations get more space, shorter durations get less. The shortest durations get a fixed amount of space (which is controlled by `shortest-duration-space` in the Section “SpacingSpanner” in Internals Reference object). The longer the duration, the more space it gets: doubling a duration adds `spacing-increment` of space to the note.

For example, the following piece contains lots of half, quarter, and 8th notes; the eighth note is followed by 1 note head width (NHW). The quarter note is followed by 2 NHW, the half by 3 NHW, etc.

```
\relative c' {
 c2 c4. c8
 c4. c8 c4. c8
 c8 c c4 c c
}
```
Normally, spacing-increment is set to 1.2 staff space, which is approximately the width of a note head, and shortest-duration-space is set to 2.0, meaning that the shortest note gets 2.4 staff space (2.0 times the spacing-increment) of horizontal space. This space is counted from the left edge of the symbol, so the shortest notes are generally followed by one NHW of space.

If one would follow the above procedure exactly, then adding a single 32nd note to a score that uses 8th and 16th notes, would widen up the entire score a lot. The shortest note is no longer a 16th, but a 32nd, thus adding 1 NHW to every note. To prevent this, the shortest duration for spacing is not the shortest note in the score, but rather the one which occurs most frequently.

The most common shortest duration is determined as follows: in every measure, the shortest duration is determined. The most common shortest duration is taken as the basis for the spacing, with the stipulation that this shortest duration should always be equal to or shorter than an 8th note.

These durations may also be customized. If you set the common-shortest-duration in Section “SpacingSpanner” in Internals Reference, then this sets the base duration for spacing. The maximum duration for this base (normally an 8th), is set through base-shortest-duration.

Notes that are even shorter than the common shortest note are followed by a space that is proportional to their duration relative to the common shortest note. So if we were to add only a few 16th notes to the example above, they would be followed by half a NHW:

\relative { c'1'2 c4. c8 | c4. c16[ c] c4. c8 | c8 c c4 c c }

As explained in the Essay on automated music engraving, stem directions will influence spacing (see Section “Optical spacing” in Essay) and can be adjusted using the stem-spacing-correction property of the Section “NoteSpacing” in Internals Reference object (which are generated for every Section “Voice” in Internals Reference context).

The StaffSpacing object (generated in Section “Staff” in Internals Reference context) contains the same property for controlling the stem/bar line spacing.

The following example shows this; once with the default settings and once with an exaggerated adjustment:

Proportional notation is supported; see Section 4.5.6 [Proportional notation], page 653.

See also


Snippets: Section “Spacing” in Snippets.

Internals Reference: Section “SpacingSpanner” in Internals Reference, Section “NoteSpacing” in Internals Reference, Section “StaffSpacing” in Internals Reference, Section “Non-MusicalPaperColumn” in Internals Reference.
Known issues and warnings
There is no convenient mechanism to manually override spacing. The following workaround may be used to insert extra space into a score, adjusting the padding value as necessary.

\override Score.NonMusicalPaperColumn.padding = #10

No workaround exists for decreasing the amount of space.

4.5.2 New spacing section
New sections with different spacing parameters can be started with the newSpacingSection command. This is useful for sections with different notions of ‘long’ and ‘short’ notes. The newSpacingSection command creates a new SpacingSpanner object at that musical moment.

In the following example the time signature change introduces a new section, and the 16ths notes are automatically spaced slightly wider apart.

\relative c' { 
  \time 2/4 
  c4 c8 c 
  c8 c c4 c16[ c c8] c4 
  \newSpacingSection
  \time 4/16 
  c16[ c c8] 
} 

If the automatic spacing adjustments do not give the required spacing, manual \overrides may be applied to its properties. These must be applied at the same musical moment as the newSpacingSection command itself and will then affect the spacing of all the following music until the properties are changed in a new spacing section, for example:

\relative c' { 
  \time 4/16 
  c16[ c c8] 
  \newSpacingSection
  \override Score.SpacingSpanner.spacing-increment = #2 
  c16[ c c8] 
  \newSpacingSection
  \revert Score.SpacingSpanner.spacing-increment 
  c16[ c c8] 
} 

See also
Snippets: Section “Spacing” in Snippets.
Internals Reference: Section “SpacingSpanner” in Internals Reference.
4.5.3 Changing horizontal spacing globally

Horizontal spacing may be altered with the base-shortest-duration property. Here we compare the same music; once without altering the property, and then altered. Larger values yield tighter spacing.

```
\score {
 \relative
 {
 g'4 e e2 | f4 d d2 | c4 d e f | g4 g g2 |
 g4 e e2 | f4 d d2 | c4 e g g | c,1 |
 d4 d d d | d4 e f2 | e4 e e e | e4 f g2 |
 g4 e e2 | f4 d d2 | c4 e g g | c,1 |
 }
}
```

```
\score {
 \relative
 {
 g'4 e e2 | f4 d d2 | c4 d e f | g4 g g2 |
 g4 e e2 | f4 d d2 | c4 e g g | c,1 |
 d4 d d d | d4 e f2 | e4 e e e | e4 f g2 |
 g4 e e2 | f4 d d2 | c4 e g g | c,1 |
 }
 \layout {
 \context {
 \Score
 \override SpacingSpanner.base-shortest-duration = \musicLength 16
 }
 }
}
```

```
```

```
```

```
```
Uniform stretching of tuplets

By default, spacing in tuplets depends on various non-duration factors (such as accidentals, clef changes, etc). To disregard such symbols and force uniform equal-duration spacing, use `Score.SpacingSpanner.uniform-stretching`. This property can only be changed at the beginning of a score,

```
\score {
 \new Staff \relative c' {
 \tuplet 5/4 { c8 c c c c } c8 c c c
 }
 \new Staff \relative c' {
 c8 c c c \tuplet 5/4 { c8 c c c c }
 }
} >>
\layout {
 \context {
 \Score
 \override SpacingSpanner.uniform-stretching = ##t
 }
}
```

Strict note spacing

When `strict-note-spacing` is set, notes are spaced without regard for clefs, bar lines, and grace notes,

```
\override Score.SpacingSpanner.strict-note-spacing = ##t
\new Staff \relative {
 c''8[c \clef alto c \grace { c16 c } c8 c c] c32[c] }
```

See also

Snippets: Section “Spacing” in Snippets.

4.5.4 Adjusting horizontal spacing for specific layout objects

In addition to the general-purpose parameters of the default spacing algorithm that apply to all elements of the score or spacing section, several properties serve to operate adjustments on
Chapter 4: Spacing issues

a per-object-type-basis. Examples include adjusting the distance from clefs to time signatures, but not from clefs to notes when there is no time signature, or stretching notes further apart in the presence of a printed text so that it does not overlap with the next note. Tweaking these first requires identifying the type of spacing at play.

Overview of object-specific horizontal spacing tweaks

Layout objects that have a horizontally fixed position are called items, as opposed to spanners, and for the purpose of horizontal spacing, are grouped into columns. Note heads and rests, forming the main musical material, together with those objects that are logically linked to them – accidentals, articulations, stems, dots, etc. – are all part of ‘musical column’. Prefatory items, such as clefs, time signatures and bar lines, are grouped into ‘non-musical columns’. In the following example, musical items are colored red, while non-musical items are blue.

This example shows that there is an alternation between musical and non-musical columns. The first non-musical column contains a clef and a time signature. The first musical column has a note head with its stem and articulation. The second non-musical column is empty and thus is removed during the layout process. The second musical column has a note again. The third non-musical column contains a clef, a bar line and a rehearsal mark, etc.

Within one column, spacing is fixed. On the other hand, the amount of space between consecutive columns is flexible. As we shall see, the methods to adjust spacing within a column and between columns are different.

Spacing between adjacent non-musical items

Within a non-musical column, items are laid out in a specific order. For instance, with the set of items in the picture below, the default order places the breathing sign first, then the clef, then the bar line, the key cancellation and key signature, and finally the time signature (this is controlled by the BreakAlignment.break-align-orders property).

The distance between two adjacent items from the same non-musical column is controlled by the value of the space-alist property of the leftmost one of the two. space-alist has the form of an associative list mapping break align symbols to (spacing-style . value) pairs. A breakable item’s break align symbol is given by the value of its break-align-symbol property; standard choices are listed in Section “break-alignment-interface” in Internals Reference. Spacing styles are listed in Section “break-aligned-interface” in Internals Reference. Among the available options, only extra-space and minimum-space are relevant for tweaking the space
between non-musical items. The difference is that extra-space measures the padding from the right of the first object to the left of the second object while minimum-space counts from the left of the first object. Thus, a way to move the bar line farther from the clef is:

\relative {
  \key g \minor 
g'1
  \override \Staff.Clef.space-alist.staff-bar = #'(extra-space . 4)
  \breathe
  \clef alto
  \time 6/8
  \key a \major
  aes4.
}

These spacing rules can be overridden. This is done by modifying the width and height that an object takes in horizontal spacing. The relevant properties are extra-spacing-width and extra-spacing-height. When unset, an object takes as much space in horizontal spacing as its x-extent and y-extent properties allow. These are accurate values of its dimensions. The extra-spacing-width and extra-spacing-height properties make an object larger or smaller for computation of horizontal spacing between columns only, but preserve its dimensions for other spacing types.

}
```
\textMark "Default"
c'2 2 cis'2 2
}

\textMark "Modified X-extent"
\override NoteHead.X-extent = #'(-2 . 2)
c'2 2 cis'2 2
}

\textMark "Modified extra-spacing-width"
\override NoteHead.extra-spacing-width = #'(-2 . 2)
c'2 2 cis'2 2
}

\override Accidental.extra-spacing-height = #'(0 . 1.0)
\music
```

Extra-spacing-width and extra-spacing-height are pairs of numbers, which are added to the dimensions on each axis. For instance, setting extra-spacing-height to '(-2 . 3) makes the object three units larger on the top, and two units larger on the bottom (limit lowered by 2). The following example shows how to use extra-spacing-height to change the limit after which accidentals no longer overlap with bar lines.

```
music = \relative {
 \time 1/4
 cis8 8 | dis8 8 | eis8 8 | fis8 8 |
 gis8 8 | ais8 8 | bis8 8 | cis8 8 |
}
```

Extra-spacing-width and extra-spacing-height are pairs of numbers, which are added to the dimensions on each axis. For instance, setting extra-spacing-height to '(-2 . 3) makes the object three units larger on the top, and two units larger on the bottom (limit lowered by 2). The following example shows how to use extra-spacing-height to change the limit after which accidentals no longer overlap with bar lines.

```
music = \relative {
 \time 1/4
 cis8 8 | dis8 8 | eis8 8 | fis8 8 |
 gis8 8 | ais8 8 | bis8 8 | cis8 8 |
}
```

The value `'(+-inf.0 . -inf.0)` for `extra-spacing-width` or `extra-spacing-height` removes the object’s presence.

Conversely, an `extra-spacing-height` of `'(+-inf.0 . +inf.0)` makes the object infinitely high, preventing overlap with another column completely. The below example demonstrates this technique on `Accidental` and `MetronomeMark`. In the case of `MetronomeMark`, it is necessary to set `extra-spacing-width` to `'(0 . 0)` because the default is `'(+-inf.0 . -inf.0)` , and even an infinitely high object does not take space if it has no width.

See also

Internals Reference: Section “item-interface” in *Internals Reference*, Section “separation-item-interface” in *Internals Reference*. 
4.5.5 Line width

The most basic settings influencing the spacing are indent and line-width. They are set in the \layout block. They control the indentation of the first line of music, and the lengths of the lines.

If ragged-right is set to true in the \layout block, then systems ends at their natural horizontal length, instead of being spread horizontally to fill the whole line. This is useful for short fragments, and for checking how tight the natural spacing is. The normal default setting is false, but if the score has only one system the default value is true.

The option ragged-last is similar to ragged-right, but only affects the last line of the piece. No restrictions are put on that line. The result is similar to formatting text paragraphs. In a paragraph, the last line simply takes its natural horizontal length.

\layout {
  indent = #0
  line-width = #150
  ragged-last = ##t
}

See also

Snippets: Section “Spacing” in Snippets.

4.5.6 Proportional notation

LilyPond supports proportional notation, a type of horizontal spacing in which each note consumes an amount of horizontal space exactly equivalent to its rhythmic duration. This type of proportional spacing is comparable to horizontal spacing on top of graph paper. Some late 20th- and early 21st-century scores use proportional notation to clarify complex rhythmic relationships or to facilitate the placement of timelines or other graphics directly in the score.

LilyPond supports five different settings for proportional notation, which may be used together or alone:

- proportionalNotationDuration
- uniform-stretching
- strict-note-spacing
- \remove Separating_line_group_ engraver
- \override PaperColumn.used = ##t

In the examples that follow, we explore these five different proportional notation settings and examine how these settings interact.

We start with the following one-measure example, which uses classical spacing with ragged-right turned on.

\score {
  \new RhythmicStaff {
    c2 16 16 16 16 \tuplet 5/4 { 16 16 16 16 16 }
  }
}

\noteheads.s1/noteheads.s1/noteheads.s1/noteheads.s1/noteheads.s1
\timesig.C44
Notice that the half note which begins the measure takes up far less than half of the horizontal space of the measure. Likewise, the sixteenth notes and sixteenth-note quintuplets (or twentieth notes) which end the measure together take up far more than half the horizontal space of the measure.

In classical engraving, this spacing may be exactly what we want because we can borrow horizontal space from the half note and conserve horizontal space across the measure as a whole.

On the other hand, if we want to insert a measured timeline or other graphic above or below our score, we need proportional notation. We turn proportional notation on with the proportionalNotationDuration setting:

```
\score {
 \with \proportionalNotationDuration \musicLength 1*1/20 {
 \new RhythmicStaff {
 \clef bass
 c2 16 16 16 16 \tuplet 5/4 { 16 16 16 16 16 }
 }
 }
}
```

The half note at the beginning of the measure and the faster notes in the second half of the measure now occupy equal amounts of horizontal space. We could place a measured timeline or graphic above or below this example.

The proportionalNotationDuration setting is a context setting that lives in Score. Remember that context settings can appear in one of three locations within our input file – in a \with block, in a \context block, or directly in music entry preceded by the \set command. As with all context settings, users can pick which of the three different locations they would like to set proportionalNotationDuration in to.

The proportionalNotationDuration setting takes a single argument, which is the reference length against which all music will be spaced. The call \musicLength 1*1/20 specifies one twentieth of a whole note. Values such as \musicLength 16 and \musicLength {2 2.} are possible as well.

How do we select the right reference duration to pass to proportionalNotationDuration? Usually by a process of trial and error, beginning with a duration close to the fastest (or smallest) duration in the piece. Smaller reference durations space music loosely; larger reference durations space music tightly.

```
\score {
 \with \proportionalNotationDuration \musicLength 1*1/20 {
 \new RhythmicStaff {
 \clef bass
 c2 16 16 16 16 \tuplet 5/4 { 16 16 16 16 16 }
 }
 }
}
```
Note that too large a reference duration – such as the eighth note, above – spaces music too tightly and can cause note head collisions. Also that proportional notation in general takes up more horizontal space than classical spacing. Proportional spacing provides rhythmic clarity at the expense of horizontal space.

Next we examine how to optimally space overlapping tuplets.

We start by examining what happens to our original example, with classical spacing, when we add a second staff with a different type of tuplet.

\score {
The spacing is bad because the evenly spaced notes of the bottom staff do not stretch uniformly. Classical engravings include very few complex triplets and so classical engraving rules can generate this type of result. Setting \texttt{proportionalNotationDuration} fixes this.

But if we look very carefully we can see that notes of the second half of the 9-tuplet space ever so slightly more widely than the notes of the first half of the 9-tuplet. To ensure uniform stretching, we turn on \texttt{uniform-stretching}, which is a property of \texttt{SpacingSpanner}.
Our two-staff example now spaces exactly, our rhythmic relationships are visually clear, and we can include a measured timeline or graphic if we want.

Note that the LilyPond’s proportional notation package expects that all proportional scores set the SpacingSpanner’s uniform-stretching attribute to #t. Setting proportionalNotationDuration without also setting the SpacingSpanner’s uniform-stretching attribute to #t will, for example, cause skips to consume an incorrect amount of horizontal space.

The SpacingSpanner is an abstract grob that lives in the Score context. As with our settings of proportionalNotationDuration, overrides to the SpacingSpanner can occur in any of three different places in our input file – in the Score’s \with block, in a Score’s \context block, or in note entry directly.

There is by default only one SpacingSpanner per Score. This means that, by default, uniform-stretching is either turned on for the entire score or turned off for the entire score. We can, however, override this behavior and turn on different spacing features at different places in the score. We do this with the command \newSpacingSection. See Section 4.5.2 [New spacing section], page 646, for more info.

Next we examine the effects of the Separating_line_group_engraver and see why proportional scores frequently remove this engraver. The following example shows that there is a small amount of “prefatory” space just before the first note in each system.
The amount of this prefatory space is the same whether after a time signature, a key signature or a clef. Separating_line_group_engraver is responsible for this space. Removing Separating_line_group_engraver reduces this space to zero.

\begin{verbatim}
\paper {
  indent = #0
}
\new Staff \with {
  \remove Separating_line_group_engraver 
} {
  c'1
  \break
  c'1
}
\end{verbatim}

non-musical elements like time signatures, key signatures, clefs and accidentals are problematic in proportional notation. None of these elements has rhythmic duration. But all of these elements consume horizontal space. Different proportional scores approach these problems differently.

It may be possible to avoid spacing problems with key signatures simply by not having any. This is a valid option since most proportional scores are contemporary music. The same may be true of time signatures, especially for those scores that include a measured timeline or other graphic. But these scores are exceptional and most proportional scores include at least some time signatures. Clefs and accidentals are even more essential.

So what strategies exist for spacing non-musical elements in a proportional context? One good option is the strict-note-spacing property of SpacingSpanner. Compare the two scores below:

\begin{verbatim}
\new Staff {
  \set Score.proportionalNotationDuration = \musicLength 16
  c''8 8 8 \clef alto d'2 2
}
\new Staff {
  \set Score.proportionalNotationDuration = \musicLength 16
  \override Score.SpacingSpanner.strict-note-spacing = ##t
  c''8 8 8 \clef alto d'2 2
}
\end{verbatim}
Both scores are proportional, but the spacing in the first score is too loose because of the clef change. The spacing of the second score remains strict, however, because strict-note-spacing is turned on. Turning on strict-note-spacing causes the width of time signatures, key signatures, clefs and accidentals to play no part in the spacing algorithm.

In addition to the settings given here, there are other settings that frequently appear in proportional scores. These include:

- \override SpacingSpanner.strict-grace-spacing = ##t
- \set tupletFullLength = ##t
- \override Beam.breakable = ##t
- \override Glissando.breakable = ##t
- \override TextSpanner.breakable = ##t
- \remove Forbid_line_break_engraver in the Voice context

These settings space grace notes strictly, extend tuplet brackets to mark both rhythmic start and stop points, and allow spanning elements to break across systems and pages. See the respective parts of the manual for these related settings.

See also
Notation Reference: Section 4.5.2 [New spacing section], page 646.

Snippets: Section “Spacing” in Snippets.

4.6 Fitting music onto fewer pages

Sometimes you can end up with one or two staves on a second (or third, or fourth...) page. This is annoying, especially if you look at previous pages and it looks like there is plenty of room left on those.

When investigating layout issues, annotate-spacing is an invaluable tool. This command prints the values of various layout spacing variables; for more details see the following section, Section 4.6.1 [Displaying spacing], page 659.

4.6.1 Displaying spacing

To graphically display the dimensions of vertical layout variables that may be altered for page formatting, set annotate-spacing in the \paper block:

\book {
  \score { { c4 } }
  \paper { annotate-spacing = ##t }
}
All layout dimensions are displayed in staff spaces, regardless of the units specified in the `\paper` or `\layout` block. In the above example, `paper-height` has a value of 59.75 staff spaces, and the `staff-size` is 20 points (the default value). Note that:

1 point = (25.4/72.27) mm

1 staff space = (staff-size)/4 pts
= (staff-size)/4 * (25.4/72.27) mm

In this case, one staff space is approximately equal to 1.757 mm. Thus the paper-height measurement of 59.75 staff spaces is equivalent to 105 millimeters, the height of a6 paper in landscape orientation. The pairs \((a, b)\) are intervals, where \(a\) is the lower edge and \(b\) the upper edge of the interval.

**See also**

Notation Reference: Section 4.2.2 [Setting the staff size], page 618.

Snippets: Section “Spacing” in *Snippets*.

### 4.6.2 Changing spacing

The output of `annotate-spacing` reveals vertical dimensions in great detail. For details about modifying margins and other layout variables, see Section 4.1 [Page layout], page 605.

Other than margins, there are a few other options to save space:

- Force systems to move as close together as possible (to fit as many systems as possible onto a page) while being spaced so that there is no blank space at the bottom of the page.

\[
\text{\texttt{\paper \{}}}
\begin{align*}
  &\text{system-system-spacing = '#'((basic-distance . 0.1) (padding . 0))} \\
  &\text{ragged-last-bottom = ##f}
\end{align*}
\text{\texttt{\}}}
Chapter 4: Spacing issues

ragged-bottom = ##f

• Force the number of systems. This can help in two ways. Just setting a value, even the same value as the number of systems being typeset by default, will sometimes cause more systems to be fitted onto each page, as an estimation step is then bypassed, giving a more accurate fit to each page. Also, forcing an actual reduction in the number of systems may save a further page. For example, if the default layout has 11 systems, the following assignment will force a layout with 10 systems.

\paper {
  system-count = #10
}

• Force the number of pages. For example, the following assignment will force a layout with 2 pages.

\paper {
  page-count = #2
}

• Avoid (or reduce) objects that increase the vertical size of a system. For example, volta brackets for alternative repeat endings require extra space. If these endings are spread over two systems, they take up more space than if they were on the same system. As another example, dynamics that 'stick out' of a system can be moved closer to the staff:

\relative e' {
  e4 c g\f c
  e4 c g\-\tweak X-offset #=2.7 \f c
}

• Alter the horizontal spacing via \SpacingSpanner. For more details, see Section 4.5.3 [Changing horizontal spacing globally], page 647. The following example illustrates the default spacing:

\score {
  \relative {
    g'4 e e2 |
    f4 d d2 |
    c4 d e f |
    g4 g g2 |
    g4 e e2 |
  }
}

The next example modifies common-shortest-duration from a value of 1/4 to 1/2. The quarter note is the most common and shortest duration in this example, so by making this duration longer, a 'squeezing' effect occurs:

\score {
The common-shortest-duration property cannot be modified dynamically, so it must always be placed in a `\context` block so that it applies to the whole score.

**See also**

Notation Reference: Section 4.1 [Page layout], page 605, Section 4.5.3 [Changing horizontal spacing globally], page 647.

Snippets: Section “Spacing” in Snippets.
5 Changing defaults

The purpose of LilyPond’s design is to provide the finest quality output by default. Nevertheless, it may happen that you need to change this default layout. The layout is controlled through a large number of ‘knobs and switches’ collectively called ‘properties’. A tutorial introduction to accessing and modifying these properties can be found in the Learning Manual, see Section “Tweaking output” in Learning Manual. This should be read first. This chapter covers similar ground, but in a style more appropriate to a reference manual.

The definitive description of the controls available for tuning can be found in a separate document: Section “the Internals Reference” in Internals Reference. That manual lists all the variables, functions and options available in LilyPond. It is written as a HTML document, which is available on-line (https://lilypond.org/doc/stable/Documentation/internals/), and is also included with the LilyPond documentation package.

Internally, LilyPond uses Scheme (a LISP dialect) to provide infrastructure. Overriding layout decisions in effect accesses the program internals, which requires Scheme input. Scheme elements are introduced in a .ly file with the hash mark #.¹

5.1 Interpretation contexts

This section describes what contexts are, and how to modify them.

See also


Snippets: Section “Contexts and engravers” in Snippets.

Internals Reference: Section “Contexts” in Internals Reference, Section “Engravers and Performers” in Internals Reference.

5.1.1 Contexts explained

Contexts are arranged hierarchically:

Output definitions – blueprints for contexts

This section explains the relevance of output definitions when working with contexts. Examples for actual output definitions are given later (see [Changing all contexts of the same type], page 672).

While music written in a file may refer to context types and names, contexts are created only when the music is actually being interpreted. LilyPond interprets music under control of an ‘output definition’ and may do so for several different output definitions, resulting in different output. The output definition relevant for printing music is specified using \layout.

A much simpler output definition used for producing Midi output is specified using \midi. Several other output definitions are used by LilyPond internally, like when using the part combiner ([Automatic part combining], page 212) or creating music quotes ([Quoting other voices], page 243).

Output definitions define the relation between contexts as well as their respective default settings. While most changes will usually be made inside of a \layout block, Midi-related settings will only have an effect when made within a \midi block.

Some settings affect several outputs: for example, if autoBeaming is turned off in some context, beams count as melismata for the purpose of matching music to lyrics as described in

¹ Section “Scheme tutorial” in Extending, contains a short tutorial on entering numbers, lists, strings, and symbols in Scheme.
[Automatic syllable durations], page 318. This matching is done both for printed output as well as for Midi. If changes made to autoBeaming within a context definition of a \layout block are not repeated in the corresponding \midi block, lyrics and music will get out of sync in Midi.

See also

Score – the master of all contexts
This is the top level notation context. No other context can contain a Score context. By default the Score context handles the administration of time signatures and makes sure that items such as clefs, time signatures, and key signatures are aligned across staves.

A Score context is instantiated implicitly when a \score {...} block is processed.

Top-level contexts – staff containers

StaffGroup
Groups staves while adding a bracket on the left side, grouping the staves together. The bar lines of the contained staves are connected vertically. StaffGroup only consists of a collection of staves, with a bracket in front and spanning bar lines.

ChoirStaff
Identical to StaffGroup except that the bar lines of the contained staves are not connected vertically.

GrandStaff
A group of staves, with a brace on the left side, grouping the staves together. The bar lines of the contained staves are connected vertically.

PianoStaff
Just like GrandStaff, but with support for instrument names to the left of each system.

Intermediate-level contexts – staves

Staff
Handles clefs, bar lines, keys, accidentals. It can contain Voice contexts.

RhythmicStaff
Like Staff but for printing rhythms. Pitches are ignored when engraving; the notes are printed on one line. The MIDI rendition retains pitches unchanged.

TabStaff
Context for generating tablature. By default lays the music expression out as a guitar tablature, printed on six lines.

DrumStaff
Handles typesetting for percussion. Can contain DrumVoice.

VaticanaStaff
Same as Staff, except that it is designed for typesetting a piece in Gregorian style.

MensuralStaff
Same as Staff, except that it is designed for typesetting a piece in mensural style.
**Bottom-level contexts – voices**

Voice-level contexts initialize certain properties and start appropriate engravers. A bottom-level context is one without default.child. While it is possible to let it accept/contain subcontexts, they can only be created and entered explicitly.

*Voice*

Corresponds to a voice on a staff. This context handles the conversion of dynamic signs, stems, beams, super- and subscripts, slurs, ties, and rests. You have to instantiate this explicitly if you require multiple voices on the same staff.

*VaticanaVoice*

Same as *Voice*, except that it is designed for typesetting a piece in Gregorian style.

*MensuralVoice*

Same as *Voice*, with modifications for typesetting a piece in mensural style.

*Lyrics*

Corresponds to a voice with lyrics. Handles the printing of a single line of lyrics.

*DrumVoice*

The voice context used in a percussion staff.

*FiguredBass*

The context in which BassFigure objects are created from input entered in \figuremode mode.

*TabVoice*

The voice context used within a TabStaff context. Usually left to be created implicitly.

*CueVoice*

A voice context used to render notes of a reduced size, intended primarily for adding cue notes to a staff, see [Formatting cue notes], page 247. Usually left to be created implicitly.

*ChordNames*

Typesets chord names.

### 5.1.2 Creating and referencing contexts

LilyPond will create lower-level contexts automatically if a music expression is encountered before a suitable context exists, but this is usually successful only for simple scores or music fragments like the ones in the documentation. For more complex scores it is advisable to specify all contexts explicitly with either the \new or \context command. The syntax of these two commands is very similar:

```latex
[\new | \context] Context [= name] [music-expression]
```

where either \new or \context may be specified. *Context* is the type of context which is to be created, *name* is an optional name to be given to the particular context being created and *music-expression* is a single music expression that is to be interpreted by the engravers and performers in this context.

The \new prefix without a name is commonly used to create scores with many staves:

```latex
<<
\new Staff \relative {
 % leave the Voice context to be created implicitly
 c''4 c
}
\new Staff \relative {
 d''4 d
```


and to place several voices into one staff:

```
\new Staff <<
\new Voice \relative {
 \voiceOne
 c'8 c c4 c c
}
\new Voice \relative {
 \voiceTwo
 g'4 g g g
}
>>
```

\new should always be used to specify unnamed contexts.

The difference between \new and \context is in the action taken:

- \new with or without a name will always create a fresh, distinct, context, even if one with the same name already exists:

```
\new Staff <<
\new Voice = "A" \relative {
 \voiceOne
 c'8 c c4 c c
}
\new Voice = "A" \relative {
 \voiceTwo
 g'4 g g g
}
>>
```

- \context with a name specified will create a distinct context only if a context of the same type with the same name in the same context hierarchy does not already exist. Otherwise it will be taken as a reference to that previously created context, and its music expression will be passed to that context for interpretation.

Named contexts may be useful in special cases such as lyrics or figured bass, as demonstrated in [Working with lyrics and variables], page 327, and Section “Vocal ensembles templates” in Learning Manual for the former and [Displaying figured bass], page 489, for the latter.
More generally, one application of named contexts is in separating the score layout from the musical content. Either of these two forms is valid:

\score {
  \new Staff {
    \new Voice = "one" { \voiceOne }
    \new Voice = "two" { \voiceTwo }
  }
>
%
  % score layout
  \context Voice = "one" { \relative { c''4 c c c } }
  \context Voice = "two" { \relative { g'8 g g4 g g } }
>
%
  % musical content
  \context Voice = "one" { \relative { c''4 c c c } }
  \context Voice = "two" { \relative { g'8 g g4 g g } }
>
}\score {
  \new Staff {
    \context Voice = "one" { \voiceOne }
    \context Voice = "two" { \voiceTwo }
  }
>
Alternatively, variables may be employed to similar effect. See Section “Organizing pieces with variables” in *Learning Manual*.

- \context with no name will match the first of any previously created contexts of the same type in the same context hierarchy, even one that has been given a name, and its music expression will be passed to that context for interpretation. This form is rarely useful. However, \context with no name and no music expression is used to set the context in which a Scheme procedure specified with \applyContext is executed:

```latex
\new Staff \relative {
 c'1
 \context Timing
 \applyContext #(lambda (ctx)
 (newline)
 (display (ly:context-current-moment ctx)))
 c1
}
```

A context must be named if it is to be referenced later, for example when lyrics are associated with music:

```latex
\new Voice = "tenor" music ...
\new Lyrics \lyricsto "tenor" lyrics
```

For details of associating lyrics with music see [Automatic syllable durations], page 318.

The properties of all contexts of a particular type can be modified in a \layout block (with a different syntax), see [Changing all contexts of the same type], page 672. This construct also provides a means of keeping layout instructions separate from the musical content. If a single context is to be modified, a \with block must be used, see [Changing just one specific context], page 675.

**See also**

Learning Manual: Section “Organizing pieces with variables” in *Learning Manual*.

Notation Reference: [Changing just one specific context], page 675, [Automatic syllable durations], page 318.

### 5.1.3 Keeping contexts alive

Contexts are usually terminated at the first musical moment in which they have nothing to do. So Voice contexts die as soon as they contain no events, Staff contexts die as soon as all the Voice contexts within them contain no events, etc. This can cause difficulties if earlier contexts which have died have to be referenced, for example, when changing staves with \change commands, associating lyrics with a voice with \lyricsto commands, or when adding further musical events to an earlier context.

There is an exception to this general rule: inside of an \{\ldots\} construct (sequential music), the construct’s notion of the “current context” will descend whenever an element of the sequence
ends in a subcontext of the previous current context. This avoids spurious creation of implicit contexts in a number of situations but means that the first context descended into will be kept alive until the end of the expression.

In contrast, the contexts of a \texttt{<<...>>} construct’s (simultaneous music) expression are not carried forth, so enclosing a context creating command in an extra pair of \texttt{<<...>>} will keep the context from persisting through all of the enclosing \texttt{...} sequence.

Any context can be kept alive by ensuring it has something to do at every musical moment. 
Staff contexts are kept alive by ensuring one of their voices is kept alive. One way of doing this is to add spacer rests to a voice in parallel with the real music. These need to be added to every \texttt{Voice} context which needs to be kept alive. If several voices are to be used sporadically it is safest to keep them all alive rather than attempting to rely on the exceptions mentioned above.

In the following example, both voice A and voice B are kept alive in this way for the duration of the piece:

```
\texttt{\begin{Verbatim}
\begin{musicA}
\relative { d'4 d d d }
\end{musicA}
\begin{musicB}
\relative { g'4 g g g }
\end{musicB}
\begin{keepVoicesAlive}
\new Voice = "A" \{ s1*5 \} \% Keep Voice "A" alive for 5 bars
\new Voice = "B" \{ s1*5 \} \% Keep Voice "B" alive for 5 bars
\end{keepVoicesAlive}
\begin{music}
\context Voice = "A" \{
\voiceOneStyle
\musicA
\}
\context Voice = "B" \{
\voiceTwoStyle
\musicB
\}
\context Voice = "A" \{ \musicA \}
\context Voice = "B" \{ \musicB \}
\context Voice = "A" \{ \musicA \}
\end{music}
```

The following example shows how a sporadic melody line with lyrics might be written using this approach. In a real situation the melody and accompaniment would consist of several different sections, of course.

```
\texttt{\begin{Verbatim}
\begin{melody}
\relative { a'4 a a a }
\end{melody}
```

The following example shows how a sporadic melody line with lyrics might be written using this approach. In a real situation the melody and accompaniment would consist of several different sections, of course.
accompaniment = \relative { d'4 d d d }

words = \lyricmode { These words fol--low the mel--ody }
\score {
\new Staff = "music" {
\new Voice = "melody" {
\voiceOne
s1*4 % Keep Voice "melody" alive for 4 bars
}
\new Voice = "accompaniment" {
\voiceTwo
\accompaniment
}
\context Voice = "melody" { \melody }
\context Voice = "accompaniment" { \accompaniment }
\context Voice = "accompaniment" { \accompaniment }
\context Voice = "melody" { \melody }
\context Voice = "accompaniment" { \accompaniment }
\context Voice = "melody" { \melody }
\context Voice = "accompaniment" { \accompaniment }
}
\new Lyrics \with { alignAboveContext = "music" }
\lyricsto "melody" { \words }
}

These words follow the melo-dy
\n
An alternative way, which may be better in many circumstances, is to keep the melody line alive by simply including spacer notes to line it up correctly with the accompaniment:

melody = \relative {
    s1 % skip a bar
    a'4 a a a
    s1 % skip a bar
    a4 a a a
}

accompaniment = \relative {
    d'4 d d d
d4 d d d
d4 d d d
d4 d d d
}

words = \lyricmode { These words fol--low the mel--ody }
5.1.4 Modifying context plug-ins

Notation contexts (like Score and Staff) not only store properties, they also contain plug-ins called ‘engravers’ that create notation elements. For example, the Voice context contains a Note_heads_engraver and the Staff context contains a Key_engraver.

For a full a description of each plug-in, see Internals Reference → Translation → Engravers. Every context described in Internals Reference → Translation → Context. lists the engravers used for that context.

It can be useful to shuffle around these plug-ins. This is done by starting a new context with \new or \context, and modifying it,

\new context \with {
  \consists ...
  \consists ...
  \remove ...
  \remove ...
  etc.
}

\...music...

where each ... should be the name of an engraver. Here is a simple example which removes Time_signature_engraver and Clef_engraver from a Staff context,

<<
  \new Staff \relative { f'2 g }
  \new Staff \with {
  ..
\remove Time_signature_engraver
\remove Clef_engraver
}
\relative {  
  f'2 \ g2 
}

In the second staff there are no time signature or clef symbols. This is a rather crude method of making objects disappear since it will affect the entire staff. This method also influences the spacing, which may or may not be desirable. More sophisticated methods of blanking objects are shown in Section “Visibility and color of objects” in Learning Manual.

**Known issues and warnings**

The order in which the engravers are specified is the order in which they are called to carry out their processing. Usually the order in which the engravers are specified does not matter, but in a few special cases the order is important, for example where one engraver writes a property and another reads it, or where one engraver creates a grob and another must process it.

The following orderings are important:

- the Bar_engraver must normally be first,
- the New_fingering_engraver must come before the Script_column_engraver,
- the Timing_translator must come before the Bar_number_engraver.

**See also**

Installed Files: \ly/engraver-init.\ly.

### 5.1.5 Changing context default settings

Context and grob properties can be changed with \set and \override commands, as described in Section 5.3 [Modifying properties], page 685. These commands create music events, making the changes take effect at the point in time the music is being processed.

In contrast, this section explains how to change the default values of context and grob properties at the time the context is created. There are two ways of doing this. One modifies the default values in all contexts of a particular type, the other modifies the default values in just one particular instance of a context.

**Changing all contexts of the same type**

The default context settings which are to be used for typesetting in Score, Staff, Voice and other contexts may be specified in a \context block within any \layout block.

Settings for Midi output as opposed to typesetting will have to be separately specified in \midi blocks (see [Output definitions – blueprints for contexts], page 663).

The \layout block should be placed within the \score block to which it is to apply, after the music.

\layout {  
  \context {  

\Voice
[context settings for all Voice contexts]
}
\context {
  \Staff
  [context settings for all Staff contexts]
}
}

The following types of settings may be specified:

- An \override command, but with the context name omitted

\score {
  \relative {
    a'4^-"Thicker stems" a a a
    a4 a a \ff a
  }
  \layout {
    \context {
      \Staff
      \override Stem.thickness = #4.0
    }
  }
}

Thicker stems
\timesig.C44/clefs.G
\accidentalStyle dodecaphonic

- Directly setting a context property

\score {
  \relative {
    a'4^-"Smaller font" a a a
    a4 a a \ff a
  }
  \layout {
    \context {
      \Staff
      \fontSize = #-4
    }
  }
}

Smaller font
\timesig.C44/clefs.G
A user-defined variable containing a \with block; for details of the \with block see [Changing just one specific context], page 675.

\StaffDefaults = \with {
  fontSize = \#-4
}

Property-setting commands can be placed in a \layout block without being enclosed in a \context block. Such settings are equivalent to including the same property-setting commands at the start of every context of the type specified. If no context is specified every bottom-level context is affected (see [Bottom-level contexts – voices], page 665). The syntax of a property-setting command in a \layout block is the same as the same command written in the music stream.

\score {
  \new Staff {
    \relative {
      a'4"Smaller font" a a a
      a4 a a a
    }
  }
  \layout {
    \context {
      \Staff {
        \StaffDefaults
      }
    }
  }
}
Changing just one specific context
The context properties of just one specific context instance can be changed in a `\with` block. All other context instances of the same type retain the default settings built into LilyPond and modified by any `\layout` block within scope. The `\with` block must be placed immediately after the `\new context-type command`:

```lilypond
\new Staff \with {
 [context settings for this context instance only]
} {
 ...
}
```

Alternatively, if the music is being entered using the short form of the input mode-specifying commands, e.g. `\chords` rather than `\chordmode`, the `\with` command must be placed immediately after the mode-specifying command:

```lilypond
\chords \with {
 [context settings for this (implicit) context instance only]
} {
 ...
}
```

as it is the implicit context created by these short forms which should be modified. The same consideration applies to the other input mode-specifying short forms (\drums, \figures), see Section 3.1 [Input modes], page 537.

Since context modifications specified in `\with` blocks are inside music, they will affect all outputs (typesetting and Midi) as opposed to changes within an output definition.

The following types of settings may be specified:
- An `\override` command, but with the context name omitted

```lilypond
\score {
 \new Staff {
 \new Voice \with { \override Stem.thickness = #4.0 }
 { \relative {
 a'4"Thick stems" a a a
 a4 a a a
 }
 }
}
```

changing defaults
• Directly setting a context property
\score {
  \new Staff {
    \relative {
      a'4^"Default font" a a a
      a4 a a a
    }
  }\new Staff \with { fontSize = #-4 } {
    \relative {
      a'4^"Smaller font" a a a
      a4 a a a
    }
  }
}

• A predefined command such as \dynamicUp
\score {
  \new Staff {
    \new Voice {
      \relative {
        a'4^"Dynamics below" a a a
        a4 a a\ff a
      }
    }
  }\new Staff \with { \accidentalStyle dodecaphonic } {
    \new Voice \with { \dynamicUp } {
      \relative {
        a'4^"Dynamics above" a a a
        a4 a a\ff a
      }
    }
  }
}

Order of precedence
The value of a property which applies at a particular time is determined as follows:

- if an \override or \set command in the input stream is in effect that value is used,
- otherwise the default value taken from a \with statement on the context initiation statement is used,
- otherwise the default value taken from the most recent appropriate \context block in the \layout or \midi blocks is used,
- otherwise the LilyPond built-in default is used.

See also

Notation Reference: Section 3.1 [Input modes], page 537.

5.1.6 Defining new contexts

Context definition overview
Specific contexts, like Staff and Voice, are made from simple building blocks. It is possible to create new types of contexts with different combinations of engraver plug-ins.

The next example shows how to build a different type of Voice context from scratch. It will be similar to Voice, but only prints centered slash note heads. It can be used to indicate improvisation in jazz pieces,

\[...\]

These settings are defined within a \context block inside a \layout block,

\[
\text{\layout { }
    \text{\context { }
        ...
    }
}\]

In the following discussion, the example input shown should go in place of the ... in the previous fragment.
First it is necessary to define a name for the new context:
\name ImproVoice

Since it is similar to the Voice context, we want commands that work in (existing) Voice contexts to continue working. This is achieved by giving the new context an alias of Voice,
\alias Voice

The context will print notes and instructive texts, so we need to add the engravers which provide this functionality, plus the engraver which groups notes, stems and rests which occur at the same musical moment into columns,
\consists Note_heads_engraver
\consists Text_engraver
\consists Rhythmic_column_engraver

The note heads should all be placed on the center line,
\consists Pitch_squash_engraver
\squashedPosition = #0

The Pitch_squash_engraver modifies note heads (created by the Note_heads_engraver) and sets their vertical position to the value of squashedPosition, in this case 0, the center line.

The notes look like a slash, and have no stem,
\override NoteHead.style = #'slash
\hide Stem

All these plug-ins have to communicate under the control of the context. The mechanisms with which contexts communicate are established by declaring the context \type. Within a \layout block, most contexts will be of type Engraver_group. Some special contexts use other context types. Copying and modifying an existing context definition will also fill in the type. Since this example creates a definition from scratch, it needs to be specified explicitly.
\type Engraver_group

Put together, we get
\context {
  \name ImproVoice
  \type Engraver_group
  \consists Note_heads_engraver
  \consists Text_engraver
  \consists Rhythmic_column_engraver
  \consists Pitch_squash_engraver
  \squashedPosition = #0
  \override NoteHead.style = #'slash
  \hide Stem
  \alias Voice
}

Contexts form hierarchies. We want to place the ImproVoice context within the Staff context, just like normal Voice contexts. Therefore, we modify the Staff definition with the \accepts command,
\context {
  \Staff
  \accepts ImproVoice
}

Often when reusing an existing context definition, the resulting context can be used anywhere where the original context would have been useful.
\layout {
\inherit-acceptability to from
}

will arrange to have contexts of type to accepted by all contexts also accepting from. For example, using
\layout {
  ...
  \inherit-acceptability ImproVoice Voice
}

will add an \accepts for ImproVoice to both Staff and RhythmicStaff definitions.

The opposite of \accepts is \denies, which is sometimes needed when reusing existing context definitions.

Arranging the required pieces into a \layout block leaves us with
\layout {
  \context {
    \name ImproVoice
    ...
  }
  \inherit-acceptability ImproVoice Voice
}

Then the output at the start of this subsection can be entered as
\relative {
  a'4 d8 bes8
  \new ImproVoice {
    c4"ad lib" c
    c4 c"undress"
    c c_"while playing :)
  }
  a1
}

See also

Internals Reference: Section “Contexts” in Internals Reference, Section “Engravers and Performers” in Internals Reference.

New contexts in MIDI

In MIDI output, the syntax for defining new context types is the same, except that the \context block should be placed inside a \midi block, and the \type should normally be Performer_group rather than Engraver_group. The term “engraver” refers to a context plug-in that creates visual output. A “performer”, on the other hand, is relevant in MIDI output only. When plug-ins have “translator” in their name rather than “engraver” or “performer”, they are relevant for both graphical and audio output. Thus, when adapting a context definition for the \midi block, you need to
- copy it in a \midi block,
- change Engraver_group to Performer_group,
- remove \consists for engravers (they are not relevant), and possibly add \consists for performers.

Please note that, in order to maintain consistent interpretation between graphical and MIDI output, it is recommended to copy any custom context definition in a \midi block. It should
at the minimum include those commands that specify the context hierarchy, such as `\accepts`, `\defaultchild` and `\inherit-acceptability`. Copying aliases is advised as well.

Thus, to complete the example above, the following can be added:

\midi {
\context {
\name ImproVoice
\type Performer_group
\alias Voice
\consists Note_performer
\consists Beam_performer
\consists Dynamic_performer
\consists Tie_performer
\consists Slur_performer
}
\context {
\Staff
\accepts ImproVoice
}
}

This makes the ImproVoice context also work in MIDI output.

**Replacing the Score context**

In order to write a context `MyScore` that acts as the topmost context, as the Score context usually does, use `\inherit-acceptability MyScore Score`. The following example defines a ProportionalScore context where proportional notation is enabled (see Section 4.5.6 [Proportional notation], page 653).

\layout {
\context {
\Score
\name ProportionalScore
\alias Score
\text proportionalNotationDuration = \musicLength 4
}
\inherit-acceptability ProportionalScore Score
}

\new ProportionalScore { c'1 2 4 8 16 32 64 64 }

Since the topmost context needs to contain a number of fundamental engravers, inheriting settings with `\Score` is easiest in most cases. If you nevertheless define a score-level context from scratch without inheriting the Score definition, the argument to `\type` should be `Score_{engraver}` (or `Score_{performer}` in \midi) rather than `Engraver_group`. Furthermore, giving the topmost context the Score alias is strongly recommended given that a number of engravers need to access the topmost context using its alias.

**5.1.7 Context layout order**

Contexts are normally positioned in a system from top to bottom in the order in which they are encountered in the input file. When contexts are nested, the outer context will include inner
nested contexts as specified in the input file, provided the inner contexts are included in the outer context’s “accepts” list. Nested contexts which are not included in the outer context’s “accepts” list will be repositioned below the outer context rather than nested within it.

The “accepts” list of a context can be changed with the \accepts or \denies commands. \accepts adds a context to the “accepts” list and \denies removes a context from the list.

For example, a TabStaff by default \accepts TabVoice contexts and \denies Voice contexts. If a Voice context is written within the TabStaff, it would be set on a separate staff.

\score {
    \new TabStaff <<
    \new TabVoice { c'1 }
    \new Voice { d'1 }
    >>
}

\hspace{1cm}

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{example.png}
\end{figure}

However, by using the \accepts command, the Voice context can be forced onto the TabStaff

\score {
    \new TabStaff <<
    \new TabVoice { c'1 }
    \new Voice { d'1 }
    >>
    \layout {
        \context {
            \TabStaff
            \accepts Voice
        }
    }
}

\hspace{1cm}

\begin{figure}[h]
\centering
\includegraphics[width=0.2\textwidth]{example.png}
\end{figure}

\denies is mainly used when a new context is being based on another, but the required nesting differs. For example, the VaticanaStaff context is based on the Staff context, but with the VaticanaVoice context substituted for the Voice context in the “accepts” list.

Note that a context will be silently created implicitly if a command is encountered when there is no suitable context available to contain it.

Within a context definition, the type of subcontext to be implicitly created is specified using \defaultchild. A number of music events require a ‘Bottom’ context: when such an event is encountered, subcontexts are created recursively until reaching a context with no ‘\defaultchild’ setting.

Implicit context creation can at times give rise to unexpected new staves or scores. Using \new to create contexts explicitly avoids those problems.
Sometimes a context is required to exist for just a brief period, a good example being the staff context for an ossia. This is usually achieved by introducing the context definition at the appropriate place in parallel with corresponding section of the main music. By default, the temporary context will be placed below all the existing contexts. To reposition it above the context called “main”, it should be defined like this:

\new Staff \with { alignAboveContext = "main" }

A similar situation arises when positioning a temporary lyrics context within a multi-staff layout such as a ChoirStaff, for example, when adding a second verse to a repeated section. By default the temporary lyrics context will be placed beneath the lower staves. By defining the temporary lyrics context with alignBelowContext it can be positioned correctly beneath the (named) lyrics context containing the first verse.

Examples showing this repositioning of temporary contexts can be found elsewhere – see Section “Nesting music expressions” in Learning Manual, Section 1.6.2 [Modifying single staves], page 228, and Section 2.1.2 [Techniques specific to lyrics], page 327.

See also
Notation Reference: Section 1.6.2 [Modifying single staves], page 228, Section 2.1.2 [Techniques specific to lyrics], page 327.
Application Usage: Section “An extra staff appears” in Application Usage.
Installed Files: ly/engraver-init.ly.

5.2 Explaining the Internals Reference

See also
Notation Reference: Section A.24 [Naming conventions], page 871.

5.2.1 Navigating the program reference

Suppose we want to move the fingering indication in the fragment below:

\begin{code}
\begin{flalign}
\begin{align}
\text{c''}\text{-2}
\end{align}
\end{flalign}
\end{code}

If you visit the documentation on fingering instructions (in [Fingering instructions], page 258), you will notice:

See also
Internals Reference: Section “Fingering” in Internals Reference.

The programmer’s reference is available as an HTML document. It is highly recommended that you read it in HTML form, either online or by downloading the HTML documentation. This section will be much more difficult to understand if you are using the PDF manual.

Follow the link to Section “Fingering” in Internals Reference. At the top of the page, you will see

Fingering objects are created by: Section “Fingering_engraver” in Internals Reference and Section “New_fingering_engraver” in Internals Reference.

By following related links inside the program reference, we can follow the flow of information within the program:
- Section “Fingering” in Internals Reference: Section “Fingering” in Internals Reference objects are created by: Section “Fingering_engraver” in Internals Reference
• Section “Fingering_engraver” in Internals Reference: Music types accepted: Section “fingering-event” in Internals Reference
• Section “fingering-event” in Internals Reference: Music event type fingering-event is in Music expressions named Section “FingeringEvent” in Internals Reference

This path goes against the flow of information in the program: it starts from the output, and ends at the input event. You could also start at an input event, and read with the flow of information, eventually ending up at the output object(s).

The program reference can also be browsed like a normal document. It contains chapters on Music definitions on Section “Translation” in Internals Reference, and the Section “Backend” in Internals Reference. Every chapter lists all the definitions used and all properties that may be tuned.

5.2.2 Layout interfaces

The HTML page that we found in the previous section describes the layout object called Section “Fingering” in Internals Reference. Such an object is a symbol within the score. It has properties that store numbers (like thicknesses and directions), but also pointers to related objects. A layout object is also called a Grob, which is short for Graphical Object. For more details about Grobs, see Section “grob-interface” in Internals Reference.

The page for Fingering lists the definitions for the Fingering object. For example, the page says padding (dimension, in staff space):

0.5

which means that the number will be kept at a distance of at least 0.5 of the note head.

Each layout object may have several functions as a notational or typographical element. For example, the Fingering object has the following aspects

• Its size is independent of the horizontal spacing, unlike slurs or beams.
• It is a piece of text. Granted, it is usually a very short text.
• That piece of text is typeset with a font, unlike slurs or beams.
• Horizontally, the center of the symbol should be aligned to the center of the note head.
• Vertically, the symbol is placed next to the note and the staff.
• The vertical position is also coordinated with other superscript and subscript symbols.

Each of these aspects is captured in so-called interfaces, which are listed on the Section “Fingering” in Internals Reference page at the bottom

This object supports the following interfaces: Section “item-interface” in Internals Reference, Section “self-alignment-interface” in Internals Reference, Section “side-position-interface” in Internals Reference, Section “text-interface” in Internals Reference, Section “text-script-interface” in Internals Reference, Section “font-interface” in Internals Reference, Section “finger-interface” in Internals Reference, and Section “grob-interface” in Internals Reference.

Clicking any of the links will take you to the page of the respective object interface. Each interface has a number of properties. Some of them are not user-serviceable (‘Internal properties’), but others can be modified.

We have been talking of the Fingering object, but actually it does not amount to much. The initialization file (see Section “Other sources of information” in Learning Manual) scm/define-grobs.scm shows the soul of the ‘object’,

(Fingering
 . ((padding , 0.5))
As you can see, the Fingering object is nothing more than a bunch of variable settings, and the web page in the Internals Reference is directly generated from this definition.

### 5.2.3 Determining the grob property

Recall that we wanted to change the position of the 2 in $c''-2$

Since the 2 is vertically positioned next to its note, we have to meddle with the interface associated with this positioning. This is done using `side-position-interface`. The page for this interface says

```latex
side-position-interface
Position a victim object (this one) next to other objects (the support). The property direction signifies where to put the victim object relative to the support (left or right, up or down?)
```

Below this description, the variable `padding` is described as

```latex
padding (dimension, in staff space)
```

Add this much extra space between objects that are next to each other.

By increasing the value of `padding`, we can move the fingering away from the note head. The following command will insert “three staff spaces” worth of distance between the note and a fingering mark:

```latex\[
\text{\texttt{\textbackslash once \texttt{\textbackslash override \textit{Voice.Fingering.padding} = \#3}}}\]
```

Inserting the padding before the fingering object is created results in the following:

```latex\[
\text{\texttt{\textbackslash once \texttt{\textbackslash override \textit{Voice.Fingering.padding} = \#3}}}\]
```

$c''-2$

2

\[\text{\texttt{\textbackslash once \texttt{\textbackslash override \textit{Voice.Fingering.padding} = \#3}}\]
In this case, the context for this tweak is Voice. See Section "Fingering_engraver" in Internals Reference plug-in, which says:

Fingering_engraver is part of contexts: ... Section "Voice" in Internals Reference

5.3 Modifying properties

5.3.1 Overview of modifying properties

Within each context, there are two different kinds of properties: context properties and grob properties. Context properties apply to a context as a whole, whereas grob properties are used for initializing grobs engraved from within a context.

Context properties control the translation from music to notation. For example, localAlterations is used to determine whether to print accidentals; or measurePosition for determining when to print a bar line. They can also change value over time while interpreting a piece of music; measurePosition is an obvious example of this.

The \set command (and its counterpart \unset) is used to alter values for context properties, whereas the \override command (and its counterpart \revert) is used to change values for grob properties.

5.3.2 \set and \unset

The \set command syntax is

\set context.property = value

where value must be preceded by the '#' character if it is a Scheme object.

The counterpart command \unset’s syntax is

\unset context.property

This removes a previously set definition of the property from the context. Any properties that have been set in an enclosing context are not altered by an \unset in the same enclosed context.

For example, multi-measure rests are combined into a single bar (as explained in [Compressing empty measures], page 252) if the context property skipBars is set to #t:

R1*2
\set Score.skipBars = ##t
R1*2

\c{\relative c'8 e e e}
\set autoBeaming = ##t
\relative {
  e''8 e e e
  \set autoBeaming = ##t
  e8 e e e
} \\n\relative {
  c''8 c c c c8 c c c
}

If the context argument is left out, then the property is set in the current 'bottom' context (typically ChordNames, Voice, TabVoice, or Lyrics).
Note that the bottom context may not always contain an engraver that uses the property that you wish to change. For example, attempting to set the skipBars property of the default, bottom context has no effect because it is a property of the Score, not Voice context.

```
\set skipBars = ##t
R1*2
```

Contexts are hierarchical; any change specified for an enclosing context (e.g., Staff) would also apply to all Voices in that current Staff context (assuming, of course, that the Voice context didn’t have an override of its own).

All contexts inherit settings established in the top-most Global context (via \grobdescriptions), although a few of those defaults get overridden in their own context definitions.

```
<<
\set Score.autoBeaming = ##t
\relative {
 \unset autoBeaming
e''8 e e e
 \unset Score.autoBeaming
e8 e e e
}
\relative {
 c'8 c c c c8 c c c
}
>>
```

Like \set, the context argument does not have to be specified for a bottom context, so the two statements

```
\set Voice.autoBeaming = ##t
\set autoBeaming = ##t
```

are equivalent if the current bottom context is Voice.

### 5.3.3 \override and \revert

There is a special type of context property: the grob description. Grob descriptions start with a capital letter and exist as association lists only in all-grob-descriptions, but they get turned into more complex and efficient data structures supporting hierarchical manipulations when placed into contexts. See scm/define-grobs.scm for the settings of each grob.

The syntax for the \override command is

```
\override [context.]GrobName.property = #value
```
For example, we can increase the thickness of a note stem by overriding the thickness property of the Stem object:

\begin{verbatim}
c''4 c''
\override Voice.Stem.thickness = #3.0
c''4 c''
\end{verbatim}

If no context is specified in an \override command, the bottom context is used:

\begin{verbatim}
\override Staff.Stem.thickness = #3.0
<<
\relative {
e''4 e
\override Stem.thickness = #0.5
e4 e
} \\
\relative {
c''4 c c c
}
>>
\end{verbatim}

Some tweakable options are called ‘subproperties’ and reside inside properties. To tweak those, use commands in the form

\begin{verbatim}
\override Stem.details.beamed-lengths = #'(4 4 3)
\end{verbatim}
or to modify the ends of spanners, use a form like these

\begin{verbatim}
\override TextSpanner.bound-details.left.text = "left text"
\override TextSpanner.bound-details.right.text = "right text"
\end{verbatim}

The effects of \override can be undone by \revert; its syntax is

\begin{verbatim}
\revert [context.]GrobName.property
\end{verbatim}

For example,

\begin{verbatim}
\relative {
c''4
\override Voice.Stem.thickness = #3.0
c4 c
\revert Voice.Stem.thickness
c4
}
\end{verbatim}

The effects of \override and \revert apply to all grobs in the affected context from the current time forward:

\begin{verbatim}
<<
\end{verbatim}
5.3.4 The \once command
\once is used in conjunction with the \set or \override command to affect only the current musical moment.

\once \set fontSize = #4.7

See also
Internals Reference: Section “Backend” in Internals Reference.

5.3.5 \set versus \override
The \set and \override commands manipulate properties associated with contexts. In both cases, the properties follow a hierarchy of contexts: properties that are not set themselves in a context still show the values of their respective parent’s context.

The lifetime and value of a context property is dynamic and only available when music is being interpreted (i.e., ‘iterated’). At the time of the context’s creation, properties are initialized from its corresponding definitions (along with any other modifications) of that context. Any subsequent changes are achieved with any ‘property-setting’ commands that are within the music itself.

Graphical Object (or “grob”) definitions are a special category of context properties as their structure and use is different from that of normal context properties. Unlike normal context properties, grob definitions are subdivided into grob properties.

Also, in contrast to normal context properties, grob definitions have their own internal ‘bookkeeping’ used to keep track of their own individual grob properties and any subproperties. This means that it is possible to define those parts within different contexts and yet still have the overall grob definition at the time of grob creation from all the pieces provided amongst the current context and its parent(s).

A grob is usually created by an engraver at the time of interpreting a music expression, and receives its initial properties from the current grob definition of the engraver’s context.
engraver (or other ‘backend’ parts of LilyPond) can then change (or add to) the grob’s initial properties. However, this does not affect the context’s own grob definition.

What LilyPond calls grob properties in the context of ‘user-level’ tweaks are really the properties of a context’s own grob definition.

Grob definitions are accessed with a different set of commands and are manipulated using \override and \revert, and have a name starting with a capital letter (e.g., ‘NoteHead’); whereas normal context properties are manipulated using \set and \unset and are named starting with a lowercase letter.

The commands \tweak and \overrideProperty change grob properties by bypassing all context properties completely and, instead, catch grobs as they are being created, setting properties on them for a music event (\tweak) or, in the case of \overrideProperty for a specific override.

5.3.6 \tweak and \single

When multiple grobs occur at the same musical moment the \override command cannot be used to modify just one of them. In this case the \tweak command is used.

The \tweak command has the following syntax

\tweak [layout-object.]grob-property value

and applies to the music expression that immediately follows value in the music stream. Specifying layout-object is necessary for disambiguation if the music expression causes the indirect creation of grobs with different types (for example, NoteHead causes Stem).

For an introduction to the syntax and uses of the tweak command see Section “Tweaking methods” in Learning Manual.

Items that may appear more than once at the same musical moment include, but are not limited to, the following:

- note heads of notes inside a chord
- articulation signs on a single note
- ties between notes in a chord
- tuplet brackets starting at the same time

In this example, the color of one note head and the type of another note head are modified within a single chord:

< c''
  \tweak color #red
d''
g''
  \tweak duration-log #1
  a''
> 4

\tweak can also be used to modify slurs:

\relative { c'-'\tweak thickness #5 ( d e f ) }
Tweaking a whole chord tweaks all the contained notes:

\{ \tweak color #red \<c'' e''>4 \}

As mentioned above, the simple \tweak command syntax form cannot be used to modify any object that is not directly created from the input. In particular, it will not affect stems, automatic beams, or accidentals, since these are generated later by NoteHead layout objects rather than by music elements in the input stream.

Such indirectly created layout objects can be tweaked using the form of the \tweak command in which the grob name is specified explicitly:

\tweak Stem.color #(universal-color 'orange)
\tweak Beam.color #(universal-color 'skyblue) \c''8 e''
\<c'' e'' \tweak Accidental.font-size #-3 \ges''>4

\tweak cannot be used to modify clefs or time signatures, since these become separated from any preceding \tweak command in the input stream by the automatic insertion of extra elements required to specify the context.

Multiple \tweak commands placed before a music expression all affect the grob(s) created at this musical moment.

\c'
  \-\tweak springs-and-rods \ly:spanner::set-spacing-rods
  \-\tweak minimum-length #15
  \-\tweak style #'dashed-line
  \-\tweak dash-fraction #0.2
  \-\tweak thickness #3
  \-\tweak color #red
  \glissando
\f''

The music stream which is generated from a section of an input file, including any automatically inserted elements, may be examined, see Section “Displaying music expressions” in Extending. This may be helpful in determining what may be modified by a \tweak command, or in determining how to adjust the input to make a \tweak apply.

The \single command takes one or more \override commands (which are intended to apply at a given musical moment or beyond) and converts them effectively into a single ‘tweak’ that now applies to the specific grobs created.

The file ly/property-init.ly contains many definitions of multiple \override commands and so can be used in conjunction with the \single command. For example, the function \easyHeadsOn can be used with \single to affect just one note head in a chord:

\< \single \easyHeadsOn \c' g' >2
5.3.7 The \offset command

While it is possible to set grob properties to new values with the \override, \tweak, and \overrideProperty commands, it is often more convenient to modify such properties relative to a default value. The \offset command is available for this purpose.

The syntax for \offset is

\[-\]offset property offsets item

The command works by adding the contents of offsets to the default setting of the property property of the grob indicated by item.

Depending on the formulation of the command, \offset may act as either a \tweak or \override. The variations in usage are discussed after consideration is given to grob properties that may be used with \offset.

**Properties which may be offset**

Many, but not all, grob properties may be offset. If property cannot be offset, the object will remain unchanged and a warning will be issued. In such cases, \override or \tweak should be used to modify the object instead.

One can work by trial and error and let the warnings be the guide to what may or may not be offset. A more systematic approach is possible, however.

The following criteria determine whether a property can be modified with \offset:

- The property has a ‘default setting’ in the grob’s description. Such properties are listed for each grob in Section “All layout objects” in Internals Reference. (They are also found in scm/define-grobs.scm.)
- The property takes a numerical value. Numerical values include number, list of numbers, number-pair, and number-pair-list. The pages at Section “All layout objects” in Internals Reference list the type of data characteristic to each property. It is immaterial whether the default setting is a function.
- The property cannot be a ‘subproperty’ – a property residing within another property.
- Properties set to infinite values cannot be offset. There is no sensible way to offset positive and negative infinity.

The following examples consider several grob properties against the criteria outlined above.

- Properties that may be offset

  **Hairpin.height**
  
  This property is not a subproperty, and it is listed at Section “Hairpin” in Internals Reference. For a value, it takes ‘dimension, in staff space’ set to 0.6666 – clearly a non-infinite number.
Arpeggio.positions

The page Section “Arpeggio” in Internals Reference lists a positions property which accepts a ‘pair of numbers’. It defaults to ly:arpeggio::positions – a callback which will be evaluated during the typesetting phase to yield a pair of numbers for any given Arpeggio object.

• Properties that may not be offset

Hairpin.color

There is no listing for color at Section “Hairpin” in Internals Reference.

Hairpin.circled-tip

The listing for Hairpin.circled-tip at Section “Hairpin” in Internals Reference shows that it takes a boolean value. Booleans are non-numerical.

Stem.details.lengths

Though listed at Section “Stem” in Internals Reference and defaulting to a list of numbers, this is a ’subproperty’. There is currently no support for ’nested properties’.

\offset as an override

If item is a grob name like Arpeggio or Staff.OttavaBracket, the result is an \override of the specified grob type.

\offset property offsets [context.]GrobName

Note that the leading hyphen is never used with the ‘override’ form, just as it is never used with the \override command itself.

The following example uses the ‘override’ form to lengthen the default arpeggios shown in the first measure to cover the extent of the chords more fully. The arpeggios are stretched by a half staff space to top and bottom. Also shown is the same operation done on the first chord with an ordinary override of the positions property. This method is not at all expressive of the task of ‘stretching by a half staff space’, as the endpoints must be specified with absolute rather than relative coordinates. Furthermore, individual overrides would be needed for the other chords, as they vary in size and position.

arpeggioMusic = {
<\arpeggio <a' c'' e''>\arpeggio
<d' f' a' c''>\arpeggio <c' e' g' b'' d'' f'' a'>\arpeggio
}

{\arpeggioMusic
\bar "||"
\offset positions \('#(-0.5 . 0.5) Arpeggio
\arpeggioMusic
\bar "||"
\once \override Arpeggio.positions = \('#(-3.5 . -0.5)
<c' e' g'>1\arpeggio
\bar "||"}
In its ‘override’ usage, $\texttt{\textbackslash offset}$ may be prefaced with $\texttt{\textbackslash once}$ or $\texttt{\textbackslash temporary}$ and reverted using $\texttt{\textbackslash revert}$ with property (see Section “Intermediate substitution functions” in Extending). This follows from the fact that $\texttt{\textbackslash offset}$ actually creates an $\texttt{\textbackslash override}$ of property.

\begin{verbatim}
music = { c'8\< d' e' f'\! }
{
  \music
  \offset height 1 Hairpin
  \music
  \revert Hairpin.height
  \music
  \bar "||"
  \once \offset height 1 Hairpin
  \music \music
  \bar "||"
  \override Hairpin.height = 0.2
  \music
  \temporary \offset height 2 Hairpin
  \music
  \revert Hairpin.height
  \music
  \bar "||"
}
\end{verbatim}

Also like $\texttt{\textbackslash override}$, the ‘override’ form of $\texttt{\textbackslash offset}$ may be used with $\texttt{\textbackslash undo}$ and $\texttt{\textbackslash single}$.

$\texttt{longStem} = \texttt{\offset length 6 Stem}$

\begin{verbatim}
{ \longStem c'4 c''' c' c''
  \bar "||"
  \undo \longStem c'4 c''' c' c''
  \bar "||"
  \single \longStem c'4 c''' c' c''
  \bar "||"
}
\end{verbatim}
\offset as a tweak

If item is a music expression such as ( or \arpeggio, the result is the same music expression with a tweak applied.

\[-]\offset [\GrobName.\]property offsets music-expression

The syntax of \offset in its ‘tweak’ form is analogous to the \tweak command itself, both in ordering and in the presence or absence of the leading hyphen.

The following example uses the ‘tweak’ form to adjust the vertical position of the BreathingSign object. Compare this with the ordinary \tweak command also demonstrated. The syntax is equivalent; however, the output of \tweak is less intuitive, since BreathingSign.Y-offset is calculated from the middle staff line. It is not necessary to know how \Y-offset is calculated when using \offset.

\{  
c''4  
\breathe  
c''4  
\offset Y-offset 2 \breathe  
c''2  
\tweak Y-offset 3 \breathe  
\}

In the previous example, the tweaked objects were created directly from the user input: the \breathe command was an explicit instruction to return a BreathingSign object. Since the focus of the command was unambiguous, there was no need to specify the object’s name. When an object is indirectly created, however, it is necessary to include the grob’s name. This is the same as for the \tweak command.

In the following example, the Beam object is lowered two staff spaces by applying \offset to the positions property.

The first application of \offset requires that the grob’s name be included, because nothing in the input explicitly creates the beam. In the second application, the beam is created manually with the music expression [:; therefore, the grob’s name is not needed. (Also illustrated is a shorthand: a single number will be applied to both members of a number-pair.)

\{  
c''8 g'' e'' d''  
\offset Beam,positions #[:(-2 . -2)  
c''8 g'' e'' d''  
c''8 g'' e'' d''  
c''8-\offset positions #:([-2 [ g'' e'' d''])  
\}

\offset with broken spanners

Independently modifying segments of a spanner extending over a line break or breaks is also possible. In this case, offsets takes a list of values of the property’s required data type.
The \texttt{offset} command used in this manner is similar to the \texttt{alterBroken} command. (See [Modifying broken spanners], page 700.) In contrast with \texttt{alterBroken}, however, the values given to \texttt{offset} are relative, not absolute.

The following example displaces the ‘broken’ \texttt{OttavaBracket} object through its \texttt{staff-padding} property. Since the property takes a number, \texttt{offsets} is provided with a list of numbers to account for the two segments created by the line break. The bracket piece on the first line is effectively untouched since 0 is added to its default value of \texttt{staff-padding}. The segment on the second line is raised three staff spaces from its default height. The default height happens to be 2, though it is not necessary to know this to achieve the desired positioning.

\begin{verbatim}
{ \offset staff-padding #'(0 3) Staff.OttavaBracket 
  \ottava #1
  c''''2 c'''
  \break
  c''''2 c'''
}
\end{verbatim}

The following example mimics the effect of the \texttt{shape} command by offsetting the \texttt{control-points} property of the \texttt{Slur} object. Here, \texttt{offsets} is a list of number-pair-lists, one for each slur segment. This example achieves a result identical to the corresponding illustration at Section 5.4.11 [Modifying shapes], page 721.

\begin{verbatim}
{ c'4-\offset control-points #'( 
  ((0 0) (0 0) (0 0) (0 1))
  ((0.5 1.5) (1 0) (0 0) (0 -1.5))
) ( f'4 g' c''
  \break
  d'4 c'' f' c')
}
\end{verbatim}

\section{5.3.8 Modifying alists}

Some user-configurable properties are internally represented as \texttt{alists} (association lists), which store pairs of \texttt{keys} and \texttt{values}. The structure of an alist is:

'((key1 . value1)
(key2 . value2)
(key3 . value3)
...

If an alist is a grob property or \paper variable, its keys can be modified individually without affecting other keys.

For example, to reduce the space between adjacent staves in a staff group, use the staff-staff-spacing property of the StaffGrouper grob. The property is an alist with four keys: basic-distance, minimum-distance, padding, and stretchability. The standard settings for this property are listed in the “Backend” section of the Internals Reference (see Section “StaffGrouper” in Internals Reference):

`(((basic-distance . 9)
  (minimum-distance . 7)
  (padding . 1)
  (stretchability . 5))`

One way to bring the staves closer together is by reducing the value of the basic-distance key (9) to match the value of minimum-distance (7). To modify a single key individually, use a nested declaration:

% default space between staves
\new PianoStaff <<
  \new Staff { \clef treble c''1 }
  \new Staff { \clef bass c1 }
>>

% reduced space between staves
\new PianoStaff \with {
  % this is the nested declaration
  \override StaffGrouper.staff-staff-spacing.basic-distance = #7
} <<
  \new Staff { \clef treble c''1 }
  \new Staff { \clef bass c1 }
>>

Using a nested declaration will update the specified key (such as basic-distance in the above example) without altering any other keys already set for the same property.

Now suppose we want the staves to be as close as possible without overlapping. The simplest way to do this is to set all four alist keys to zero. However, it is not necessary to enter four nested declarations, one for each key. Instead, the property can be completely redefined with one declaration, as an alist:

\new PianoStaff \with {

\override StaffGrouper.staff-staff-spacing =
#'(\(basic-distance . 0\))
(\(minimum-distance . 0\))
(\(padding . 0\))
(\(stretchability . 0\))
} <<
\new Staff { \clef treble c'1 }
\new Staff { \clef bass c1 }
>>

Note that any keys not explicitly listed in the alist definition will be reset to their default-when-unset values. In the case of staff-staff-spacing, any unset key values would be reset to zero (except stretchability, which takes the value of basic-distance when unset). Thus the following two declarations are equivalent:

\override StaffGrouper.staff-staff-spacing =
#'(\(basic-distance . 7\))

\override StaffGrouper.staff-staff-spacing =
#'(\(basic-distance . 7\))
(\(minimum-distance . 0\))
(\(padding . 0\))
(\(stretchability . 7\))

One (possibly unintended) consequence of this is the removal of any standard settings that are set in an initialization file and loaded each time an input file is compiled. In the above example, the standard settings for padding and minimum-distance (defined in scm/define-grobs.scm) are reset to their default-when-unset values (zero for both keys). Defining a property or variable as an alist (of any size) will always reset all unset key values to their default-when-unset values. Unless this is the intended result, it is safer to update key values individually with a nested declaration.

Note: Nested declarations will not work for context property alists (such as beamExceptions, keyAlterations, timeSignatureSettings, etc.). These properties can only be modified by completely redefining them as alists.

5.4 Useful concepts and properties
This section discusses various common layout issues and the tweaking methods related to them.

See also

Notation Reference: Section 5.2 [Explaining the Internals Reference], page 682, Section 5.3 [Modifying properties], page 685.

Extending LilyPond: Section “Interfaces for programmers” in Extending.
5.4.1 Direction and placement

In typesetting music the direction and placement of many items is a matter of choice. For example, the stems of notes can be directed up or down; lyrics, dynamics, and other expressive marks may be placed above or below the staff; text may be aligned left, right or center; etc. Most of these choices may be left to be determined automatically by LilyPond, but in some cases it may be desirable to force a particular direction or placement.

Articulation direction indicators

By default some directions are always up or always down (e.g., dynamics or fermata), while other things can alternate between up or down based on the stem direction (like slurs or accents).

The default action may be overridden by prefixing the articulation by a direction indicator. Three direction indicators are available: ^ (meaning “up”), _ (meaning “down”) and - (meaning “use default direction”). The direction indicator can usually be omitted, in which case - is assumed, but a direction indicator is always required before

- \tweak commands
- \markup commands
- \tag commands
- string markups, e.g., -"string"
- fingering instructions, e.g., -1
- articulation shortcuts, e.g., -, ->, --

Direction indicators affect only the next note:

```lilypond
\relative {c'2 (c) c2_ (c) c2 (c) c2^ (c)}
```

The direction property

The position or direction of many layout objects is controlled by the direction property.

The value of the direction property may be set to 1, meaning “up” or “above”, or to -1, meaning “down” or “below”. The symbols UP and DOWN may be used instead of 1 and -1 respectively. The default direction may be specified by setting direction to 0 or CENTER. Alternatively, in many cases predefined commands exist to specify the direction. These are of the form

\xxxUp, \xxxDown or \xxxNeutral

where \xxxNeutral means “use the default” direction. See Section “Within-staff objects” in Learning Manual.

In a few cases, arpeggio for example, the value of the direction property can specify whether the object is to be placed to the right or left of the parent. In this case -1 or LEFT means “to the left” and 1 or RIGHT means “to the right”. 0 or CENTER means “use the default” direction.
These indications affect all notes until they are canceled.

\relative { c''2 (c) 
\slurDown 
c2 (c) 
c2 (c) 
\slurNeutral 
c2 (c) }

In polyphonic music, it is generally better to specify an explicit voice than change an object’s direction. For more information, see Section 1.5.2 [Multiple voices], page 201.

See also


Notation Reference: Section 1.5.2 [Multiple voices], page 201.

5.4.2 Distances and measurements

Distances in LilyPond are of two types: absolute and scaled.

Absolute distances are used for specifying margins, indents, and other page layout details, and are by default specified in millimeters. In general, distance units may be specified by appending \mm (millimeter), \cm (centimeter), \in (inches), \pt (points), or \bp (big points).

<table>
<thead>
<tr>
<th>Unit</th>
<th>mm</th>
<th>cm</th>
<th>in</th>
<th>pt</th>
<th>bp</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>1</td>
<td>0.1</td>
<td>0.0394</td>
<td>2.8453</td>
<td>2.8346</td>
</tr>
<tr>
<td>cm</td>
<td>10</td>
<td>1</td>
<td>0.3937</td>
<td>28.4528</td>
<td>28.3465</td>
</tr>
<tr>
<td>in</td>
<td>25.4</td>
<td>2.54</td>
<td>1</td>
<td>72.27</td>
<td>72</td>
</tr>
<tr>
<td>pt</td>
<td>0.3515</td>
<td>0.0351</td>
<td>0.0138</td>
<td>1</td>
<td>0.996</td>
</tr>
<tr>
<td>bp</td>
<td>0.3538</td>
<td>0.0354</td>
<td>0.0139</td>
<td>1.0038</td>
<td>1</td>
</tr>
</tbody>
</table>

Page layout distances can also be specified in scalable units (see the following paragraph) by appending \staff-space to the quantity. See Section 4.1 [Page layout], page 605, for a detailed description of LilyPond’s page layout.

Scaled distances are always specified in units of the staff space or, rarely, the half staff space. The staff space is the distance between two adjacent staff lines. The default value can be changed globally by setting the global staff size, or it can be overridden locally by changing the \staff-space property of StaffSymbol. Scaled distances automatically scale with any change to the either the global staff size or the \staff-space property of StaffSymbol, but fonts scale automatically only with changes to the global staff size. The global staff size thus enables the overall size of a rendered score to be easily varied. For the methods of setting the global staff size see Section 4.2.2 [Setting the staff size], page 618.

If just a section of a score needs to be rendered to a different scale, for example an ossia section or a footnote, the global staff size cannot simply be changed as this would affect the entire score. In such cases the change in size is made by overriding both the \staff-space property of StaffSymbol and the size of the fonts. A Scheme function, magstep, is available to convert from a font size change to the equivalent change in staff-space. For an explanation and an example of its use, see Section “Length and thickness of objects” in Learning Manual.
See also

Notation Reference: Section 4.1 [Page layout], page 605, Section 4.2.2 [Setting the staff size], page 618.

5.4.3 Dimensions

The dimensions of a graphical object specify the positions of the left and right edges and the bottom and top edges of the objects’ bounding box as distances from the objects’ reference point in units of staff spaces. These positions are usually coded as two Scheme pairs. For example, the text markup command \with-dimensions takes three arguments, the first two of which are a Scheme pair giving the left and right edge positions and a Scheme pair giving the bottom and top edge positions:

\with-dimensions #'(-5 . 10) #'(-3 . 15) arg

This specifies a bounding box for arg with its left edge at -5, its right edge at 10, its bottom edge at -3 and its top edge at 15, all measured from the objects’ reference point in units of staff spaces.

See also
Notation Reference: Section A.12.8 [Other markup commands], page 820, (documentation for commands similar to \with-dimensions, such as \with-dimension or \with-dimension-from), Section 5.4.2 [Distances and measurements], page 699.

5.4.4 Spanners

Many objects of musical notation extend over several notes or even several bars. Examples are slurs, beams, tuplet brackets, volta repeat brackets, crescendi, trills, and glissandi. Such objects are collectively called “spanners”, and have special properties to control their appearance and behavior, as well as special tweaking methods related to the fact that they can be broken across systems.

Modifying broken spanners

When a spanner crosses a line break or breaks, each piece inherits the attributes of the original spanner. Thus, ordinary tweaking of a broken spanner applies the same modifications to each of its segments. In the example below, overriding thickness affects the slur on either side of the line break.

\relative c' {{
  r2
  \once\override Slur.thickness = 10
  c8( d e f
  \break
  g8 f e d) r2
}}
Independently modifying the appearance of individual pieces of a broken spanner is possible with the `\alterBroken` command. This command can produce either an `\override` or a `\tweak` of a spanner property.

The syntax for `\alterBroken` is

```
[-]\alterBroken property values target
```

The argument `values` is a list of values, one for each broken piece. If `target` is a grob name like Slur or Staff.PianoPedalBracket, the result is an `\override` of the specified grob type. If `target` is a music expression such as ‘(’ or ‘[’ the result is the same music expression with an appropriate tweak applied.

The leading hyphen must be used with the `\tweak` form. Do not add it when `\alterBroken` is used as an `\override`.

In its `\override` usage, `\alterBroken` may be prefaced by `\once` or `\temporary` and reverted by using `\revert` with `property` (see Section “Intermediate substitution functions” in Extending).

The following code applies an independent `\override` to each of the slur segments in the previous example:

```
\relative c'' {
 r2
 \alterBroken thickness #'(10 1) Slur
c8(d e f
 \break
g8 f e d) r2
}
```

The `\alterBroken` command may be used with any spanner object, including Tie, PhrasingSlur, Beam and TextSpanner. For example, an editor preparing a scholarly edition may wish to indicate the absence of part of a phrasing slur in a source by dashing only the segment which has been added. The following example illustrates how this can be done, in this case using the `\tweak` form of the command:

```
% The empty list is conveniently used below, because it is the
% default setting of dash-definition, resulting in a solid curve.
\relative {
 c''2-\alterBroken dash-definition #'(()) ((0 1.0 0.4 0.75))) \(e
 \break
g2 e\)
}
```

The `\alterBroken` command may be used with any spanner object, including Tie, PhrasingSlur, Beam and TextSpanner.
It is important to understand that `\alterBroken` sets each piece of a broken spanner to the corresponding value in `values`. When there are fewer values than pieces, any additional piece will be assigned the empty list. This may lead to undesired results if the layout property is not set to the empty list by default. In such cases, each segment should be assigned an appropriate value.

### Known issues and warnings

Line breaks may occur in different places following changes in layout. Settings chosen for `\alterBroken` may be unsuitable for a spanner that is no longer broken or is split into more segments than before. Explicit use of `\break` can guard against this situation.

The `\alterBroken` command is ineffective for spanner properties accessed before line breaking such as `direction`.

### See also

Extending LilyPond: Section “Difficult tweaks” in *Extending*.

### Setting minimum lengths for spanners

The spanner-interface interface provides three properties that apply to several spanners.

#### The `minimum-length` property

The minimum length of the spanner is specified by the `minimum-length` property. Increasing this usually has the necessary effect of increasing the spacing of the notes between the two end points. However, this override has no effect on many spanners, as their length is determined by other considerations. A few examples where it is effective are shown below.

```latex
\relative \compressMMRests {
 a' \- a'
 a'
 \% increase the length of the tie
 \- \tweak minimum-length \#5
 - a'

 \times \begin{align*}
 \times \end{align*}

 \relative \compressMMRests {
 a'
 \ RelativeMMRests *23
 \% increase the length of the rest bar
 \once \override MultiMeasureRest.minimum-length = \#20
 \ RelativeMMRests *23
 a
 }

 \times \begin{align*}
 \times \end{align*}

 \relative \compressMMRests {
 a' \< a \ a \ a \!
 \% increase the length of the hairpin
 \override Hairpin.minimum-length = \#20
 a \< a \ a \!
```
This override can also be used to increase the length of slurs and phrasing slurs:

```
relative {
 a' (g)
 a
 \tweak minimum-length #5
 (g)
 a (g)
 a
 \tweak minimum-length #5
 \(g\)
}
```

For some layout objects, the minimum-length property becomes effective only if the set-spacing-rods procedure is called explicitly. To do this, the springs-and-rods property should be set to ly:spanner::set-spacing-rods. For example, the minimum length of a glissando has no effect unless the springs-and-rods property is set:

```
% default
e' \glissando c''

% not effective alone
\once \override Glissando.minimum-length = #20
e' \glissando c''

% effective only when both overrides are present
\once \override Glissando.minimum-length = #20
\once \override Glissando.springs-and-rods =
 #ly:spanner::set-spacing-rods
e' \glissando c''
```

The same is true of the Beam object:

```
% not effective alone
\once \override Beam.minimum-length = #20
e'8 e' e' e'

% effective only when both overrides are present
\once \override Beam.minimum-length = #20
\once \override Beam.springs-and-rods =
 #ly:spanner::set-spacing-rods
```
The minimum-length-after-break property

The property minimum-length-after-break can be used to stretch broken spanners starting after a line break. As for the minimum-length property, it is often needed to set the springs-and-rods property to ly:spanner::set-spacing-rods.

```latex
\begin{verbatim}
\once \override Tie.minimum-length-after-break = 20
a1~
\break
a1
\once \override Slur.minimum-length-after-break = 20
a1(
\break
d'1)
\once \override TextSpanner.springs-and-rods =
#ly:spanner::set-spacing-rods
\once \override TextSpanner.minimum-length-after-break = 20
a1\startTextSpan
\break
a1\stopTextSpan
\once \override Hairpin.after-line-breaking = ##t
\once \override Hairpin.to-barline = ##f
\once \override Hairpin.minimum-length-after-break = 20
a1<
\break
a1!
\once \override Glissando.springs-and-rods =
#ly:spanner::set-spacing-rods
\once \override Glissando.breakable = ##t
\once \override Glissando.after-line-breaking = ##t
\once \override Glissando.minimum-length-after-break = 20
a1\glissando
\break
d'1
\end{verbatim}
```
Controlling spanner end points

The `to-barline` property of the spanner-interface, usually defaulting to true, causes hairpins and other spanners that are terminated on the first note of a measure to end instead on the immediately preceding bar line. If set to false, the spanner extends beyond the bar line and end on the note itself:

\begin{verbatim}
\relative {
a' \!< a a a a ! a a a \break
\override Hairpin.to-barline = ##f
a \!< a a a a ! a a a
}
\end{verbatim}

This property is not effective for all spanners. For example, setting it to `#t` has no effect on slurs or phrasing slurs or on other spanners for which terminating on the bar line would not be meaningful.

5.4.5 Line styles

The Section “line-interface” in Internals Reference groups all objects printing lines. All objects supporting these interfaces can be printed using different line styles. Here is an example showing the available values.

\begin{verbatim}
\relative {
d''2 \glissando d'2
}\end{verbatim}
\once \override Glissando.style = #'dashed-line
d,2 \glissando d'2
\override Glissando.style = #'dotted-line
d,2 \glissando d'2
\override Glissando.style = #'zigzag
d,2 \glissando d'2
\override Glissando.style = #'trill
d,2 \glissando d'2
}

Some objects may support specific additional styles.

5.4.6 Line spanners

Some performance indications, e.g., rallentando and accelerando and trills are written as text and are extended over many measures with lines, sometimes dotted or wavy.

The locations of the two end points of the spanner are computed on the fly, but it is possible to override their Y-coordinates. The properties that need to be specified are nested two levels down within the property hierarchy, but the syntax of the \override command is quite simple:

\once \override Glissando.bound-details.left.Y = #3
e''2 \glissando b'
\once \override Glissando.bound-details.right.Y = #'-2
e''2 \glissando b'

The units for the Y property are staff spaces, with the center line of the staff being the zero point. For the glissando, this is the value for Y at the X-coordinate corresponding to the center point of each note head, if the line is imagined to be extended to there.

If Y is not set, the value is computed from the vertical position of the corresponding attachment point of the spanner.

In case of a line break, the values for the end points are specified by the left-broken and right-broken sublists of bound-details. For example:

\override Glissando.breakable = ##t
\override Glissando.bound-details.right-broken.Y = #'-3
c''1 \glissando \break
f''1

The units for the Y property are staff spaces, with the center line of the staff being the zero point. For the glissando, this is the value for Y at the X-coordinate corresponding to the center point of each note head, if the line is imagined to be extended to there.

If Y is not set, the value is computed from the vertical position of the corresponding attachment point of the spanner.

In case of a line break, the values for the end points are specified by the left-broken and right-broken sublists of bound-details. For example:
A number of further properties of the left and right sublists of the bound-details property may be modified in the same way as Y:

Y  This sets the Y-coordinate of the end point, measured in staff spaces from the staff center line. By default, it is the center of the bound object, so a glissando points to the vertical center of the note head.

For horizontal spanners, such as text spanners and trill spanners, it is hard-coded to 0.

attach-dir  This determines where the line starts and ends in the X-direction, relative to the bound object. So, a value of -1 (or LEFT) makes the line start/end at the left side of the note head it is attached to.

X  This is the absolute X-coordinate of the end point. It is usually computed on the fly, and overriding it has little useful effect.

stencil  Line spanners may have symbols at the beginning or end, which is contained in this subproperty. This is for internal use; it is recommended that text be used instead.

text  This is a markup that is evaluated to yield the stencil. It is used to put cresc., tr, and other text on horizontal spanners.

\override TextSpanner.bound-details.left.text
  = \markup { \small \bold Slower }
\relative { c'2\startTextSpan b c a\stopTextSpan }

stencil-align-dir-y  Without setting one of these, the stencil is simply put at the end point, centered on the line, as defined by the X and Y subproperties. Setting either stencil-align-dir-y or stencil-offset will move the symbol at the edge vertically relative to the end point of the line:

\override TextSpanner.bound-details
  .left.stencil-align-dir-y = #-2
\override TextSpanner.bound-details
  .right.stencil-align-dir-y = #UP

\override TextSpanner.bound-details.left.text = "ggg"
\override TextSpanner.bound-details.right.text = "hhh"

\relative { c'4\startTextSpan c c c \stopTextSpan }

Note that negative values move the text up, contrary to the effect that might be expected, as a value of -1 or DOWN means align the bottom edge of the text with the spanner line. A value of 1 or UP aligns the top edge of the text with the spanner line.
arrow  Setting this subproperty to \#t produces an arrowhead at the end points of the line.
padding  This subproperty controls the space between the specified end point of the line and the actual end. Without padding, a glissando would start and end in the center of each note head.

The music function \endSpanners prematurely terminates all spanners in its argument, obeying the to-barline property if set.

\relative c' { 
  \endSpanners c1 \> c
  \endSpanners { r4 c2.\< c1\startTextSpan } c1 c
}\endSpanners

When using \endSpanners it is not necessary to close \startTextSpan with \stopTextSpan, nor is it necessary to close hairpins with \!.

See also

5.4.7 Visibility of objects

There are four main ways in which the visibility of layout objects can be controlled: their stencil can be removed, they can be made transparent, they can be colored white, or their break-visibility property can be overridden. The first three apply to all layout objects; the last to just a few – the breakable objects. The Learning Manual introduces these four techniques, see Section “Visibility and color of objects” in Learning Manual.

There are also a few other techniques which are specific to certain layout objects. These are covered under Special considerations.

Removing the stencil

Every layout object has a stencil property. By default this is set to the specific function which draws that object. If this property is overridden to \#f no function will be called and the object will not be drawn. The default action can be recovered with \revert.

\override Score.BarLine.stencil = ##f
\a\a
\revert Score.BarLine.stencil
\a\a\a

This rather common operation has a shortcut \omit:

\omit Score.BarLine
\a\a
Making objects transparent

Every layout object has a transparent property which by default is set to \#f. If set to \#t the object still occupies space but is made invisible.

\[\frac{\text{\large a}}{\text{\large a}}\]

This rather common operation has a shortcut \hide:

\[\frac{\text{\large a}}{\text{\large a}}\]

Painting objects white

Every layout object has a color property which by default is set to black. If this is overridden to white the object will be indistinguishable from the white background. However, if the object crosses other objects the color of the crossing points will be determined by the order in which they are drawn, and this may leave a ghostly image of the white object, as shown here:

\[\frac{\text{\large a}}{\text{\large a}}\]

This may be avoided by changing the order of printing the objects. All layout objects have a layer property which should be set to an integer. Objects with the lowest value of layer are drawn first, then objects with progressively higher values are drawn, so objects with higher values overwrite objects with lower values. By default most objects are assigned a layer value of 1, although a few objects, including StaffSymbol and BarLine, are assigned a value of 0. The order of printing objects with the same value of layer is indeterminate.

In the example above the white clef, with a default layer value of 1, is drawn after the staff lines (default layer value 0), so overwriting them. To change this, the Clef object must be given in a lower value of layer, say -1, so that it is drawn earlier:

\[\frac{\text{\large a}}{\text{\large a}}\]
Selected Snippets

Using the whiteout property

Any graphical object can be printed over a white background to mask parts of objects that lie beneath. This can be useful to improve the appearance of collisions in complex situations when repositioning objects is impractical. It is necessary to explicitly set the layer property to control which objects are masked by the white background. In this example the collision of the tie with the time signature is improved by masking out the part of the tie that crosses the time signature by setting the whiteout property of TimeSignature. To do this TimeSignature is moved to a layer above Tie, which is left in the default layer of 1, and StaffSymbol is moved to a layer above TimeSignature so it is not masked.

\{ 
\override Score.StaffSymbol.layer = #4 
\override Staff.TimeSignature.layer = #3 
\once \override Staff.TimeSignature.whiteout = ##t 
\time 3/4 
b'2 b'- 
\} 

Using break-visibility

Most layout objects are printed only once, but some like bar lines, clefs, time signatures and key signatures, may need to be printed twice when a line break occurs – once at the end of the line and again at the start of the next line. Such objects are called breakable, and have a property, the break-visibility property to control their visibility at the three positions in which they may appear – at the start of a line, within a line if they are changed, and at the end of a line if a change takes place there.

For example, the time signature by default will be printed at the start of the first line, but nowhere else unless it changes, when it will be printed at the point at which the change occurs. If this change occurs at the end of a line the new time signature will be printed at the start of the next line and a cautionary time signature will be printed at the end of the previous line as well.

This behavior is controlled by the break-visibility property, which is explained in Section “Visibility and color of objects” in Learning Manual. This property takes a vector of three Booleans which, in order, determine whether the object is printed at the end of, within the body of, or at the beginning of a line. Or to be more precise, before a line break, where there is no line break, or after a line break.

Alternatively, these eight combinations may be specified by predefined functions, defined in scm/output-lib.scm, where the last three columns indicate whether the layout objects will be visible in the positions shown at the head of the columns:
Chapter 5: Changing defaults

<table>
<thead>
<tr>
<th>Function form</th>
<th>Vector form</th>
<th>Before break</th>
<th>At no break</th>
<th>After break</th>
</tr>
</thead>
<tbody>
<tr>
<td>all-visible</td>
<td>#(t #t #t)</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>begin-of-line-visible</td>
<td>#(f #f #t)</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>center-visible</td>
<td>#(f #t #f)</td>
<td>no</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>end-of-line-visible</td>
<td>#(t #f #f)</td>
<td>yes</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>begin-of-line-invisible</td>
<td>#(t #t #f)</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>center-invisible</td>
<td>#(t #f #t)</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>end-of-line-invisible</td>
<td>#(f #f #t)</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>all-invisible</td>
<td>#(f #f #f)</td>
<td>no</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

The default settings of break-visibility depend on the layout object. The following table shows all the layout objects of interest which are affected by break-visibility and the default setting of this property:

<table>
<thead>
<tr>
<th>Layout object</th>
<th>Usual context</th>
<th>Default setting</th>
</tr>
</thead>
<tbody>
<tr>
<td>BarLine</td>
<td>Score</td>
<td>calculated</td>
</tr>
<tr>
<td>BarNumber</td>
<td>Score</td>
<td>begin-of-line-visible</td>
</tr>
<tr>
<td>BreathingSign</td>
<td>Voice</td>
<td>begin-of-line-invisible</td>
</tr>
<tr>
<td>Clef</td>
<td>Staff</td>
<td>begin-of-line-visible</td>
</tr>
<tr>
<td>Custos</td>
<td>Staff</td>
<td>end-of-line-visible</td>
</tr>
<tr>
<td>Divisio</td>
<td>Staff</td>
<td>begin-of-line-visible</td>
</tr>
<tr>
<td>DoublePercentRepeat</td>
<td>Voice</td>
<td>begin-of-line-invisible</td>
</tr>
<tr>
<td>KeyCancellation</td>
<td>Staff</td>
<td>begin-of-line-invisible</td>
</tr>
<tr>
<td>KeySignature</td>
<td>Staff</td>
<td>begin-of-line-visible</td>
</tr>
<tr>
<td>ClefModifier</td>
<td>Staff</td>
<td>begin-of-line-invisible</td>
</tr>
<tr>
<td>RehearsalMark</td>
<td>Score</td>
<td>end-of-line-invisible</td>
</tr>
<tr>
<td>TimeSignature</td>
<td>Staff</td>
<td>all-visible</td>
</tr>
</tbody>
</table>

The example below shows the use of the vector form to control the visibility of bar lines:

```
\relative {
f'4 g a b
f4 g a b
% Remove bar line at the end of the current line
\once \override Score.BarLine.break-visibility = ##(#f #t #t)
\break
 f4 g a b
 f4 g a b
}
```

Although all three components of the vector used to override break-visibility must be present, not all of them are effective with every layout object, and some combinations may even give errors. The following limitations apply:

- Bar lines cannot be printed at the start of line.
• A bar number cannot be printed at the start of the first line unless it is set to be different from 1.
• Clef – see the next section.
• Double percent repeats are either all printed or all suppressed. Use begin-of-line-invisible to print them and all-invisible to suppress them.
• Key signature – see the next section.
• ClefModifier – see the next section.

Special considerations

Visibility following explicit changes

The break-visibility property controls the visibility of key signatures and changes of clef only at the start of lines, i.e., after a break. It has no effect on the visibility of the key signature or clef following an explicit key change or an explicit clef change within or at the end of a line. In the following example the key signature following the explicit change to B-flat major is still visible, even though all-invisible is set.

```
\relative {
 \key g \major
 f' g a b
 % Try to remove all key signatures
 \override Staff.KeySignature.break-visibility = #all-invisible
 \key bes \major
 f4 g a b
 \break
 f4 g a b
 f4 g a b
}
```

The visibility of such explicit key signature and clef changes is controlled by the explicitKeySignatureVisibility and explicitClefVisibility properties. These are the equivalent of the break-visibility property and both take a vector of three Booleans or the predefined functions listed above, exactly like break-visibility. Both are properties of the Staff context, not the layout objects themselves, and so they are set using the \set command. Both are set by default to all-visible. These properties control only the visibility of key signatures and clefs resulting from explicit changes and do not affect key signatures and clefs at the beginning of lines; break-visibility must still be overridden in the appropriate object to remove these.

```
\relative {
 \key g \major
 f' g a b
 \set Staff.explicitKeySignatureVisibility = #all-invisible
 \override Staff.KeySignature.break-visibility = #all-invisible
 \key bes \major
}
```
Visibility of cancelling accidentals

To remove the cancelling accidentals printed at an explicit key change, set the Staff context property `printKeyCancellation` to `#f`:

```latex
\relative
{\key g \major
 f'4 g a b
 \set Staff.explicitKeySignatureVisibility = #all-invisible
 \set Staff.printKeyCancellation = ##f
 \override Staff.KeySignature.break-visibility = #all-invisible
 \key bes \major
 f4 g a b \break
 f4 g a b
 f4 g a b
}
```

With these overrides only the accidentals before the notes remain to indicate the change of key.

Note that when changing the key to C major or A minor the cancelling accidentals would be the only indication of the key change. In this case setting `printKeyCancellation` to `#f` has no effect:

```latex
\relative
{\key g \major
 f'4 g a b
 \set Staff.explicitKeySignatureVisibility = #all-invisible
 \set Staff.printKeyCancellation = ##f
 \key c \major
 f4 g a b \break
 f4 g a b
 f4 g a b
}
```
To suppress the cancelling accidentals even when the key is changed to C major or A minor, override the visibility of the `KeyCancellation` grob instead:

\begin{verbatim}
\relative { 
  \key g \major 
f'4 g a b 
  \set Staff.explicitKeySignatureVisibility = #all-invisible 
  \override Staff.KeyCancellation.break-visibility = #all-invisible 
  \key c \major 
f4 g a b \break 
f4 g a b 
f4 g a b 
}
\end{verbatim}

Transposed clefs
The small transposition symbol on transposed clefs is produced by the `ClefModifier` layout object. Its visibility is automatically inherited from the `Clef` object, so it is not necessary to apply any required `break-visibility` overrides to the `ClefModifier` layout objects to suppress transposition symbols for invisible clefs.

For explicit clef changes, the `explicitClefVisibility` property controls both the clef symbol and any transposition symbol associated with it.

See also

5.4.8 Rotating objects
Both layout objects and elements of markup text can be rotated by any angle about any point, but the method of doing so differs.

Rotating layout objects
All layout objects which support the `grob-interface` can be rotated by setting their `rotation` property. This takes a list of three items: the angle of rotation counter-clockwise, and the x and y coordinates of the point relative to the object’s reference point about which the rotation is to be performed. The angle of rotation is specified in degrees and the coordinates in staff spaces.

The angle of rotation and the coordinates of the rotation point must be determined by trial and error.
There are only a few situations where the rotation of layout objects is useful; the following example shows one situation where they may be:

\begin{verbatim}
g4\< e' d'' f''\!
\override Hairpin.rotation = #'(15 -1 0)
g4\< e' d'' f''\!
\end{verbatim}

Rotating markup

All markup text can be rotated to lie at any angle by prefixing it with the \rotate command. The command takes two arguments: the angle of rotation in degrees counter-clockwise and the text to be rotated. The extents of the text are not rotated: they take their values from the extremes of the x and y coordinates of the rotated text. In the following example the outside-staff-priority property for text is set to #f to disable the automatic collision avoidance, which would push some of the text too high.

\begin{verbatim}
\override TextScript.outside-staff-priority = ##f
g4\markup { \rotate #30 "a G" }
b\markup { \rotate #30 "a B" }
des'\markup { \rotate #30 "a D-Flat" }
fis'\markup { \rotate #30 "an F-Sharp" }
\end{verbatim}

5.4.9 Aligning objects

Graphical objects which support the self-alignment-interface and/or the side-position-interface can be aligned to a previously placed object in a variety of ways. For a list of these objects, see Section “self-alignment-interface” in Internals Reference and Section “side-position-interface” in Internals Reference.

All graphical objects have a reference point, a horizontal extent and a vertical extent. The horizontal extent is a pair of numbers giving the displacements from the reference point of the left and right edges, displacements to the left being negative. The vertical extent is a pair of numbers giving the displacement from the reference point to the bottom and top edges, displacements down being negative.

An object’s position on a staff is given by the values of the X-offset and Y-offset properties. The value of X-offset gives the displacement from the X coordinate of the reference point of the parent object, and the value of Y-offset gives the displacement from the center line of the staff. The values of X-offset and Y-offset may be set directly or may be set to be calculated by procedures in order to achieve alignment with the parent object.
Note: Many objects have special positioning considerations which cause any setting of X-offset or Y-offset to be ignored or modified, even though the object supports the self-alignment-interface. Overriding the X-offset or Y-offset properties to a fixed value causes the respective self-alignment property to be disregarded.

For example, an accidental can be repositioned vertically by setting Y-offset but any changes to X-offset have no effect.

Rehearsal marks may be aligned with breakable objects such as bar lines, clef symbols, time signature symbols and key signatures. There are special properties to be found in the break-aligned-interface for positioning rehearsal marks on such objects.

See also
Notation Reference: [Using the break-alignable-interface], page 718.
Extending LilyPond: Section “Callback functions” in Extending.

Setting X-offset and Y-offset directly
Numerical values may be given to the X-offset and Y-offset properties of many objects. The following example shows three notes with the default fingering position and the positions with X-offset and Y-offset modified.

```
a' -3
a'
\tweak X-offset #0
\tweak Y-offset #0
-3
a'
\tweak X-offset #-1
\tweak Y-offset #1
-3
```

Using the side-position-interface
An object which supports the side-position-interface can be placed next to its parent object so that the specified edges of the two objects touch. The object may be placed above, below, to the right or to the left of the parent. The parent cannot be specified; it is determined by the order of elements in the input stream. Most objects have the associated note head as their parent.

The values of the side-axis and direction properties determine where the object is to be placed, as follows:

<table>
<thead>
<tr>
<th>side-axis property</th>
<th>direction property</th>
<th>Placement</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-1</td>
<td>left</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>right</td>
</tr>
<tr>
<td>1</td>
<td>-1</td>
<td>below</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>above</td>
</tr>
</tbody>
</table>
When \textit{side-axis} is 0, X-offset should be set to the procedure \texttt{ly:side-position-interface::x-aligned-side}. This procedure will return the correct value of X-offset to place the object to the left or right side of the parent according to value of direction.

When \textit{side-axis} is 1, Y-offset should be set to the procedure \texttt{ly:side-position-interface::y-aligned-side}. This procedure will return the correct value of Y-offset to place the object to the top or bottom of the parent according to value of direction.

\textbf{Using the \texttt{self-alignment-interface}}

\textbf{Self-aligning objects horizontally}

The horizontal alignment of an object which supports the \texttt{self-alignment-interface} is controlled by the value of the \texttt{self-alignment-X} property, provided the object’s X-offset property is set to \texttt{ly:self-alignment-interface::x-aligned-on-self}. \texttt{self-alignment-X} may be given any real value, in units of half the total X extent of the object. Negative values move the object to the right, positive to the left. A value of 0 centers the object on the reference point of its parent, a value of -1 aligns the left edge of the object on the reference point of its parent, and a value of 1 aligns the right edge of the object on the reference point of its parent. The symbols \texttt{LEFT}, \texttt{CENTER}, and \texttt{RIGHT} may be used instead of the values -1, 0, and 1, respectively.

Normally the \texttt{\textbackslash override} command would be used to modify the value of \texttt{self-alignment-X}, but the \texttt{\textbackslash tweak} command can be used to separately align several annotations on a single note:

```
\texttt{a'}
-\texttt{\textbackslash tweak self-alignment-X #-1}
-\texttt{\textbackslash tweak self-alignment-X #0}
-\texttt{\textbackslash tweak self-alignment-X #RIGHT}
-\texttt{\textbackslash tweak self-alignment-X #-2.5}
```

The symbols \texttt{LEFT}, \texttt{CENTER}, and \texttt{RIGHT} may be used instead of the values -1, 0, and 1, respectively.

\textbf{Self-aligning objects vertically}

Objects may be aligned vertically in an analogous way to aligning them horizontally if the Y-offset property is set to \texttt{ly:self-alignment-interface::y-aligned-on-self}. However, other mechanisms are often involved in vertical alignment: the value of Y-offset is just one variable taken into account. This may make adjusting the value of some objects tricky. The units are just half the vertical extent of the object, which is usually quite small, so quite large numbers may be required. A value of -1 aligns the lower edge of the object with the reference point of the parent object, a value of 0 aligns the center of the object with the reference point of the parent, and a value of 1 aligns the top edge of the object with the reference point of the parent. The symbols \texttt{DOWN}, \texttt{CENTER}, and \texttt{UP} may be substituted for -1, 0, and 1, respectively.

\textbf{Self-aligning objects in both directions}

By setting both X-offset and Y-offset, an object may be aligned in both directions simultaneously.
The following example shows how to adjust a fingering mark so that it nestles close to the note head.

\begin{verbatim}
a'\tweak self-alignment-X #0.5 % move horizontally left
  \tweak Y-offset #ly:self-alignment-interface::y-aligned-on-self
  \tweak self-alignment-Y #-1 % move vertically up
  \-3 % third finger
\end{verbatim}

\begin{musicexample}
\note{clef=treble,staffs=3}{c'}
\end{musicexample}

Using the \texttt{break-alignable-interface}

Rehearsal marks, text marks, bar numbers, and more generally all objects with Section “break-alignable-interface” in \textit{Internals Reference}, collectively referred to as “break-alignable objects”, may be aligned with notation objects such as bar lines, key signatures, time signatures, and generally any object with Section “break-aligned-interface” in \textit{Internals Reference}. To be more precise, break-aligned items have a \texttt{break-align-symbol} property, providing symbols that can be used as ‘anchor points’ for other objects via the \texttt{break-align-symbols} property. See Section “break-alignment-interface” in \textit{Internals Reference}, for a complete list of available symbols.

Each type of object has its own default reference point, to which break-alignable items are aligned:

\begin{verbatim}
\override Score.TextMark.self-alignment-X = #CENTER % The text mark will be aligned % to the right edge of the clef \override Score.TextMark.break-align-symbols = #'(clef)
\key a \major \clef treble \textMark "↓" e'1 % The text mark will be aligned % to the left edge of the time signature \override Score.TextMark.break-align-symbols = #'(time-signature)
\key a \major \clef treble \time 3/4 \textMark "↓" e'2. % The text mark will be centered % above the breathing mark \override Score.TextMark.break-align-symbols = #'(breathing-sign)
\key a \major \clef treble \time 4/4 e'1 \breathe \textEndMark "↓"
\end{verbatim}
A list of possible target alignment objects may be specified. If some of the objects are invisible at that point due to the setting of break-visibility or the explicit visibility settings for keys and clefs, the rehearsal mark or bar number is aligned to the first object in the list which is visible. If no objects in the list are visible the object is aligned to the bar line. If the bar line is invisible the object is aligned to the place where the bar line would be.

\override Score.TextMark.self-alignment-X = #CENTER
% The text mark will be aligned
% to the right edge of the key signature
\override Score.TextMark.break-align-symbols = #'(key-signature clef)
\key a \major
\clef treble
\textMark "↓"
e'1
% The text mark will be aligned
% to the right edge of the clef
\set Staff.explicitKeySignatureVisibility = #all-invisible
\override Score.TextMark.break-align-symbols = #'(key-signature clef)
\key a \major
\clef bass
\textMark "↓"
gis,1
% The text mark will be centered
% above the bar line
\set Staff.explicitKeySignatureVisibility = #all-invisible
\set Staff.explicitClefVisibility = #all-invisible
\override Score.TextMark.break-align-symbols = #'(key-signature clef)
\key a \major
\clef treble
\textMark "↓" 
e'1

The alignment of the break-alignable item relative to the notation object can be changed, as shown in the following example. In a score with multiple staves, this setting should be done for all the staves.

\override Score.TextMark.self-alignment-X = #CENTER
% The text mark will be aligned
% with the right edge of the key signature
\override Score.TextMark.break-align-symbols = #'(key-signature)
\key a \major
\clef treble
\time 4/4
\textMark "↓"
e'1
% The text mark will be centered
% above the key signature
\once \override \Score.KeySignature.break-align-anchor-alignment = #CENTER
\textMark "↓"
\key a \major
e'1
% The text mark will be aligned
% with the left edge of the key signature
\once \override \Score.KeySignature.break-align-anchor-alignment = #LEFT
\key a \major
\textMark "↓"
e'1

The break-alignable item can also be offset to the right or left of the left edge by an arbitrary amount. The units are staff spaces:
\override \Score.TextMark.self-alignment-X = #CENTER
% The text mark will be aligned
% with the left edge of the key signature
% and then shifted right by 3.5 staff spaces
\override \Score.TextMark.break-align-symbols = '#'(key-signature)
\once \override \Score.KeySignature.break-align-anchor = #3.5
\key a \major
\textMark "↓"
e'1
% The text mark will be aligned
% with the left edge of the key signature
% and then shifted left by 2 staff spaces
\once \override \Score.KeySignature.break-align-anchor = #-2
\key a \major
\textMark "↓"
e'1

5.4.10 Modifying stencils
All layout objects have a stencil property which is part of the grob-interface. By default, this property is usually set to a function specific to the object that is tailor-made to render the
symbol which represents it in the output. For example, the standard setting for the stencil property of the \texttt{MultiMeasureRest} object is \texttt{ly:multi-measure-rest::print}.

The standard symbol for any object can be replaced by modifying the stencil property to reference a different, specially-written, procedure. This requires a high level of knowledge of the internal workings of LilyPond, but there is an easier way which can often produce adequate results.

This is to set the stencil property to the procedure which prints text – \texttt{ly:text-interface::print} – and to add a text property to the object which is set to contain the markup text which produces the required symbol. Due to the flexibility of markup, much can be achieved – see in particular \textbf{[Graphic notation inside markup]}, page 304.

The following example demonstrates this by changing the note head symbol to a cross within a circle.

XinO = \{
\once \override NoteHead.stencil = #ly:text-interface::print
\once \override NoteHead.text = \markup { \combine \halign #-0.7 \draw-circle #0.85 #0.2 ##f \musicglyph "noteheads.s2cross" }
\relative { a' a XinO a a }
\end
\end

Any of the Feta glyphs used in the Emmentaler font can be supplied to the \musicglyph markup command – see Section A.8 \textbf{[The Emmentaler font]}, page 743.

EPS files and Postscript commands can both be inserted inline using the \epsfile and \postscript markup commands respectively – see Section A.12.3 \textbf{[Graphical markup]}, page 791.

See also

Notation Reference: \textbf{[Graphic notation inside markup]}, page 304, Section 1.8.2 \textbf{[Formatting text]}, page 293, Section A.12 \textbf{[Text markup commands]}, page 763, Section A.8 \textbf{[The Emmentaler font]}, page 743, Section A.12.3 \textbf{[Graphical markup]}, page 791.

5.4.11 Modifying shapes

Modifying ties and slurs

Ties, Slurs, PhrasingSlurs, LaissezVibrerTies and RepeatTies are all drawn as third-order Bézier curves. If the shape of the tie or slur which is calculated automatically is not optimum, the shape may be modified manually in two ways:

a. by specifying the displacements to be made to the control points of the automatically calculated Bézier curve, or
b. by explicitly specifying the positions of the four control points required to define the wanted curve.

Both methods are explained below. The first method is more suitable if only slight adjustments to the curve are required; the second may be better for creating curves which are related to just a single note.
Cubic Bézier curves

Third-order or cubic Bézier curves are defined by four control points. The first and fourth control points are precisely the starting and ending points of the curve. The intermediate two control points define the shape. Animations showing how the curve is drawn can be found on the web, but the following description and image may be helpful. The curve starts from the first control point heading directly towards the second, gradually bending over to head towards the third and continuing to bend over to head towards the fourth, arriving there traveling directly from the third control point. The curve is entirely contained in the quadrilateral defined by the four control points.

Translations, rotations and scaling of the control points all result in exactly the same operations on the curve.

Specifying displacements from current control points

In this example the automatic placement of the tie is not optimum, and \tieDown would not help.

\[
\begin{align*}
&\{ \text{e'1- 1} \} \\
&\text{relative }\{ r4 <g'_{c,}> <g_{c,}> <g_{c,}> \}
\end{align*}
\]

Adjusting the control points of the tie with \shape allows the collisions to be avoided.

The syntax of \shape is

\[-\]\shape displacements item

This will reposition the control points of item by the amounts given by displacements. The displacements argument is a list of number pairs or a list of such lists. Each element of a pair represents the displacement of one of the coordinates of a control point. If item is a string, the result is \once\override for the specified grob type. If item is a music expression, the result is the same music expression with an appropriate tweak applied.

In other words, the \shape function can act as either a \once\override command or a \tweak command depending on whether the item argument is a grob name, like “Slur”, or a music expression, like “(“. The displacements argument specifies the displacements of the four control points as a list of four pairs of (dx, dy) values in units of staff spaces (or a list of such lists if the curve has more than one segment).

The leading hyphen is required if and only if the \tweak form is being used.

So, using the same example as above and the \once\override form of \shape, this will raise the tie by half a staff space:

\[
\begin{align*}
&\{ \\
&\text{\shape #'(0 . 0.5) (0 . 0.5) (0 . 0.5) (0 . 0.5)} \text{ Tie} \\
&\text{e'1- 1}
\end{align*}
\]
This positioning of the tie is better, but maybe it should be raised more in the center. The following example does this, this time using the alternative \tweak form:

\relative { r4 <g' c,> <g c,> <g c,> }

To aid the tweaking process, the \vshape function is provided. Its name means visual shape: it acts exactly like \shape, except that the control points and polygon are additionally displayed.

\relative {
  c''8\\e4 gis a\\a4 e4 gis a\\vshape #'((0 . 0.3) (0.5 . -0.2)
    (0.5 . -0.3) (0 . -0.7)) PhrasingSlur
  c8\\e4 gis a\\a4 e4 gis a}

It is advisable to start with \vshape and adjust until a satisfactory curve is obtained, then simply remove the “v” letter in \vshape.

Two different curves starting at the same musical moment may also be shaped:

\relative {
  c''8\\e4 e c\\a4 e c\\shape #'((0.7 . -0.4) (0.5 . -0.4)
    (0.3 . -0.3) (0 . -0.2)) Slur
  \shape #'((0 . 0) (0 . 0.5)
    (0 . 0.5) (0 . 0)) PhrasingSlur
  c8\\e4 e c\\a4 e c}
The \shape function can also displace the control points of curves which stretch across line breaks. Each piece of the broken curve can be given its own list of offsets. If changes to a particular segment are not needed, the empty list can serve as a placeholder. In this example the line break makes the single slur look like two:

```
\relative {
c'4(f g c
\break
d,4 c' f, c)
}
```

Changing the shapes of the two halves of the slur makes it clearer that the slur continues over the line break:

```
% () may be used as a shorthand for ((0 . 0) (0 . 0) (0 . 0) (0 . 0))
% if any of the segments does not need to be changed
\relative c' {
 \shape #'((0 . 0) (0 . 0) (0 . 0) (0 . 1))
 ((0.5 . 1.5) (1.0) (0 . 0) (0 . -1.5))
 Slur
c4(f g c
\break
d,4 c' f, c)
}
```

If an S-shaped curve is required the control points must always be adjusted manually – LilyPond will never select such shapes automatically.

```
\relative c'' {
c8(e b-> f d' a e-> g)
\shape #'(0. -1) (5.5 . -0.5) (-5.5 . -10.5) (0 . -5.5)
 PhrasingSlur
c8\(e b-> f d' a e-> g\)
}
```
Specifying control points explicitly

The coordinates of the Bézier control points are specified in units of staff spaces. The X coordinate is relative to the reference point of the note to which the tie or slur is attached, and the Y coordinate is relative to the staff center line. The coordinates are specified as a list of four pairs of decimal numbers (reals). One approach is to estimate the coordinates of the two end points, and then guess the two intermediate points. The optimum values are then found by trial and error. Be aware that these values may need to be manually adjusted if any further changes are made to the music or the layout.

One situation where specifying the control points explicitly is preferable to specifying displacements is when they need to be specified relative to a single note. Here is an example of this. It shows one way of indicating a slur extending into alternative sections of a volta repeat.

\relative { 
  \relative { 
    \repeat volta 3 { c4 d e f } 
    \alternative { 
      \volta 1 { g2 d } 
      \volta 2 { 
        g2 
        % create a slur and move it to a new position 
        % the <> is just an empty chord to carry the slur termination 
        \tweak control-points #'((-2 . 3.8) (-1 . 3.9) (0 . 4) (1 . 3.4)) ( <> ) 
        f, 
      } 
    } 
    \volta 3 { 
      e'2 
      % create a slur and move it to a new position 
      \tweak control-points #'((-2 . 3) (-1 . 3.1) (0 . 3.2) (1 . 2.4)) ( <> ) 
      f, 
    } 
  } 
}

Known issues and warnings

It is not possible to modify shapes of ties or slurs by changing the control-points property if there are multiple ties or slurs at the same musical moment – the \tweak command will also not work in this case. However, the tie-configuration property of TieColumn can be overridden to set start line and direction as required.

See also

Internals Reference: Section “TieColumn” in Internals Reference.
Appendix A Notation manual tables

A.1 Chord name chart
The following chart shows LilyPond’s standard system for printing chord names, along with the pitches they represent. Additional (unsupported) naming systems are also demonstrated in the “Chord names alternative” snippet in Section “Chords” in Snippets, including the notation inspired by Harald Banter (1982) that was used by default in early LilyPond releases (up to version 1.7).

![Chord Name Chart]

A.2 Common chord modifiers
The following table shows chord modifiers that can be used to generate standard chord structures.

<table>
<thead>
<tr>
<th>Type</th>
<th>Interval</th>
<th>Modifier</th>
<th>Example</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chord Type</td>
<td>Root Note</td>
<td>Quality</td>
<td>Interval</td>
<td>Symbol</td>
</tr>
<tr>
<td>------------------</td>
<td>-------------</td>
<td>-----------------</td>
<td>------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Major</td>
<td>Major third, perfect fifth</td>
<td>5 or nothing</td>
<td>c1:5</td>
<td></td>
</tr>
<tr>
<td>Minor</td>
<td>Minor third, perfect fifth</td>
<td>m or m5</td>
<td>c1:m</td>
<td></td>
</tr>
<tr>
<td>Augmented</td>
<td>Major third, augmented fifth</td>
<td>aug</td>
<td>c1:aug</td>
<td></td>
</tr>
<tr>
<td>Diminished</td>
<td>Minor third, diminished fifth</td>
<td>dim</td>
<td>c1:dim</td>
<td></td>
</tr>
<tr>
<td>Dominant seventh</td>
<td>Major triad, minor seventh</td>
<td>7</td>
<td>c1:7</td>
<td></td>
</tr>
<tr>
<td>Major seventh</td>
<td>Major triad, major seventh</td>
<td>maj7 or maj</td>
<td>c1:maj7</td>
<td></td>
</tr>
<tr>
<td>Minor seventh</td>
<td>Minor triad, minor seventh</td>
<td>m7</td>
<td>c1:m7</td>
<td></td>
</tr>
<tr>
<td>Diminished seventh</td>
<td>Diminished triad, diminished seventh</td>
<td>dim7</td>
<td>c1:dim7</td>
<td></td>
</tr>
<tr>
<td>Augmented seventh</td>
<td>Augmented triad, minor seventh</td>
<td>aug7</td>
<td>c1:aug7</td>
<td></td>
</tr>
<tr>
<td>Half-diminished seventh</td>
<td>Diminished triad, minor seventh</td>
<td>m7.5-</td>
<td>c1:m7.5-</td>
<td></td>
</tr>
<tr>
<td>Minor-major seventh</td>
<td>Minor triad, major seventh</td>
<td>m7+</td>
<td>c1:m7+</td>
<td></td>
</tr>
<tr>
<td>Notation</td>
<td>Description</td>
<td>Type</td>
<td>Number</td>
<td>Symbol</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>Major sixth</td>
<td>Major triad, sixth</td>
<td>6</td>
<td>c1:6</td>
<td></td>
</tr>
<tr>
<td>Minor sixth</td>
<td>Minor triad, sixth</td>
<td>m6</td>
<td>c1:m6</td>
<td></td>
</tr>
<tr>
<td>Dominant ninth</td>
<td>Dominant seventh, major ninth</td>
<td>9</td>
<td>c1:9</td>
<td></td>
</tr>
<tr>
<td>Major ninth</td>
<td>Major seventh, major ninth</td>
<td>maj9</td>
<td>c1:maj9</td>
<td></td>
</tr>
<tr>
<td>Minor ninth</td>
<td>Minor seventh, major ninth</td>
<td>m9</td>
<td>c1:m9</td>
<td></td>
</tr>
<tr>
<td>Dominant eleventh</td>
<td>Dominant ninth, perfect eleventh</td>
<td>11</td>
<td>c1:11</td>
<td></td>
</tr>
<tr>
<td>Major eleventh</td>
<td>Major ninth, perfect eleventh</td>
<td>maj11</td>
<td>c1:maj11</td>
<td></td>
</tr>
<tr>
<td>Minor eleventh</td>
<td>Minor ninth, perfect eleventh</td>
<td>m11</td>
<td>c1:m11</td>
<td></td>
</tr>
<tr>
<td>Dominant thirteenth</td>
<td>Dominant ninth, major thirteenth</td>
<td>13</td>
<td>c1:13</td>
<td></td>
</tr>
<tr>
<td>Dominant thirteenth</td>
<td>Dominant eleventh, major thirteenth</td>
<td>13.11</td>
<td>c1:13.11</td>
<td></td>
</tr>
<tr>
<td>Major thirteenth</td>
<td>Major eleventh, major thirteenth</td>
<td>maj13.11</td>
<td>c1:maj13.11</td>
<td></td>
</tr>
</tbody>
</table>
A.3 Predefined string tunings

The chart below shows the predefined string tunings.

**Guitar tunings**

- **guitar-tuning**
- **guitar-seven-string-tuning**
- **guitar-drop-d-tuning**

**Bass tunings**

- **bass-tuning**
- **bass-four-string-tuning**
- **bass-drop-d-tuning**

**Bass tunings**

- **bass-five-string-tuning**
- **bass-six-string-tuning**
Appendix A: Notation manual tables

Mandolin tunings

Banjo tunings

Ukulele tunings

Orchestral string tunings

A.4 Predefined fretboard diagrams

Diagrams for Guitar
Appendix A: Notation manual tables

Diagrams for Ukulele

A#  A#m  A#+  A#o  A#o7  A#7  A#∆  A#m7  A#9

Bb  Bbm  Bb+  Bbº  Bbº7  Bb7  Bb∆  Bbm7  Bb9

B  Bm  B+  Bº  Bº7  B7  B∆  Bm7  B9

C  Cm  C+  Cº  C7  C∆  Cm7  C6  Csus2  Csus4  Cº9

C#  C#m  C#+  C#º  C#7  C#∆  C#m7  C#6  C#sus2  C#sus4  C#º9

Db  Dbm  Db+  Dbº  Dbº7  Db7  Db∆  Dbm7  Db6  Dbºsus2  Dbºsus4  Db9

D  Dm  D+  Dº  D7  D∆  Dm7  D6  Dsus2  Dsus4  Dº9

D#  D#m  D#+  D#º  D#7  D#∆  D#m7  D#6  D#sus2  D#sus4  D#º9

Eb  Ebm  Eb+  Ebº  Ebº7  Eb7  Eb∆  Ebm7  Eb6  Ebºsus2  Ebºsus4  Eb9

E  Em  E+  Eº  E7  E∆  Em7  Eº  Esus2  Esus4  Eº9
Diagrams for Mandolin
A.5 Predefined paper sizes

Paper sizes are defined in file scm/paper.scm.

ISO 216, A series

"a10" 26 mm x 37 mm (1.02 in x 1.46 in)
"a9" 37 mm x 52 mm (1.46 in x 2.05 in)
"a8" 52 mm x 74 mm (2.05 in x 2.91 in)
"a7" 74 mm x 105 mm (2.91 in x 4.13 in)
"a6" 105 mm x 148 mm (4.13 in x 5.83 in)
"a5" 148 mm x 210 mm (5.83 in x 8.27 in)
"a4" 210 mm x 297 mm (8.27 in x 11.69 in)
"a3" 297 mm x 420 mm (11.69 in x 16.54 in)
"a2" 420 mm x 594 mm (16.54 in x 23.39 in)
"a1" 594 mm x 841 mm (23.39 in x 33.11 in)
"a0" 841 mm x 1189 mm (33.11 in x 46.81 in)
Appendix A: Notation manual tables

Two extended sizes as defined in DIN 476

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;2a0&quot;</td>
<td>1189 mm x 1682 mm</td>
</tr>
<tr>
<td>&quot;4a0&quot;</td>
<td>1682 mm x 2378 mm</td>
</tr>
</tbody>
</table>

ISO 216, B series

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;b10&quot;</td>
<td>31 mm x 44 mm</td>
</tr>
<tr>
<td>&quot;b9&quot;</td>
<td>44 mm x 62 mm</td>
</tr>
<tr>
<td>&quot;b8&quot;</td>
<td>62 mm x 88 mm</td>
</tr>
<tr>
<td>&quot;b7&quot;</td>
<td>88 mm x 125 mm</td>
</tr>
<tr>
<td>&quot;b6&quot;</td>
<td>125 mm x 176 mm</td>
</tr>
<tr>
<td>&quot;b5&quot;</td>
<td>176 mm x 250 mm</td>
</tr>
<tr>
<td>&quot;b4&quot;</td>
<td>250 mm x 353 mm</td>
</tr>
<tr>
<td>&quot;b3&quot;</td>
<td>353 mm x 500 mm</td>
</tr>
<tr>
<td>&quot;b2&quot;</td>
<td>500 mm x 707 mm</td>
</tr>
<tr>
<td>&quot;b1&quot;</td>
<td>707 mm x 1000 mm</td>
</tr>
<tr>
<td>&quot;b0&quot;</td>
<td>1000 mm x 1414 mm</td>
</tr>
</tbody>
</table>

ISO 269, C series

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;c10&quot;</td>
<td>28 mm x 40 mm</td>
</tr>
<tr>
<td>&quot;c9&quot;</td>
<td>40 mm x 57 mm</td>
</tr>
<tr>
<td>&quot;c8&quot;</td>
<td>57 mm x 81 mm</td>
</tr>
<tr>
<td>&quot;c7&quot;</td>
<td>81 mm x 114 mm</td>
</tr>
<tr>
<td>&quot;c6&quot;</td>
<td>114 mm x 162 mm</td>
</tr>
<tr>
<td>&quot;c5&quot;</td>
<td>162 mm x 229 mm</td>
</tr>
<tr>
<td>&quot;c4&quot;</td>
<td>229 mm x 324 mm</td>
</tr>
<tr>
<td>&quot;c3&quot;</td>
<td>324 mm x 458 mm</td>
</tr>
<tr>
<td>&quot;c2&quot;</td>
<td>458 mm x 648 mm</td>
</tr>
<tr>
<td>&quot;c1&quot;</td>
<td>648 mm x 917 mm</td>
</tr>
<tr>
<td>&quot;c0&quot;</td>
<td>917 mm x 1297 mm</td>
</tr>
</tbody>
</table>

North American paper sizes

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;junior-legal&quot;</td>
<td>5.0 in x 8.0 in</td>
</tr>
<tr>
<td>&quot;legal&quot;</td>
<td>8.5 in x 14.0 in</td>
</tr>
<tr>
<td>&quot;ledger&quot;</td>
<td>17.0 in x 11.0 in</td>
</tr>
<tr>
<td>&quot;17x11&quot;</td>
<td>17.0 in x 11.0 in</td>
</tr>
<tr>
<td>&quot;letter&quot;</td>
<td>8.5 in x 11.0 in</td>
</tr>
<tr>
<td>&quot;tabloid&quot;</td>
<td>11.0 in x 17.0 in</td>
</tr>
<tr>
<td>&quot;11x17&quot;</td>
<td>11.0 in x 17.0 in</td>
</tr>
</tbody>
</table>

Sizes by IEEE Printer Working Group, for children's writing

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;government-letter&quot;</td>
<td>8.0 in x 10.5 in</td>
</tr>
<tr>
<td>&quot;government-legal&quot;</td>
<td>8.5 in x 13.0 in</td>
</tr>
<tr>
<td>&quot;philippine-legal&quot;</td>
<td>8.5 in x 13.0 in</td>
</tr>
</tbody>
</table>

ANSI sizes

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;ansi a&quot;</td>
<td>8.5 in x 11.0 in</td>
</tr>
<tr>
<td>&quot;ansi b&quot;</td>
<td>11.0 in x 17.0 in</td>
</tr>
<tr>
<td>&quot;ansi c&quot;</td>
<td>17.0 in x 22.0 in</td>
</tr>
<tr>
<td>&quot;ansi d&quot;</td>
<td>22.0 in x 34.0 in</td>
</tr>
<tr>
<td>&quot;ansi e&quot;</td>
<td>34.0 in x 44.0 in</td>
</tr>
<tr>
<td>&quot;engineering f&quot;</td>
<td>28.0 in x 40.0 in</td>
</tr>
</tbody>
</table>

North American architectural sizes

<table>
<thead>
<tr>
<th>Size</th>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>&quot;arch a&quot;</td>
<td>9.0 in x 12.0 in</td>
</tr>
<tr>
<td>&quot;arch b&quot;</td>
<td>12.0 in x 18.0 in</td>
</tr>
</tbody>
</table>
### Appendix A: Notation manual tables

"arch c"	18.0 in x 24.0 in (457 mm x 610 mm)
"arch d"	24.0 in x 36.0 in (610 mm x 914 mm)
"arch e"	36.0 in x 48.0 in (914 mm x 1219 mm)
"arch e1"	30.0 in x 42.0 in (762 mm x 1067 mm)

**Other sizes, including antique sizes still used in the United Kingdom**

"statement"	5.5 in x 8.5 in (140 mm x 216 mm)
"half letter"	5.5 in x 8.5 in (140 mm x 216 mm)
"quarto"	8.0 in x 10.0 in (203 mm x 254 mm)
"octavo"	6.75 in x 10.5 in (171 mm x 267 mm)
"executive"	7.25 in x 10.5 in (184 mm x 267 mm)
"monarch"	7.25 in x 10.5 in (184 mm x 267 mm)
"foolscape"	8.27 in x 13.0 in (210 mm x 330 mm)
"folio"	8.27 in x 13.0 in (210 mm x 330 mm)
"super-b"	13.0 in x 19.0 in (330 mm x 483 mm)
"post"	15.5 in x 19.5 in (394 mm x 495 mm)
"crown"	15.0 in x 20.0 in (381 mm x 508 mm)
"large post"	16.5 in x 21.0 in (419 mm x 533 mm)
"demy"	17.5 in x 22.5 in (445 mm x 572 mm)
"medium"	18.0 in x 23.0 in (457 mm x 584 mm)
"broadsheet"	18.0 in x 24.0 in (457 mm x 610 mm)
"royal"	20.0 in x 25.0 in (508 mm x 635 mm)
"elephant"	23.0 in x 28.0 in (584 mm x 711 mm)
"double demy"	22.5 in x 35.0 in (572 mm x 889 mm)
"quad demy"	35.0 in x 45.0 in (889 mm x 1143 mm)
"atlas"	26.0 in x 34.0 in (660 mm x 864 mm)
"imperial"	22.0 in x 30.0 in (559 mm x 762 mm)
"antiquarian"	31.0 in x 53.0 in (787 mm x 1346 mm)

**PA4-based sizes**

"pa10"	26 mm x 35 mm (1.02 in x 1.38 in)
"pa9"	35 mm x 52 mm (1.38 in x 2.05 in)
"pa8"	52 mm x 70 mm (2.05 in x 2.76 in)
"pa7"	70 mm x 105 mm (2.76 in x 4.13 in)
"pa6"	105 mm x 140 mm (4.13 in x 5.51 in)
"pa5"	140 mm x 210 mm (5.51 in x 8.27 in)
"pa4"	210 mm x 280 mm (8.27 in x 11.02 in)
"pa3"	280 mm x 420 mm (11.02 in x 16.54 in)
"pa2"	420 mm x 560 mm (16.54 in x 22.05 in)
"pa1"	560 mm x 840 mm (22.05 in x 33.07 in)
"pa0"	840 mm x 1120 mm (33.07 in x 44.09 in)

**Additional format for use in Southeast Asia and Australia**

| "f4" | 210 mm x 330 mm (8.27 in x 12.99 in) |

### A.6 MIDI instruments

The following is a list of names that can be used for the midiInstrument property. Each is presented with its number among the General MIDI Standard’s 128 Program Numbers.

<table>
<thead>
<tr>
<th>1</th>
<th>acoustic grand</th>
<th>2</th>
<th>bright acoustic</th>
<th>3</th>
<th>electric grand</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>honky-tonk</td>
<td>5</td>
<td>electric piano 1</td>
<td>6</td>
<td>electric piano 2</td>
</tr>
<tr>
<td>7</td>
<td>harpsichord</td>
<td>8</td>
<td>clav</td>
<td>9</td>
<td>celesta</td>
</tr>
<tr>
<td>10</td>
<td>glockenspiel</td>
<td>11</td>
<td>music box</td>
<td>12</td>
<td>vibraphone</td>
</tr>
<tr>
<td>13</td>
<td>marimba</td>
<td>14</td>
<td>xylophone</td>
<td>15</td>
<td>tubular bells</td>
</tr>
<tr>
<td>16</td>
<td>dulcimer</td>
<td>17</td>
<td>drawbar organ</td>
<td>18</td>
<td>percussive organ</td>
</tr>
<tr>
<td>No.</td>
<td>Instrument</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>rock organ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>church organ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>reed organ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>accordion</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>harmonica</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>concertina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>acoustic guitar (nylon)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>acoustic guitar (steel)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>electric guitar (jazz)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>electric guitar (muted)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>overdriven guitar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>acoustic bass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>guitar harmonics</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>tremolo strings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>timpani</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>electric bass (finger)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>electric bass (pick)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>synth bass 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>slap bass 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>slap bass 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>synth bass 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>synth bass 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>violin</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>viola</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>cello</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>contrabass</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>tremolo strings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>pizzicato strings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>47</td>
<td>orchestral harp</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>48</td>
<td>synth strings 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>string ensemble 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>string ensemble 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>synth strings 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>synthstrings 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>choir ahs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>voice oohs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>synth voice</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>orchestra kit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>trumpet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>trombone</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>tuba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>synth strings 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>french horn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>brass section</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>synth brass 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>synth brass 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>soprano sax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>alto sax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>tenor sax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>baritone sax</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>oboe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>english horn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>bassoon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td>clarinet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>73</td>
<td>piccolo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>74</td>
<td>flute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>75</td>
<td>recorder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>76</td>
<td>pan flute</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>77</td>
<td>blown bottle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>78</td>
<td>shakuhachi</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>79</td>
<td>whistle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>ocarina</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>81</td>
<td>lead 1 (square)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>82</td>
<td>lead 2 (sawtooth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td>lead 3 (calliope)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>84</td>
<td>lead 4 (chiff)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>85</td>
<td>lead 5 (charang)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>86</td>
<td>lead 6 (voice)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>87</td>
<td>lead 7 (fifths)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>88</td>
<td>lead 8 (bass+lead)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>89</td>
<td>pad 1 (new age)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>pad 2 (warm)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>pad 3 (poly synth)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>92</td>
<td>pad 4 (choir)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>93</td>
<td>pad 5 (bowed)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>94</td>
<td>pad 6 (metallic)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>pad 7 (halo)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>pad 8 (sweep)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>fx 1 (rain)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>fx 2 (soundtrack)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>fx 3 (crystal)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>fx 4 (atmosphere)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>fx 5 (brightness)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>fx 6 (goblins)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>fx 7 (echoes)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>fx 8 (sci-fi)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>sitar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>banjo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>shamisen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>koto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>kalimba</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>bagpipe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>fiddle</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>shanai</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>tinkle bell</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>agogo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>steel drums</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>woodblock</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>taiko drum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>melodic tom</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>synth drum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>reverse cymbal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>guitar fret noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>breath noise</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>seashore</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>bird tweet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>telephone ring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>helicopter</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>applause</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>gunshot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>129</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The drum kits listed below are also possible.

<table>
<thead>
<tr>
<th>No.</th>
<th>Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>standard kit</td>
</tr>
<tr>
<td>25</td>
<td>electronic kit</td>
</tr>
<tr>
<td>41</td>
<td>brush kit</td>
</tr>
<tr>
<td>128</td>
<td>mt-32 kit/cm-64 kit</td>
</tr>
</tbody>
</table>

### A.7 List of colors

#### Normal colors
See [Coloring objects], page 264, for detailed usage syntax.

- black
- blue
- red
- green
- white
- cyan
- magenta
- yellow
- grey
- darkred
- darkgreen
- darkblue
- darkcyan
- darkmagenta
- darkyellow

#### CSS color names

CSS color names may be used as-is in string arguments.

- aliceblue
- aqua
- antiquewhite
- beige
- bisque
- black
- blue
- blueviolet
- blanchedalmond
- brown
CSS color definitions differ from X color names for the following colors: green, grey, maroon, purple.
## X color names

X11 color names ([https://en.wikipedia.org/wiki/X11_color_names](https://en.wikipedia.org/wiki/X11_color_names)) offer a wider choice than CSS names. They come in several variants:

- Any name that is spelled as a single word with capitalization (e.g., ‘LightSlateBlue’) can also be spelled as space-separated words with or without capitalization (e.g., ‘light slate blue’).
- The word ‘grey’ can always be spelled ‘gray’ (e.g., ‘DarkSlateGray’), without any difference in the output.
- Some names can take a numerical suffix (e.g., ‘LightSalmon4’).

Use the Scheme function `x11-color` to access them.

### Color Names without a numerical suffix

The following table presents all color names that may be used without a numerical suffix.

<table>
<thead>
<tr>
<th>Color Name</th>
<th>Color Name</th>
<th>Color Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>aliceblue</td>
<td>antiquewhite</td>
<td>aquamarine</td>
</tr>
<tr>
<td>azure</td>
<td>beige</td>
<td>bisque</td>
</tr>
<tr>
<td>black</td>
<td>blanchedalmond</td>
<td>blue</td>
</tr>
<tr>
<td>blueviolet</td>
<td>brown</td>
<td>burlywood</td>
</tr>
<tr>
<td>cadetblue</td>
<td>chartreuse</td>
<td>chocolate</td>
</tr>
<tr>
<td>coral</td>
<td>cornflowerblue</td>
<td>cornsilk</td>
</tr>
<tr>
<td>cyan</td>
<td>darkblue</td>
<td>darkcyan</td>
</tr>
<tr>
<td>darkgoldenrod</td>
<td>darkgray</td>
<td>darkgreen</td>
</tr>
<tr>
<td>darkgrey</td>
<td>darkkhaki</td>
<td>darkmagenta</td>
</tr>
<tr>
<td>darkolivegreen</td>
<td>darkorange</td>
<td>darkorchid</td>
</tr>
<tr>
<td>darkred</td>
<td>darksalmon</td>
<td>darkseagreen</td>
</tr>
<tr>
<td>darkslateblue</td>
<td>darkslategrey</td>
<td>darkslategrey</td>
</tr>
<tr>
<td>darkturquoise</td>
<td>darkviolet</td>
<td>deepink</td>
</tr>
<tr>
<td>deepskyblue</td>
<td>dimgray</td>
<td>dimgrey</td>
</tr>
<tr>
<td>dodgerblue</td>
<td>firebrick</td>
<td>floralwhite</td>
</tr>
<tr>
<td>forestgreen</td>
<td>gainsboro</td>
<td>ghostwhite</td>
</tr>
<tr>
<td>gold</td>
<td>goldenrod</td>
<td>gray</td>
</tr>
<tr>
<td>green</td>
<td>greenyellow</td>
<td>grey</td>
</tr>
<tr>
<td>honeydew</td>
<td>hotpink</td>
<td>indianred</td>
</tr>
<tr>
<td>ivory</td>
<td>khaki</td>
<td>lavender</td>
</tr>
<tr>
<td>lavenderblush</td>
<td>lawngreen</td>
<td>lemonchiffon</td>
</tr>
<tr>
<td>lightblue</td>
<td>lightcoral</td>
<td>lightcyan</td>
</tr>
<tr>
<td>lightgoldenrod</td>
<td>lightgoldenrodyellow</td>
<td>lightgray</td>
</tr>
<tr>
<td>lightgreen</td>
<td>lightgrey</td>
<td>lightpink</td>
</tr>
<tr>
<td>lightsalmon</td>
<td>lightseagreen</td>
<td>lightskyblue</td>
</tr>
<tr>
<td>lightslateblue</td>
<td>lightslategrey</td>
<td>lightslategrey</td>
</tr>
<tr>
<td>lightsteelblue</td>
<td>lightyellow</td>
<td>limegreen</td>
</tr>
<tr>
<td>linen</td>
<td>magenta</td>
<td>maroon</td>
</tr>
<tr>
<td>mediumaquamarine</td>
<td>mediumblue</td>
<td>mediummorchid</td>
</tr>
<tr>
<td>mediumpurple</td>
<td>mediumseagreen</td>
<td>mediumslateblue</td>
</tr>
<tr>
<td>mediumspringgreen</td>
<td>mediumturquoise</td>
<td>mediumvioletred</td>
</tr>
<tr>
<td>midnightblue</td>
<td>mintcream</td>
<td>mistyrose</td>
</tr>
<tr>
<td>moccasin</td>
<td>navajowhite</td>
<td>navy</td>
</tr>
<tr>
<td>navyblue</td>
<td>oldlace</td>
<td>olivedrab</td>
</tr>
<tr>
<td>orange</td>
<td>orangeired</td>
<td>orchid</td>
</tr>
<tr>
<td>palegoldenrod</td>
<td>palegreen</td>
<td>paleturquoise</td>
</tr>
</tbody>
</table>
A subset of the X11 color names may be used with a numerical suffix in the range 1 to 4 to get darker shades. Note that for such colors, color `foo` is identical to color `foo1`.

<table>
<thead>
<tr>
<th>Color Name</th>
<th>Color Name</th>
<th>Color Name</th>
<th>Color Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>antiquewhite1</td>
<td>antiquewhite2</td>
<td>antiquewhite3</td>
<td>antiquewhite4</td>
</tr>
<tr>
<td>aqua</td>
<td>aquamarine2</td>
<td>aquamarine3</td>
<td>aquamarine4</td>
</tr>
<tr>
<td>azure1</td>
<td>azure2</td>
<td>azure3</td>
<td>azure4</td>
</tr>
<tr>
<td>bisque1</td>
<td>bisque2</td>
<td>bisque3</td>
<td>bisque4</td>
</tr>
<tr>
<td>blue1</td>
<td>blue2</td>
<td>blue3</td>
<td>blue4</td>
</tr>
<tr>
<td>brown1</td>
<td>brown2</td>
<td>brown3</td>
<td>brown4</td>
</tr>
<tr>
<td>burlywood1</td>
<td>burlywood2</td>
<td>burlywood3</td>
<td>burlywood4</td>
</tr>
<tr>
<td>cadetblue1</td>
<td>cadetblue2</td>
<td>cadetblue3</td>
<td>cadetblue4</td>
</tr>
<tr>
<td>chartreuse1</td>
<td>chartreuse2</td>
<td>chartreuse3</td>
<td>chartreuse4</td>
</tr>
<tr>
<td>chocolate1</td>
<td>chocolate2</td>
<td>chocolate3</td>
<td>chocolate4</td>
</tr>
<tr>
<td>coral1</td>
<td>coral2</td>
<td>coral3</td>
<td>coral4</td>
</tr>
<tr>
<td>cornsilk1</td>
<td>cornsilk2</td>
<td>cornsilk3</td>
<td>cornsilk4</td>
</tr>
<tr>
<td>cyan1</td>
<td>cyan2</td>
<td>cyan3</td>
<td>cyan4</td>
</tr>
<tr>
<td>darkgoldenrod1</td>
<td>darkgoldenrod2</td>
<td>darkgoldenrod3</td>
<td>darkgoldenrod4</td>
</tr>
<tr>
<td>darkolivegreen1</td>
<td>darkolivegreen2</td>
<td>darkolivegreen3</td>
<td>darkolivegreen4</td>
</tr>
<tr>
<td>darkorange1</td>
<td>darkorange2</td>
<td>darkorange3</td>
<td>darkorange4</td>
</tr>
<tr>
<td>darkorchid1</td>
<td>darkorchid2</td>
<td>darkorchid3</td>
<td>darkorchid4</td>
</tr>
<tr>
<td>darkseagreen1</td>
<td>darkseagreen2</td>
<td>darkseagreen3</td>
<td>darkseagreen4</td>
</tr>
<tr>
<td>darkslategray1</td>
<td>darkslategray2</td>
<td>darkslategray3</td>
<td>darkslategray4</td>
</tr>
<tr>
<td>deeppink1</td>
<td>deeppink2</td>
<td>deeppink3</td>
<td>deeppink4</td>
</tr>
<tr>
<td>deepskyblue1</td>
<td>deepskyblue2</td>
<td>deepskyblue3</td>
<td>deepskyblue4</td>
</tr>
<tr>
<td>dodgerblue1</td>
<td>dodgerblue2</td>
<td>dodgerblue3</td>
<td>dodgerblue4</td>
</tr>
<tr>
<td>firebrick1</td>
<td>firebrick2</td>
<td>firebrick3</td>
<td>firebrick4</td>
</tr>
<tr>
<td>gold1</td>
<td>gold2</td>
<td>gold3</td>
<td>gold4</td>
</tr>
<tr>
<td>goldenrod1</td>
<td>goldenrod2</td>
<td>goldenrod3</td>
<td>goldenrod4</td>
</tr>
<tr>
<td>green1</td>
<td>green2</td>
<td>green3</td>
<td>green4</td>
</tr>
<tr>
<td>honeydew1</td>
<td>honeydew2</td>
<td>honeydew3</td>
<td>honeydew4</td>
</tr>
<tr>
<td>hotpink1</td>
<td>hotpink2</td>
<td>hotpink3</td>
<td>hotpink4</td>
</tr>
<tr>
<td>indianred1</td>
<td>indianred2</td>
<td>indianred3</td>
<td>indianred4</td>
</tr>
<tr>
<td>ivory1</td>
<td>ivory2</td>
<td>ivory3</td>
<td>ivory4</td>
</tr>
<tr>
<td>khaki1</td>
<td>khaki2</td>
<td>khaki3</td>
<td>khaki4</td>
</tr>
<tr>
<td>lavenderblush1</td>
<td>lavenderblush2</td>
<td>lavenderblush3</td>
<td>lavenderblush4</td>
</tr>
<tr>
<td>lemonchiffon1</td>
<td>lemonchiffon2</td>
<td>lemonchiffon3</td>
<td>lemonchiffon4</td>
</tr>
<tr>
<td>lightblue1</td>
<td>lightblue2</td>
<td>lightblue3</td>
<td>lightblue4</td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

Grey Scale
The set of X11 colors also contains a palette of 101 gray shades.
The table for color names greyN looks the same.

Color-blind-safe colors

The Scheme function universal-color provides a set of eight colors (https://jfly.uni-koeln.de/color) designed to be unambiguous to people with dichromatism.

<table>
<thead>
<tr>
<th>black</th>
<th>orange</th>
<th>skyblue</th>
<th>bluegreen</th>
</tr>
</thead>
<tbody>
<tr>
<td>yellow</td>
<td>blue</td>
<td>vermillion</td>
<td>redpurple</td>
</tr>
</tbody>
</table>

A.8 The Emmentaler font

The Emmentaler font consists of two subsets of glyphs. “Feta”, used for classical notation and “Parmesan”, used for Ancient notation.

Any glyph within the Emmentaler font can be accessed directly by using text markup along with the name of the glyph (as shown in the tables below). For example;

\[ g \text{\textbackslash markup \{\texttt{musicglyph \"scripts.segno\"} \}} \]

or

\texttt{\textbackslash markup \{\texttt{musicglyph \"five\"}\}}

For more information see Section 1.8.2 [Formatting text], page 293.

Clef glyphs

\[
\begin{align*}
\text{clefs.C} & \quad \text{clefs.C\_change} \\
\text{clefs.varC} & \quad \text{clefs.varC\_change} \\
\text{clefs.F} & \quad \text{clefs.F\_change} \\
\text{clefs.G} & \quad \text{clefs.G\_change} \\
\text{clefs.GG} & \quad \text{clefs.GG\_change}
\end{align*}
\]
### Appendix A: Notation manual tables

<table>
<thead>
<tr>
<th>clefs.tenorG</th>
<th>clefs.tenorG_change</th>
</tr>
</thead>
<tbody>
<tr>
<td>clefs.percussion</td>
<td>clefs.percussion_change</td>
</tr>
<tr>
<td>clefs.varpercussion</td>
<td>clefs.varpercussion_change</td>
</tr>
<tr>
<td>clefs.tab</td>
<td>clefs.tab_change</td>
</tr>
</tbody>
</table>

#### Time Signature glyphs

<table>
<thead>
<tr>
<th>timesig.C44</th>
<th>timesig.C22</th>
</tr>
</thead>
</table>

#### Number glyphs

<table>
<thead>
<tr>
<th>plus</th>
<th>comma</th>
</tr>
</thead>
<tbody>
<tr>
<td>hyphen</td>
<td>period</td>
</tr>
<tr>
<td>figuredash</td>
<td>endash</td>
</tr>
<tr>
<td>zero</td>
<td>one</td>
</tr>
<tr>
<td>two</td>
<td>three</td>
</tr>
<tr>
<td>four</td>
<td>four.alt</td>
</tr>
<tr>
<td>five</td>
<td>six</td>
</tr>
<tr>
<td>seven</td>
<td>seven.alt</td>
</tr>
<tr>
<td>eight</td>
<td>nine</td>
</tr>
<tr>
<td>fixedwidth.zero</td>
<td>fixedwidth.one</td>
</tr>
<tr>
<td>fixedwidth.two</td>
<td>fixedwidth.three</td>
</tr>
<tr>
<td>fixedwidth.four</td>
<td>fixedwidth.four.alt</td>
</tr>
<tr>
<td>fixedwidth.five</td>
<td>fixedwidth.six</td>
</tr>
<tr>
<td>fixedwidth.seven</td>
<td>fixedwidth.seven.alt</td>
</tr>
<tr>
<td>fixedwidth.eight</td>
<td>fixedwidth.nine</td>
</tr>
<tr>
<td>fattened.zero</td>
<td>fattened.one</td>
</tr>
<tr>
<td>fattened.two</td>
<td>fattened.three</td>
</tr>
<tr>
<td>fattened.four</td>
<td>fattened.four.alt</td>
</tr>
<tr>
<td>fattened.five</td>
<td>fattened.six</td>
</tr>
</tbody>
</table>
### Appendix A: Notation manual tables

<table>
<thead>
<tr>
<th>Fattened fonts</th>
<th>Figured bass symbol glyphs</th>
<th>Accidental glyphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>fattened.seven</td>
<td>figbass.twoplus</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.eight</td>
<td>figbass.fiveplus</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.zero</td>
<td>figbass.sevenstroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.two</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.four</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.five</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.seven.alt</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.nine</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.one</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.three</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.six</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.seven</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>fattened.fixedwidth.eight</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>u2007</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
<tr>
<td>u2009</td>
<td>figbass.ninestroked</td>
<td>accidentals.sharp</td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

<table>
<thead>
<tr>
<th>accidentals.flat.slash</th>
<th>accidentals.flat</th>
<th>accidentals.flatslashslash</th>
</tr>
</thead>
<tbody>
<tr>
<td>accidentals.mirroredflat.flat</td>
<td>accidentals.mirroredflat</td>
<td>accidentals.flat.flat</td>
</tr>
<tr>
<td>accidentals.mirroredflat.backslash</td>
<td>accidentals.flat.flat</td>
<td>accidentals.flat.flat.koron</td>
</tr>
<tr>
<td>accidentals.flatflat.figbass</td>
<td>accidentals.flatflat</td>
<td>accidentals.flat.flat.slash</td>
</tr>
<tr>
<td>accidentals.sharp.sori</td>
<td>accidentals.flat.koron</td>
<td></td>
</tr>
<tr>
<td>accidentals.rightparen</td>
<td>accidentals.leftparen</td>
<td></td>
</tr>
</tbody>
</table>

**Default note head glyphs**

<table>
<thead>
<tr>
<th>noteheads.uM2</th>
<th>noteheads.dM2</th>
</tr>
</thead>
<tbody>
<tr>
<td>noteheads.sM1</td>
<td>noteheads.s0</td>
</tr>
<tr>
<td>noteheads.s1</td>
<td>noteheads.s2</td>
</tr>
</tbody>
</table>

**Special note head glyphs**

<table>
<thead>
<tr>
<th>noteheads.sM1double</th>
<th>noteheads.s0diamond</th>
</tr>
</thead>
<tbody>
<tr>
<td>noteheads.s1diamond</td>
<td>noteheads.s2diamond</td>
</tr>
<tr>
<td>noteheads.s0triangle</td>
<td>noteheads.s1triangle</td>
</tr>
<tr>
<td>noteheads.s2triangle</td>
<td>noteheads.s0slash</td>
</tr>
<tr>
<td>noteheads.s1slash</td>
<td>noteheads.s2slash</td>
</tr>
<tr>
<td>noteheads.s0cross</td>
<td>noteheads.s1cross</td>
</tr>
<tr>
<td>noteheads.s2cross</td>
<td>noteheads.s2xcircle</td>
</tr>
<tr>
<td>noteheads.s0harmonic</td>
<td>noteheads.s2harmonic</td>
</tr>
</tbody>
</table>

**Note head glyphs for shape notes**

<table>
<thead>
<tr>
<th>noteheads.s0do</th>
<th>noteheads.s1do</th>
</tr>
</thead>
<tbody>
<tr>
<td>noteheads.s2do</td>
<td>noteheads.s0doThin</td>
</tr>
<tr>
<td>noteheads.s1doThin</td>
<td>noteheads.s2doThin</td>
</tr>
<tr>
<td>noteheads.s0re</td>
<td>noteheads.s1re</td>
</tr>
<tr>
<td>noteheads.s2re</td>
<td>noteheads.s0reThin</td>
</tr>
<tr>
<td>noteheads.s1reThin</td>
<td>noteheads.s2reThin</td>
</tr>
<tr>
<td>Tables</td>
<td>Noteheads</td>
</tr>
<tr>
<td>------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>noteheads.s0miMirror</td>
<td>noteheads.s0mi</td>
</tr>
<tr>
<td>noteheads.s1miMirror</td>
<td>noteheads.s1mi</td>
</tr>
<tr>
<td>noteheads.s0miThin</td>
<td>noteheads.s0miThin</td>
</tr>
<tr>
<td>noteheads.s1miThin</td>
<td>noteheads.s1miThin</td>
</tr>
<tr>
<td>noteheads.s2miThin</td>
<td>noteheads.s2miThin</td>
</tr>
<tr>
<td>noteheads.d0faThin</td>
<td>noteheads.d0faThin</td>
</tr>
<tr>
<td>noteheads.d1faThin</td>
<td>noteheads.d1faThin</td>
</tr>
<tr>
<td>noteheads.d2faThin</td>
<td>noteheads.d2faThin</td>
</tr>
<tr>
<td>noteheads.s0faThin</td>
<td>noteheads.s0faThin</td>
</tr>
<tr>
<td>noteheads.s1faThin</td>
<td>noteheads.s1faThin</td>
</tr>
<tr>
<td>noteheads.d0faThin</td>
<td>noteheads.d0faThin</td>
</tr>
<tr>
<td>noteheads.d1faThin</td>
<td>noteheads.d1faThin</td>
</tr>
<tr>
<td>noteheads.d2faThin</td>
<td>noteheads.d2faThin</td>
</tr>
<tr>
<td>noteheads.d0faFunk</td>
<td>noteheads.d0faFunk</td>
</tr>
<tr>
<td>noteheads.d1faFunk</td>
<td>noteheads.d1faFunk</td>
</tr>
<tr>
<td>noteheads.d2faFunk</td>
<td>noteheads.d2faFunk</td>
</tr>
<tr>
<td>noteheads.u0doFunk</td>
<td>noteheads.u0doFunk</td>
</tr>
<tr>
<td>noteheads.d0doFunk</td>
<td>noteheads.d0doFunk</td>
</tr>
<tr>
<td>noteheads.u1doFunk</td>
<td>noteheads.u1doFunk</td>
</tr>
<tr>
<td>noteheads.d1doFunk</td>
<td>noteheads.d1doFunk</td>
</tr>
<tr>
<td>noteheads.d2doFunk</td>
<td>noteheads.d2doFunk</td>
</tr>
<tr>
<td>noteheads.u0reFunk</td>
<td>noteheads.u0reFunk</td>
</tr>
<tr>
<td>noteheads.d0reFunk</td>
<td>noteheads.d0reFunk</td>
</tr>
<tr>
<td>noteheads.u1reFunk</td>
<td>noteheads.u1reFunk</td>
</tr>
<tr>
<td>noteheads.d1reFunk</td>
<td>noteheads.d1reFunk</td>
</tr>
<tr>
<td>noteheads.u2reFunk</td>
<td>noteheads.u2reFunk</td>
</tr>
<tr>
<td>noteheads.d2reFunk</td>
<td>noteheads.d2reFunk</td>
</tr>
<tr>
<td>noteheads.u0miFunk</td>
<td>noteheads.u0miFunk</td>
</tr>
<tr>
<td>noteheads.u1miFunk</td>
<td>noteheads.u1miFunk</td>
</tr>
<tr>
<td>noteheads.d0miFunk</td>
<td>noteheads.d0miFunk</td>
</tr>
<tr>
<td>noteheads.d1miFunk</td>
<td>noteheads.d1miFunk</td>
</tr>
<tr>
<td>noteheads.s2miFunk</td>
<td>noteheads.s2miFunk</td>
</tr>
</tbody>
</table>
### Appendix A: Notation manual tables

**Noteheads**

<table>
<thead>
<tr>
<th>Notehead</th>
<th>Notehead</th>
<th>Notehead</th>
</tr>
</thead>
<tbody>
<tr>
<td>noteheads.d0faFunk</td>
<td>noteheads.ulfaFunk</td>
<td>noteheads.s1faFunk</td>
</tr>
<tr>
<td>noteheads.d1faFunk</td>
<td>noteheads.u2faFunk</td>
<td>noteheads.s0solFunk</td>
</tr>
<tr>
<td>noteheads.d2faFunk</td>
<td>noteheads.s0laFunk</td>
<td>noteheads.s1laFunk</td>
</tr>
<tr>
<td>noteheads.s1solFunk</td>
<td>noteheads.s2solFunk</td>
<td>noteheads.u0tiFunk</td>
</tr>
<tr>
<td>noteheads.s0laFunk</td>
<td>noteheads.s1laFunk</td>
<td>noteheads.u2tiFunk</td>
</tr>
<tr>
<td>noteheads.s2laFunk</td>
<td>noteheads.u0tiFunk</td>
<td>noteheads.u2tiFunk</td>
</tr>
<tr>
<td>noteheads.d0tiFunk</td>
<td>noteheads.s0doWalker</td>
<td>noteheads.s0doWalker</td>
</tr>
<tr>
<td>noteheads.d1tiFunk</td>
<td>noteheads.s1doWalker</td>
<td>noteheads.s1doWalker</td>
</tr>
<tr>
<td>noteheads.d2tiFunk</td>
<td>noteheads.s2doWalker</td>
<td>noteheads.s2doWalker</td>
</tr>
<tr>
<td>noteheads.d2tiFunk</td>
<td>noteheads.s0miWalker</td>
<td>noteheads.s0miWalker</td>
</tr>
<tr>
<td>noteheads.d1reWalker</td>
<td>noteheads.s1reWalker</td>
<td>noteheads.s1reWalker</td>
</tr>
<tr>
<td>noteheads.d0reWalker</td>
<td>noteheads.s2reWalker</td>
<td>noteheads.s2reWalker</td>
</tr>
<tr>
<td>noteheads.d1reWalker</td>
<td>noteheads.s0reWalker</td>
<td>noteheads.s0reWalker</td>
</tr>
<tr>
<td>noteheads.d2reWalker</td>
<td>noteheads.s1reWalker</td>
<td>noteheads.s1reWalker</td>
</tr>
<tr>
<td>noteheads.d2reWalker</td>
<td>noteheads.s2reWalker</td>
<td>noteheads.s2reWalker</td>
</tr>
<tr>
<td>noteheads.s0faWalker</td>
<td>noteheads.u1faFunk</td>
<td>noteheads.s1faFunk</td>
</tr>
<tr>
<td>noteheads.d1faWalker</td>
<td>noteheads.u2faFunk</td>
<td>noteheads.s0laFunk</td>
</tr>
<tr>
<td>noteheads.d2faWalker</td>
<td>noteheads.s0laFunk</td>
<td>noteheads.s1laFunk</td>
</tr>
<tr>
<td>noteheads.s1laWalker</td>
<td>noteheads.s2laWalker</td>
<td>noteheads.s0tiWalker</td>
</tr>
<tr>
<td>noteheads.s0tiWalker</td>
<td>noteheads.s1tiWalker</td>
<td>noteheads.s2tiWalker</td>
</tr>
<tr>
<td>noteheads.d1tiWalker</td>
<td>noteheads.s2tiWalker</td>
<td>noteheads.s0tiWalker</td>
</tr>
<tr>
<td>noteheads.d2tiWalker</td>
<td>noteheads.s2tiWalker</td>
<td>noteheads.s0tiWalker</td>
</tr>
</tbody>
</table>

**Rest Glyphs**

<table>
<thead>
<tr>
<th>Rest</th>
<th>Rest</th>
<th>Rest</th>
<th>Rest</th>
</tr>
</thead>
<tbody>
<tr>
<td>rests.0</td>
<td>rests.1</td>
<td>rests.0o</td>
<td>rests.1o</td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

rests.M1  •  rests.M1o  •

rests.2  •  rests.2classical

rests.2z  •  rests.3

rests.4  •  rests.5

rests.6  •  rests.7

rests.8  •  rests.9

rests.10

Flag glyphs

flags.u3  •  flags.u4

flags.u5  •  flags.u6

flags.u7  •  flags.u8

flags.u9  •  flags.u10

flags.d3  •  flags.d4

flags.d5  •  flags.d6

flags.d7  •  flags.d8

flags.d9  •  flags.d10

flags.ugrace  •  flags.dgrace

Dot glyphs

dots.dot  •
### Dynamic glyphs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>m</td>
<td>m</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
</tr>
<tr>
<td>p</td>
<td>p</td>
</tr>
<tr>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>z</td>
<td>z</td>
</tr>
</tbody>
</table>

### Script glyphs

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>scripts.ufermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.uhenzeshortfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dhenzeshortfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.uhenzelongfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dhenzelongfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.ushortfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dshortfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.uveryshortfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dveryshortfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.ulongfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dlongfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.uverylongfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dverylongfermata</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.thumb</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.sforzato</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.espr</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.staccato</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.ustaccatissimo</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dstaccatissimo</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.tenuto</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.uportato</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dportato</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.umarcato</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dmarcato</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.open</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.halfopen</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.stopped</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.upbow</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.reverseturn</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.turn</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.slashturn</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.trill</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dpedalheel</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.dpedaltoe</td>
<td>(\infty)</td>
</tr>
<tr>
<td>scripts.segno</td>
<td>(\infty)</td>
</tr>
<tr>
<td>Script</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>scripts.varsegno</td>
<td>varsegno</td>
</tr>
<tr>
<td>scripts.varcoda</td>
<td>varcoda</td>
</tr>
<tr>
<td>scripts.lcomma</td>
<td>lcomma</td>
</tr>
<tr>
<td>scripts.lvarcomma</td>
<td>lvarcomma</td>
</tr>
<tr>
<td>scripts.lalaltcomma</td>
<td>lalaltcomma</td>
</tr>
<tr>
<td>scripts.trill_element</td>
<td>trill_element</td>
</tr>
<tr>
<td>scripts.arpeggio.arrow.1</td>
<td>arrow.M1</td>
</tr>
<tr>
<td>scripts.prall</td>
<td>prall</td>
</tr>
<tr>
<td>scripts.mordent</td>
<td>mordent</td>
</tr>
<tr>
<td>scripts.prallmordent</td>
<td>prallmordent</td>
</tr>
<tr>
<td>scripts.upmordent</td>
<td>upmordent</td>
</tr>
<tr>
<td>scripts.downprall</td>
<td>downprall</td>
</tr>
<tr>
<td>scripts.pralldown</td>
<td>pralldown</td>
</tr>
<tr>
<td>scripts.caesura.curved</td>
<td>caesura.curved</td>
</tr>
<tr>
<td>scripts.tickmark</td>
<td>tickmark</td>
</tr>
<tr>
<td>scripts.ictus</td>
<td>ictus</td>
</tr>
<tr>
<td>scripts.daccentus</td>
<td>daccentus</td>
</tr>
<tr>
<td>scripts.dsemicirculus</td>
<td>dsemicirculus</td>
</tr>
<tr>
<td>scripts.usignumcongruentiae</td>
<td>usignumcongruentiae</td>
</tr>
</tbody>
</table>

Arrowhead glyphs

<table>
<thead>
<tr>
<th>Arrowhead</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arrowheads.open.01</td>
<td>open.01</td>
</tr>
<tr>
<td>arrowheads.open.11</td>
<td>open.11</td>
</tr>
<tr>
<td>arrowheads.close.01</td>
<td>close.01</td>
</tr>
<tr>
<td>arrowheads.close.11</td>
<td>close.11</td>
</tr>
</tbody>
</table>

Bracket-tip glyphs

<table>
<thead>
<tr>
<th>Bracket-tip</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>brackettips.up</td>
<td>up</td>
</tr>
<tr>
<td>brackettips.down</td>
<td>down</td>
</tr>
</tbody>
</table>
### Pedal glyphs

- pedal.*
- pedal..
- pedal.d
- pedal.Ped

### Accordion glyphs

- accordion.discant
- accordion.freebass
- accordion.bayanbass
- accordion.push

### Tie glyphs

- ties.lyric.short
- ties.lyric.default

### Vaticana glyphs

- clefs.vaticana.do
- clefs.vaticana.fa
- custodes.vaticana.u0
- custodes.vaticana.u2
- custodes.vaticana.d1
- accidentals.vaticanaM1
- dots.dotvaticana
- noteheads.svaticana
- noteheads.svaticana.linea.punctum
- noteheads.svaticana.linea.punctum.cavum
- noteheads.svaticana.lpes
- noteheads.svaticana.upes
- noteheads.svaticana.plica
- noteheads.svaticana.epiphonus
### Appendix A: Notation manual tables

<table>
<thead>
<tr>
<th>Noteheads</th>
<th>Medicaea Glyphs</th>
<th>Hufnagel Glyphs</th>
<th>Mensural Glyphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>noteheads.svaticana.reverse.plica</td>
<td>clefs.medicaea.do</td>
<td>clefs.medicaea.do</td>
<td>rests.M3mensural</td>
</tr>
<tr>
<td>noteheads.svaticana.reverse.vplica</td>
<td>clefs.medicaea.do_change</td>
<td>clefs.medicaea.do_change</td>
<td>rests.M2mensural</td>
</tr>
<tr>
<td>noteheads.svaticana.inner.cephalicus</td>
<td>custodes.medicaea.u0</td>
<td>custodes.medicaea.u1</td>
<td>rests.M1mensural</td>
</tr>
<tr>
<td>noteheads.svaticana.cephalicus</td>
<td>custodes.medicaea.u2</td>
<td>custodes.medicaea.d0</td>
<td>rests.0mensural</td>
</tr>
<tr>
<td>noteheads.svaticana.virgula</td>
<td>custodes.medicaea.d1</td>
<td>custodes.medicaea.d2</td>
<td>rests.1mensural</td>
</tr>
<tr>
<td>noteheads.svaticana.quilisma</td>
<td>custodes.medicaea.d2</td>
<td>custodes.medicaea.d2</td>
<td>rests.2mensural</td>
</tr>
<tr>
<td>noteheads.smedicaea.inclinatum</td>
<td>accidental.medicaeaM1</td>
<td>noteheads.smedicaea.inclinatum</td>
<td>rests.3mensural</td>
</tr>
<tr>
<td>noteheads.smedicaea.punctum</td>
<td>noteheads.smedicaea.punctum</td>
<td>noteheads.smedicaea.rvirga</td>
<td>rests.4mensural</td>
</tr>
<tr>
<td>noteheads.smedicaea.rvirga</td>
<td>noteheads.smedicaea.rvirga</td>
<td>noteheads.shufnagel.lpes</td>
<td>rests.4mensural</td>
</tr>
<tr>
<td>noteheads.smedicaea.virgula</td>
<td>noteheads.smedicaea.virgula</td>
<td>noteheads.shufnagel.lpes</td>
<td>rests.4mensural</td>
</tr>
</tbody>
</table>

**Medicaea glyphs**

- clefs.medicaea.do
- clefs.medicaea.do_change
- clefs.medicaea.fa
- clefs.medicaea.fa_change
- custodes.medicaea.u0
- custodes.medicaea.u1
- custodes.medicaea.u2
- custodes.medicaea.d0
- custodes.medicaea.d1
- custodes.medicaea.d2
- accidental.medicaeaM1
- noteheads.smedicaea.inclinatum
- noteheads.smedicaea.punctum
- noteheads.smedicaea.rvirga

**Hufnagel glyphs**

- clefs.hufnagel.do
- clefs.hufnagel.do_change
- clefs.hufnagel.do
- clefs.hufnagel.do_change
- clefs.hufnagel.do.fa
- clefs.hufnagel.do.fa_change
- custodes.hufnagel.u0
- custodes.hufnagel.u1
- custodes.hufnagel.d0
- custodes.hufnagel.d1
- custodes.hufnagel.d2
- accidental.hufnagelM1
- noteheads.shufnagel.lpes
- noteheads.shufnagel.punctum
- noteheads.shufnagel.lpes

**Mensural glyphs**

- rests.M3mensural
- rests.M2mensural
- rests.M1mensural
- rests.0mensural
- rests.1mensural
- rests.2mensural
- rests.3mensural
- rests.4mensural
<table>
<thead>
<tr>
<th>clefs.mensural.c</th>
<th>clefs.mensural.c_change</th>
</tr>
</thead>
<tbody>
<tr>
<td>clefs.blackmensural.c</td>
<td>clefs.blackmensural.c_change</td>
</tr>
<tr>
<td>clefs.mensural.f</td>
<td>clefs.mensural.f_change</td>
</tr>
<tr>
<td>clefs.mensural.g</td>
<td>clefs.mensural.g_change</td>
</tr>
<tr>
<td>custodes.mensural.u0</td>
<td>custodes.mensural.u1</td>
</tr>
<tr>
<td>custodes.mensural.u2</td>
<td>custodes.mensural.d0</td>
</tr>
<tr>
<td>custodes.mensural.d1</td>
<td>custodes.mensural.d2</td>
</tr>
<tr>
<td>accidentals.mensural1</td>
<td>accidentals.mensuralM1</td>
</tr>
<tr>
<td>flags.mensuralu03</td>
<td>flags.mensuralu13</td>
</tr>
<tr>
<td>flags.mensuralu23</td>
<td>flags.mensurald03</td>
</tr>
<tr>
<td>flags.mensurald13</td>
<td>flags.mensurald23</td>
</tr>
<tr>
<td>flags.mensuralu04</td>
<td>flags.mensuralu14</td>
</tr>
<tr>
<td>flags.mensuralu24</td>
<td>flags.mensurald04</td>
</tr>
<tr>
<td>flags.mensurald14</td>
<td>flags.mensurald24</td>
</tr>
<tr>
<td>flags.mensuralu05</td>
<td>flags.mensuralu15</td>
</tr>
<tr>
<td>flags.mensuralu25</td>
<td>flags.mensurald05</td>
</tr>
<tr>
<td>flags.mensurald15</td>
<td>flags.mensurald25</td>
</tr>
<tr>
<td>flags.mensuralu06</td>
<td>flags.mensuralu16</td>
</tr>
<tr>
<td>flags.mensuralu26</td>
<td>flags.mensurald06</td>
</tr>
<tr>
<td>flags.mensurald16</td>
<td>flags.mensurald26</td>
</tr>
<tr>
<td>timesig.mensural44</td>
<td>timesig.mensural22</td>
</tr>
<tr>
<td>timesig.mensural32</td>
<td>timesig.mensural64</td>
</tr>
<tr>
<td>timesig.mensural94</td>
<td>timesig.mensural34</td>
</tr>
<tr>
<td>timesig.mensural68</td>
<td>timesig.mensural98</td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

Neomensural glyphs

rests.M3neomensural  || rests.M2neomensural  ||
rests.1neomensural  .
rests.3neomensural  .
rests.4neomensural  .
### Petrucci glyphs

<table>
<thead>
<tr>
<th>Clefs</th>
<th>Clef Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>clefs.petrucci.c1</td>
<td>clefs.petrucci.c1_change</td>
</tr>
<tr>
<td>clefs.petrucci.c2</td>
<td>clefs.petrucci.c2_change</td>
</tr>
<tr>
<td>clefs.petrucci.c3</td>
<td>clefs.petrucci.c3_change</td>
</tr>
<tr>
<td>clefs.petrucci.c4</td>
<td>clefs.petrucci.c4_change</td>
</tr>
<tr>
<td>clefs.petrucci.c5</td>
<td>clefs.petrucci.c5_change</td>
</tr>
<tr>
<td>clefs.petrucci.f</td>
<td>clefs.petrucci.f_change</td>
</tr>
<tr>
<td>clefs.petrucci.g</td>
<td>clefs.petrucci.g_change</td>
</tr>
<tr>
<td>noteheads.s0petrucci</td>
<td>noteheads.s0petrucci</td>
</tr>
<tr>
<td>noteheads.s1petrucci</td>
<td>noteheads.s1petrucci</td>
</tr>
<tr>
<td>noteheads.s2petrucci</td>
<td>noteheads.s2petrucci</td>
</tr>
<tr>
<td>noteheads.s0blackpetrucci</td>
<td>noteheads.s0blackpetrucci</td>
</tr>
<tr>
<td>noteheads.s1blackpetrucci</td>
<td>noteheads.s1blackpetrucci</td>
</tr>
<tr>
<td>noteheads.s2blackpetrucci</td>
<td>noteheads.s2blackpetrucci</td>
</tr>
</tbody>
</table>
Solesmes glyphs

```latex
\begin{align*}
\text{noteheads.ssolesmes} & \quad \text{noteheads.ssolesmes.auct.asc} \\
\text{.incl.parvum} & \quad \text{.incl.auctum} \\
\text{noteheads} & \quad \text{noteheads.ssolesmes} \\
\text{ssolesmes.auct.desc} & \quad \text{ssolesmes.stropha} \\
\text{noteheads} & \quad \text{noteheads.ssolesmes.stropha.aucta} \\
\text{ssolesmes.oriscus} & \quad \text{ssolesmes.oriscus}
\end{align*}
```

Kievan Notation glyphs

```latex
\begin{align*}
\text{clefs.kievan.do} & \quad \text{clefs.kievan.do_change} \\
\text{accidentals.kievan} & \quad \text{accidentals.kievanM1} \\
\text{scripts.barline.kievan} & \quad \text{dots.dotkievan} \\
\text{noteheads.sM2kievan} & \quad \text{noteheads.sM1kievan} \\
\text{noteheads.s0kievan} & \quad \text{noteheads.d2kievan} \\
\text{noteheads.u2kievan} & \quad \text{noteheads.s1kievan} \\
\text{noteheads.srl1kievan} & \quad \text{noteheads.d3kievan} \\
\text{noteheads.u3kievan} & \quad \text{noteheads.u3kievan}
\end{align*}
```

A.9 Note head styles

The following styles may be used for note heads.

```
\begin{align*}
\text{default} & \quad \text{altdefault} \\
\text{baroque} & \quad \text{neomensural} \\
\text{mensural} & \quad \text{petrucci} \\
\text{harmonic} & \quad \text{harmonic-black}
\end{align*}
```
A.10 Accidental glyph sets
The following sets of accidental glyphs are available.

standard-alteration-glyph-name-alist

alteration-hufnagel-glyph-name-alist

alteration-medicaea-glyph-name-alist

alteration-vaticana-glyph-name-alist

alteration-mensural-glyph-name-alist

alteration-kievan-glyph-name-alist
# A.11 Clef styles

The following table shows all the clef styles possible (including the cases where middle C sits relative to the clef). For more modification possibilities like ottavation digits, see [Clef], page 17.

## Standard clefs

<table>
<thead>
<tr>
<th>Example</th>
<th>Output</th>
<th>Example</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>\clef G</td>
<td><img src="image" alt="G clef" /></td>
<td>\clef &quot;G2&quot;</td>
<td><img src="image" alt="G2 clef" /></td>
</tr>
<tr>
<td>\clef treble</td>
<td><img src="image" alt="Treble clef" /></td>
<td>\clef violin</td>
<td><img src="image" alt="Violin clef" /></td>
</tr>
<tr>
<td>\clef french</td>
<td><img src="image" alt="French clef" /></td>
<td>\clef GG</td>
<td><img src="image" alt="GG clef" /></td>
</tr>
<tr>
<td>\clef tenorG</td>
<td><img src="image" alt="TenorG clef" /></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\clef soprano</td>
<td><img src="image" alt="Soprano clef" /></td>
<td>\clef mezzosoprano</td>
<td><img src="image" alt="Mezzosoprano clef" /></td>
</tr>
<tr>
<td>\clef C</td>
<td><img src="image" alt="C clef" /></td>
<td>\clef alto</td>
<td><img src="image" alt="Alto clef" /></td>
</tr>
<tr>
<td>\clef tenor</td>
<td><img src="image" alt="Tenor clef" /></td>
<td>\clef baritone</td>
<td><img src="image" alt="Baritone clef" /></td>
</tr>
<tr>
<td>\clef varC</td>
<td><img src="image" alt="VarC clef" /></td>
<td>\clef altovarC</td>
<td><img src="image" alt="AltovarC clef" /></td>
</tr>
<tr>
<td>\clef tenorvarC</td>
<td><img src="image" alt="TenorvarC clef" /></td>
<td>\clef baritonevarC</td>
<td><img src="image" alt="BaritonevarC clef" /></td>
</tr>
<tr>
<td>\clef varbaritone</td>
<td><img src="image" alt="Varbaritone clef" /></td>
<td>\clef baritonevarF</td>
<td><img src="image" alt="BaritonevarF clef" /></td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

\clef F
\clef bass

\clef subbass

Percussion staff clef

Example	Output	Example	Output
\clef percussion | | \clef varpercussion |

Tab staff clefs

Example	Output	Example	Output
\new TabStaff {
\clef tab
}
\new TabStaff {
\clef moderntab
}

Ancient music clefs

Gregorian

Example	Output	Example	Output
\clef "vaticana-do1" | | \clef "vaticana-do2" |
\clef "vaticana-do3" | | \clef "vaticana-fa1" |
\clef "vaticana-fa2" | | |
\clef "medicea-deo1" | | \clef "medicea-do2" |
\clef "medicea-do3" | | \clef "medicea-fa1" |
\clef "medicea-fa2" | | |
### Mensural

<table>
<thead>
<tr>
<th>Example</th>
<th>Output</th>
<th>Example</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>\clef &quot;mensural-c1&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;mensural-c2&quot;</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>\clef &quot;mensural-c3&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;mensural-c4&quot;</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>\clef &quot;mensural-c5&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;mensural-f&quot;</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>\clef &quot;mensural-f3&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;mensural-f2&quot;</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>\clef &quot;mensural-f5&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;mensural-f4&quot;</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>\clef &quot;mensural-g1&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;mensural-g2&quot;</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>\clef &quot;mensural-g&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;blackmensural-c1&quot;</td>
<td>[Diagram]</td>
</tr>
<tr>
<td>\clef &quot;blackmensural-c2&quot;</td>
<td>[Diagram]</td>
<td>\clef &quot;blackmensural-g&quot;</td>
<td>[Diagram]</td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

\clef "blackmensural-c3" \clef "blackmensural-c4"
\clef "blackmensural-c5"
\clef "neomensural-c1" \clef "neomensural-c2"
\clef "neomensural-c3" \clef "neomensural-c4"
\clef "neomensural-c5"
\clef "petrucci-c1" \clef "petrucci-c2"
\clef "petrucci-c3" \clef "petrucci-c4"
\clef "petrucci-c5"
\clef "petrucci-f" \clef "petrucci-f2"
\clef "petrucci-f3" \clef "petrucci-f4"
\clef "petrucci-f5"
\clef "petrucci-g1" \clef "petrucci-g2"
A.12 Text markup commands

The following commands can all be used inside \markup { }.

A.12.1 Font markup

\textbf{\texttt{\abs-fontsize size (number) arg (markup)}}

Use \texttt{size} as the absolute font size (in points) to display \texttt{arg}.

This function adjusts the baseline-skip and word-space properties accordingly.

\begin{verbatim}
\markup {
    default text font size
    hspace #2
    \abs-fontsize #16 { text font size 16 }
    hspace #2
    \abs-fontsize #12 { text font size 12 }
}
\end{verbatim}

default text font size  \textbf{text font size 16}  \textbf{text font size 12}

Used properties:

- baseline-skip (3)
- word-space (0.6)

\textbf{\texttt{\bold arg (markup)}}

Print \texttt{arg} with a bold face.

\begin{verbatim}
\markup {
    default
    hspace #2
    \bold bold
}
\end{verbatim}

\textbf{default bold}

The code \texttt{\markup \bold ...} is a shorthand for \texttt{\markup \override #'(font-series . bold) ...} – using the more verbose form, it is possible to obtain nuances such as semi-bold, if the text font has such variants. Refer to the documentation for the font-series properties (Section “User backend properties” in Internals Reference).

\textbf{\texttt{\box arg (markup)}}

Draw a box around \texttt{arg}.

This function looks at the thickness, box-padding, and font-size properties to determine the line thickness and padding around the markup.

\begin{verbatim}
\markup {
}\end{verbatim}
\override #(box-padding . 0.5)
\box \line { V. S. }
}

V. S.

Note that the box does not horizontally displace its argument. Use markup commands like \left-align or \table to make LilyPond realign it.

\markup {
\override #(box-padding . 1.5)
\column {
"text"
\box "text"
\left-align \box "text"
}
}

\text
\text
\text

Used properties:
• box-padding (0.2)
• font-size (0)
• thickness (1)
\caps arg (markup)
Print arg in (fake) small caps.
This function is a copy of the \smallCaps command.
\markup {
\default
\hspace #2
\caps {
Text in small caps
}
}

\text{default} TEXT IN SMALL CAPS

Use \fontCaps for real small caps (if the font provides it).
\dynamic arg (markup)
Print arg using the (music) font for dynamics.
This font only contains letters f, m, n, p, r, s, and z. When producing phrases like ‘più f’, the normal words (like ‘più’) should be done in a different font. The recommended font for this is bold and italic.
\markup {
\dynamic {
sfzp
}
}
\texttt{sfzp}

\texttt{\figured-bass \textit{arg} \text{ (markup)}}

Set \textit{arg} as small numbers for figured bass.

Specially slashed digits can be achieved with a trailing backslash (for numbers 6, 7, and 9) or a trailing plus (for numbers 2, 4, and 5).\footnote{Internally, this works by activating the ‘dlig’ OpenType feature of the Emmentaler font.}

The use of a backslash is in analogy to \texttt{\figuremode} (see [Entering figured bass], page 486). Note that to get a backslash character in markup it must be escaped by doubling it. Additionally, it must be put into double quotes.

\begin{verbatim}
\markup { \figured-bass { 2 3 4+ 7 "9\" } }
\end{verbatim}

\texttt{\figured-bass \{ 2 3 4+ 7 "9\" \} }

\texttt{2 3 4 7 9}

\texttt{\finger \textit{arg} \text{ (markup)}}

Set \textit{arg} as small numbers for fingering instructions.

\begin{verbatim}
\markup { \finger { 1 2 3 4 5 } }
\end{verbatim}

\texttt{1 2 3 4 5}

\texttt{\fontCaps \textit{arg} \text{ (markup)}}

Print \textit{arg} in small caps.

This command sets the font-variant property to \texttt{small-caps}.

Unlike \texttt{\smallCaps}, which merely uses capital letters at a smaller font size, this uses the actual variant of the font for small caps. (As a consequence, if you configure a custom text font, this command has no effect if that font does not have a small caps variant.)

\begin{verbatim}
\markup { \fontCaps "Small caps" }
\end{verbatim}

Small caps

\texttt{\fontsize \textit{increment (number)} \textit{arg} \text{ (markup)}}

Increase current font size by \textit{increment} to print \textit{arg}.

This function adjusts the baseline-skip and word-space properties accordingly.

\begin{verbatim}
\markup { default \hspace #2 \fontsize #-1.5 smaller }
\end{verbatim}

\texttt{default \ smaller}

Used properties:

\begin{itemize}
  \item \texttt{baseline-skip \{ 2 \}}
\end{itemize}
• word-space (1)
• font-size (0)

\huge arg (markup)
Set font size to value 2 to print arg.
\markup { default \hspace #2 \huge huge }

\italic arg (markup)
Print arg in italics.
This command sets the font-shape property to italic.
\markup { default \hspace #2 \italic italic }

\large arg (markup)
Set font size to value 1 to print arg.
\markup { default \hspace #2 \large large }

\larger arg (markup)
Increase current font size by 1 to print arg.
This function adjusts the baseline-skip and word-space properties accordingly.
\markup { default \hspace #2 \larger larger }

\magnify sz (number) arg (markup)
Magnify current font by factor sz to print arg.
\markup { default \hspace #2 \magnify #1.5 { \magnify #1.5 { 50\% larger } } }
Note that magnification only works if a font name is explicitly selected. Use \texttt{\fontsize} otherwise.

\texttt{\normal-size-sub arg} (markup)

Set \textit{arg} in subscript with a normal font size.

\texttt{\markup {\default \normal-size-sub {\scriptscriptstyle \textit{arg}}}}

\texttt{\default subscript in standard size}

Used properties:
- \texttt{font-size (0)}

\texttt{\normal-size-super arg} (markup)

Set \textit{arg} in superscript with a normal font size.

\texttt{\markup {\default \normal-size-super {\scriptscriptstyle \textit{arg}}}}

\texttt{\default superscript in standard size}

Used properties:
- \texttt{font-size (0)}

\texttt{\normal-text arg} (markup)

Print \textit{arg} with default text font.

This resets all font-related properties (except the size), no matter what font was used earlier.

\texttt{\markup {\huge \bold \sans \fontCaps \normal-text \hspace #2 \normal-text \hspace #2 \as before}}

\textbf{huge bold sans caps} \as before
\texttt{\normal-weight \texttt{arg} (markup)}

Switch to normal weight (in contrast to bold) to print \texttt{arg}.

This command sets the font-series property to normal.

\begin{verbatim}
\markup {
  \bold {
    some bold text \\
    \hspace \#2 \\
    \normal-weight {
      normal font series \\
    } \\
    \hspace \#2 \\
    bold again \\
  }
}
\end{verbatim}

\texttt{\texttt{some bold text} normal font series bold again}

\texttt{\normalsize \texttt{arg} (markup)}

Set font size to default (i.e., to value 0) to print \texttt{arg}.

\begin{verbatim}
\markup {
  \teeny {
    this is very small \\
    \hspace \#2 \\
    \normalsize {
      normal size \\
    } \\
    \hspace \#2 \\
    teeny again \\
  }
}
\end{verbatim}

\texttt{this is very small normal size teeny again}

\texttt{\number \texttt{arg} (markup)}

Print \texttt{arg} using the (music) font for numbers.

This font also contains symbols for figured bass, some punctuation, spaces of various widths, and text variants of accidentals. Use \texttt{\dynamic} to access the (very small number of) letters.

The appearance of digits in the Emmentaler font can be controlled with four OpenType features: ‘tnum’, ‘cv47’, ‘ss01’, and ‘kern’, which can be arbitrarily combined.

\begin{itemize}
  \item \texttt{tnum} If off (which is the default), glyphs ‘zero’ to ‘nine’ have no left and right side bearings. If on, the glyphs all have the same advance width by making the bearings non-zero.
  \item \texttt{cv47} If on, glyphs ‘four’ and ‘seven’ have shorter vertical strokes. Default is off.
  \item \texttt{ss01} If on, glyphs ‘zero’ to ‘nine’ have a fatter design, making them more readable at small sizes. Default is off.
  \item \texttt{kern} If on (which is the default), provide pairwise kerning between (most) glyphs.
\end{itemize}


\markuplist
\number
\fontsize #4.5
\override #'(padding . 2)
  (baseline-skip . 4)
  (box-padding . 0)
  (thickness . 0.1)
\table #'-1 -1 -1 -1) {
  0123456789 \box 147 \concat { \box 1 \box 4 \box 7 } 
\normal-text \normalsize "(time signatures)"
\override #'(font-features .("cv47")) {
  0123456789 \box 147 \concat { \box 1 \box 4 \box 7 } 
\normal-text \normalsize "(alternatives)"
\override #'(font-features .("tnum" "cv47" "-kern")) {
  0123456789 \box 147 \concat { \box 1 \box 4 \box 7 } 
\normal-text \normalsize "(fixed-width)"
\override #'(font-features .("tnum" "cv47" "ss01")) {
  0123456789 \box 147 \concat { \box 1 \box 4 \box 7 } 
\normal-text \normalsize "(figured bass)"
\override #'(font-features .("cv47" "ss01")) {
  0123456789 \box 147 \concat { \box 1 \box 4 \box 7 } 
\normal-text \normalsize "(fingering)"
}

0123456789  147  147  (time signatures)
0123456789  147  147  (alternatives)
0123456789  147  147  (fixed-width)
0123456789  147  147  (figured bass)
0123456789  147  147  (fingering)

See also the markup commands \figured-bass and \finger, which set the font features accordingly.

\overtie arg (markup)
Overtie arg.
\markup \line {
  \overtie "overtied"
  \override #'((offset . 5) (thickness . 1))
  \overtie "overtied"
  \override #'((offset . 1) (thickness . 5))
  \overtie "overtied"
}

\overtied \overtied \overtied

Used properties:
• shorten-pair ((0 . 0))
Appendix A: Notation manual tables

- height-limit (0.7)
- direction (1)
- offset (2)
- thickness (1)

\replace \textit{replacements} \textit{(list)} \textit{arg} \textit{(markup)}

Use \textit{replacements} to replace strings in \textit{arg}.

Each \textit{(key, value)} pair of the \textit{replacements} \textit{alist} specifies what should be replaced; \textit{key} gets replaced by \textit{value}. Note the quasiquoting syntax with a backquote in the second example.

\texttt{\markup {\replace #'(("2nd" . "Second"))}}

"2nd time"

\texttt{\markup {\replace #'(("2nd" . ,\{ \markup \concat { 2 \super nd } \})}}}

\texttt{\center-column {\line { Play only } \line { the 2\textsuperscript{nd} time } }}

\textbf{Second time}

\begin{itemize}
\item Play only
\item the 2\textsuperscript{nd} time
\end{itemize}

\textbf{Used properties:}

- replacement-alist

\texttt{\sans \textit{arg} \textit{(markup)}}

Print \textit{arg} with a sans-serif font.

This command sets the font-family property to sans.

\texttt{\markup {\default \hspace #2 \sans \{ \sans serif \}}}

\texttt{default \ sans serif}

\texttt{\serif \textit{arg} \textit{(markup)}}

Print \textit{arg} with a serif font.

This command sets the font-family property to serif.

\texttt{\markup {\sans \bold \{ \sans serif, bold \hspace #2 \serif \{ text in serif font \} \hspace #2 \return to sans}}}


\sans serif, \bf text in serif font \ return to sans

---

**\simple** \texttt{str} (string)  
Print string \texttt{str}.  
\markup { \simple "x" } is equivalent to \markup{"x"}. This command was previously used internally, but no longer is, and is being kept for backward compatibility only.

**\small arg** (markup)  
Set font size to value -1 to print \texttt{arg}.

\markup { \small \arg \hspace \small \hspace }  
default \small \texttt{arg}

**\smallCaps arg** (markup)  
Print \texttt{arg} in (fake) small caps.  
Unlike \texttt{\fontCaps}, which uses the actual small caps variant of the current font, this fakes small caps by using capital letters at a smaller font size. It can thus be used for fonts that don’t have a small caps variant.

\markup { \smallCaps \arg \hspace }  
default \hspace \texttt{smallCaps} \hspace \texttt{arg}

**\smaller arg** (markup)  
Decrease current font size by 1 to print \texttt{arg}.  
This function adjusts the baseline-skip and word-space properties accordingly.

\markup { \fontsize \smaller \hspace \hspace }  
default \fontsize \hspace \texttt{arg}

**\sub arg** (markup)  
Set \texttt{arg} in subscript.

\markup { \concat \concat { H \sub 0 } }
$H_2O$

See also $\backslash super$.

Used properties:
- $\text{font-size (0)}$

$\backslash super \ arg$ (markup)

Set $\arg$ in superscript.

\[
\text{markup} \{ \ E = \ \text{concat} \{ \ mc \ \backslash super \ 2 \} \}
\]

$E = mc^2$

See also $\backslash sub$.

Used properties:
- $\text{font-size (0)}$

$\backslash teeny \ arg$ (markup)

Set font size to value -3 to print $\arg$.

\[
\text{markup} \{
\hspace #2
\ \text{teeny teeny}
\}
\]

$\text{default teeny}$

$\backslash tie \ arg$ (markup)

Add a horizontal bow at the bottom or top of $\arg$.

This function uses $\text{make-tie-stencil}$ to create the bow; it looks at the thickness and offset properties to determine the line thickness and vertical offset, respectively. The added bow fits the extent of $\arg$; use the shorten-pair property to modify this. The direction property may be set explicitly using override or direction modifiers, or implicitly by using voiceOne, etc.

\[
\text{markup} \{
\ \text{override #'(direction . 1)}
\ \text{tie "above"}
\ \text{override #'(direction . -1)}
\ \text{tie "below"}
\}
\]

$\text{above below}$

See also $\text{undertie}$ and $\text{overtie}$, which are shorthands for this function.

Used properties:
- $\text{shorten-pair ((0 . 0))}$
- $\text{height-limit (0.7)}$
- $\text{direction (1)}$
- $\text{offset (2)}$
- $\text{thickness (1)}$

$\backslash tiny \ arg$ (markup)

Set font size to value -2 to print $\arg$.

\[
\text{markup} \{ \}
\]
\typewriter arg (markup)
Print arg in typewriter.
This command sets the font-family property to typewriter.

\underline arg (markup)
Underline arg.
This function looks at the property thickness to determine the line thickness, at
offset to determine the line’s vertical offset from \textit{arg}, and at underline-skip to
determine the distance of additional lines from the others.
The underline-shift property is used to make subsequent calls work correctly.
Overriding it makes little sense since it would end up adding the provided value to
the one of offset.

\undertie arg (markup)
Print a tie under arg.

Used properties:
• underline-skip (2)
• underline-shift (0)
• offset (2)
• thickness (1)
\undertie "undertied"
\override #'((offset . 1) (thickness . 5))
\undertie "undertied"

\undertie \undertie \undertie

Used properties:
- shorten-pair ((0 . 0))
- height-limit (0.7)
- direction (1)
- offset (2)
- thickness (1)

\upright \markup \arg (markup)
Print \arg upright.
This command is the opposite of \italic; it sets the font-shape property to upright.

\markup {
  \italic {
    \italic text
    \hspace #2
    \upright {
      \upright text
    }
    \hspace #2
    \italic again
  }
}

\italic text \upright text \italic again

\volta-number \markup \arg (markup)
Set \arg in a font appropriate for volta numbers.

\markup \volta-number "4."

4.

\with-string-transformer \markup \transformer (procedure) \arg (markup)
Apply string transformer function \transformer to \arg.
Whenever a string is interpreted inside \arg, function \transformer is called first, and its result is then interpreted. The arguments passed to \transformer are the output definition, the property alist chain, and the markup \arg. See Section “New markup command definition” in Extending about the two first arguments.

\markup \with-string-transformer
  #(\lambda (layout props str)
    (string-upcase str))
\concat { "abc" \larger "def" }

ABCDEF
A.12.2 Markup for text alignment

\align-on-other axis (non-negative, exact integer) other-dir (number) other (markup)
self-dir (number) self (markup)

Align markup self on markup other along axis.

This function uses self-dir and other-dir for mutual alignment of self and other, respectively, translating self as requested relative to its surroundings. other is not printed.

\markup { 
  \column { 
    1
    12
    \align-on-other #X #RIGHT 12
    \left 12345
    123
  }
}

1
12
12345
123

\center-align arg (markup)
Align arg to its X center.

\markup { 
  \column { 
    one
    \center-align two
    \center-align three
  } 
}

one
two
three

\center-column args (markup list)
Put args into a centered column.
See also \column.

\markup { 
  \center-column { 
    center-column one
    two
    three
  } 
}

one
two
three

Used properties:
• baseline-skip
\column args (markup list)
Stack the markups in args vertically.

The property baseline-skip determines the space between markups in args (to be more precise, the space between the baselines of the markups).

```
\markup {
 \column {
 one
 two
 three
 }
}
```

one
two
three

The baseline of the output of \column is the baseline of its first line.

Used properties:
- baseline-skip

\combine arg1 (markup) arg2 (markup)
Print arg1, then print arg2 on top of it.

Note: \combine cannot take a list of markups enclosed in curly braces as an argument; for this purpose use \overlay instead.

```
\markup {
 \combine {
 \draw-line #'(0 . 4)
 \arrow-head #Y #DOWN ##f
 }
}
```

\concat args (markup list)
Concatenate args in a horizontal line, without spaces in between.

Strings are concatenated on the input level, allowing ligatures. For example, \concat { "f" "i" } is equivalent to "fi".

```
\markup {
 \concat {
 one two three
 }
}
```

onetwothree

\dir-column args (markup list)
Make a column of args.

Depending on the setting of the direction layout property, the arguments are stacked upwards or downwards.

```
\markup {
```

\override #(direction . ,UP)
\dir-column {
  going up
}
\hspace #1
\dir-column {
  going down
}
\hspace #1
\override #'(direction . 1)
\dir-column {
  going up
}
}

up up
  going going going
  down

The baseline of the output of \dir-column is the baseline of its first line.

Used properties:
• baseline-skip
• direction

\fill-line args (markup list)
Put markups args into a horizontal line.
The markups are spaced or flushed to fill the entire line. If there are no arguments, return an empty stencil.
The width of the horizontal line can be modified by overriding the line-width property.

\markup {
  \column {
    \fill-line {
      Words evenly spaced across the page
    }
    \null
    \fill-line {
      \line { Text markups }
      \line {
        \italic { evenly spaced }
      }
      \line { across the page }
    }
    \null
    \override #'(line-width . 50)
    \fill-line {
      Width explicitly specified
    }
  }
}
Words evenly spaced across the page

Text markups evenly spaced across the page

Width explicitly specified

Used properties:
• line-width (#f)
• word-space (0.6)
• text-direction (1)

\fill-with-pattern space (number) dir (direction) pattern (markup) left (markup) right (markup)

Put left and right at the start and end of a line, respectively, and fill the space in between with repeated pattern markups.

Patterns are spaced apart by space and aligned to direction dir. The width of the line is given by the line-width property.

\markup \column {
  "right-aligned:"
  \fill-with-pattern #1 #RIGHT . first right
  \fill-with-pattern #1 #RIGHT . second right
  \null
  "center-aligned:"
  \fill-with-pattern #1.5 #CENTER - left right
  \null
  "left-aligned:"
  \override #'(line-width . 50) {
    \fill-with-pattern #2 #LEFT : left first
    \fill-with-pattern #2 #LEFT : left second
  }
}

right-aligned:
first ......................................................... right
second ......................................................... right

center-aligned:
left - - - - - - - - - - - - - - - - - - - - - - - - - - right

left-aligned:

Used properties:
• line-width
• word-space

\general-align axis (integer) dir (number) arg (markup)
Align arg in axis direction to the dir side.
Appendix A: Notation manual tables

\begin{verbatim}
one
\general-align #X #LEFT two
three
\null
one
\general-align #X #CENTER two
three
\null
\line {
  one
  \general-align #Y #UP two
  three
}
\null
\line {
  one
  \general-align #Y #3.2 two
  three
}
\}
\}
\line {
  one
two
three
\}
\halign dir (number) arg (markup)
Print \texttt{arg} with horizontal alignment set to \texttt{dir}.
If \texttt{dir} is -1, \texttt{arg} is left-aligned, while +1 makes it right-aligned. Values inbetween interpolate the alignment accordingly.
\begin{verbatim}
\markup {
  \column {
    one
    \halign #LEFT two
    three
    \null
    one
    \halign #CENTER two
    three
    \null
    one
    \halign #RIGHT two
  }
\}
\end{verbatim}
\end{verbatim}
\end{verbatim}

one
two
three
two
three
two
\end{verbatim}
\end{verbatim}
\end{verbatim}

three
\null
one
\halign \#-5 two
three
}
}
one
two
three

one
two
three

one
two
three

one
two
three

\hcenter-in \textit{length} (number) \textit{arg} (markup)
Center \textit{arg} horizontally within a box of extending \textit{length}/2 to the left and right.
\new \texttt{StaffGroup} \texttt{<<}
\new \texttt{Staff} {
  \set \texttt{Staff.instrumentName} = \texttt{markup} {
    \hcenter-in \#12 Oboe
  }
  \texttt{c'1}
}
\new \texttt{Staff} {
  \set \texttt{Staff.instrumentName} = \texttt{markup} {
    \hcenter-in \#12 Bassoon
  }
  \texttt{\clef tenor}
  \texttt{c'1}
}
\texttt{>>}

\hspace \textit{amount} (number)
Create an invisible object taking up \textit{amount} horizontal space.
\markup {  
  one  
  \hspace #2  
  two  
  \hspace #8  
  three  
}  

\justify args (markup list)  
Print args as lines aligned both at the left and the right.  
Like \wordwrap, but with lines stretched to justify the margins. Use \override #'(line-width . X) to set the line width; X is the number of staff spaces.  
\markup {  
  \justify {  
    Lorem ipsum dolor sit amet, consectetur adipisicing elit,  
    sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.  
  }  
}  

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.  
The baseline of the output of \justify is the baseline of its first line.  
Used properties:  
• text-direction (1)  
• word-space  
• line-width (#f)  
• baseline-skip  

\justify-field symbol (symbol)  
Justify the data that has been assigned to symbol.  
\header {  
  title = "My title"  
  myText = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat."
}  

\paper {  
  bookTitleMarkup = \markup {  
    \column {  
      \fill-line { \fromproperty #'header:title }  
      \null  
    }  
  }  
}
 Appendix A: Notation manual tables

\justify-field #'header:myText

\markup {
  \null
}

My title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

\justify-line args (markup list)
Put markups args into a horizontal line.
The markups are spread to fill the entire line and separated by equal space. If there are no arguments, return an empty stencil.
The width of the horizontal line can be modified by overriding the line-width property.
\markup {
  \override #'(line-width . 40)
  \justify-string #"Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat."
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum

The baseline of the output of \justify-string is the baseline of its first line.

Used properties:
• text-direction (1)
• word-space
• line-width
• baseline-skip

\left-align arg (markup)
Align arg on its left edge.
\markup {
\column {
 one
 \left-align two
 three
}
}

 one
two
three

\left-column args (markup list)
Put args into a left-aligned column.
\markup {
\left-column {
 one
two
 three
}
}

 one
two
three
Appendix A: Notation manual tables

Used properties:
• baseline-skip

\line args (markup list)
Put args into a horizontal line.
The property word-space determines the space between markups in args. For right-to-left scripts like Hebrew, text-direction should be set to -1.

\markup
\override #'(word-space . 3)
\column {
  \line { "A B" "C D" "E F" }
  \override #'(text-direction . -1)
  \line { "A B" "C D" "E F" }
}

A B C D E F
E F C D A B

Used properties:
• text-direction (1)
• word-space

\lower amount (number) arg (markup)
Lower arg by the distance amount.
A negative amount indicates raising; see also \raise.
The argument to \lower is the vertical displacement amount, measured in (global) staff spaces, which is independent of the markup’s current font size. If you need vertical movement that takes the font size into account, use \translate-scaled instead.
This function is normally used to move one element inside of a markup relative to the other elements. When using it on the whole markup, bear in mind that spacing mechanisms that place the markup itself on the page could cancel this shift. Consider using grob properties such as padding, Y-offset, or extra-offset, or spacing variables such as markup-system-spacing.

\markup
\markup {
  one
  \lower #3 two
  three
}

one   three
two

\overlay args (markup list)
Take a list of markups args and combine them.

\markup {
  \fontsize #5
  \override #'(thickness . 2)
  \overlay {
    \draw-line #'(0 . 4)
    \arrow-head #Y #DOWN #+#f
    \translate #'(0 . 4) \arrow-head #Y #UP #+#f
}
\pad-around \textit{amount} (\textit{number}) \textit{arg} (\textit{markup})

Add padding \textit{amount} all around \textit{arg}.

Identical to function \texttt{\pad-markup}.

\begin{verbatim}
\markup {
  \box {
    \hspace \#2
    \box {
      \pad-around \#0.5 {
        \hspace \#0.5
      }
    }
  }
}
\end{verbatim}

\pad-markup \textit{amount} (\textit{number}) \textit{arg} (\textit{markup})

Add padding \textit{amount} all around \textit{arg}.

Identical to function \texttt{\pad-around}.

\begin{verbatim}
\markup {
  \box {
    \hspace \#2
    \box {
      \pad-markup \#1 {
        \hspace \#1
      }
    }
  }
}
\end{verbatim}

\pad-to-box \textit{x-ext} (pair of numbers) \textit{y-ext} (pair of numbers) \textit{arg} (\textit{markup})

Make \textit{arg} take at least \textit{x-ext}, \textit{y-ext} space.

\begin{verbatim}
\markup {
  \box {
    \hspace \#4
    \box {
      \pad-to-box \#'(0 . 10) \#'(0 . 3) {
        \hspace \#'(0 . 3)
      }
    }
  }
}
\end{verbatim}
\pad-x amount (number) arg (markup)
Add padding amount around arg in the X direction.

\markup { default padded}

\put-adjacent axis (integer) dir (direction) arg1 (markup) arg2 (markup)
Put arg2 next to arg1 along axis to the dir side, without moving arg1.

\markup { default padded}

\raise amount (number) arg (markup)
Raise arg by the distance amount.
A negative amount indicates lowering, see also \lower.
The argument to \raise is the vertical displacement amount, measured in (global) staff spaces, which is independent of the markup’s current font size. If you need vertical movement that takes the font size into account, use \translate-scaled instead.

This function is normally used to move one element inside of a markup relative to the other elements. When using it on the whole markup, bear in mind that spacing mechanisms that place the markup itself on the page could cancel this shift. Consider using grob properties such as padding, Y-offset, or extra-offset, or spacing variables such as markup-system-spacing.

\markup { C \small \bold \raise #1.0 9/7+ }
C 9/7+

\right-align arg (markup)
Align arg on its right edge.
\markup { 
\begin{verbatim}
\column {
  one
  \right-align two
  three
}
}

\begin{verbatim}
one
two
three
\right-column args (markup list)
Put \textit{args} into a right-aligned column.
\begin{verbatim}
\markup {
  \right-column {
    one
two
three
  }
}
\end{verbatim}
\end{verbatim}

\begin{verbatim}
one
two
three
\end{verbatim}

Used properties:
• baseline-skip
\begin{verbatim}
\rotate ang (number) \textit{arg} (markup)
Rotate \textit{arg} by \textit{ang} degrees around its center.
\begin{verbatim}
\markup {
  default
  \hspace #2
  \rotate #45
  \line {
    \textit{rotated 45°}
  }
}
\end{verbatim}
\end{verbatim}

\begin{verbatim}
default
\end{verbatim}

\begin{verbatim}
\translate offset (pair of numbers) \textit{arg} (markup)
Translate \textit{arg} relative to its surroundings.
\textit{offset} is a pair of numbers representing the displacement in the X and Y axes. See also \texttt{\translate-scaled}.
This function is normally used to move one element inside of a markup relative to the other elements. When using it on the whole markup, bear in mind that spacing mechanisms that place the markup itself on the page could cancel this shift. Consider using grob properties such as padding, X-offset, Y-offset or extra-offset, or spacing variables such as markup-system-spacing.
\begin{verbatim}
\markup {
  default
\end{verbatim}
\end{verbatim}
translated two spaces right, three up

\translate-scaled \textit{offset} (pair of numbers) \textit{arg} (markup)

Translate \textit{arg} by \textit{offset}, scaling the offset by the font size.

This function is normally used to move one element inside of a markup relative to the other elements. When using it on the whole markup, bear in mind that spacing mechanisms that place the markup itself on the page could cancel this shift. Consider using grob properties such as \textit{padding}, \textit{X-offset}, \textit{Y-offset} or \textit{extra-offset}, or spacing variables such as \textit{markup-system-spacing}.

See also \translate.

\markup {
  \begin{verbatim}
\fontsize #5 {
  * \translate #'(2 . 3) translate
  \hspace #2
  * \translate-scaled #'(2 . 3) translate-scaled
}
\end{verbatim}
}

\vcenter \textit{arg} (markup)

Align \textit{arg} to its Y center.

\markup {
  one
  \vcenter two
  three
}

one two three

\vspace \textit{amount} (number)

Create an invisible object taking up vertical space of \textit{amount} multiplied by 3.

\markup {
  \begin{verbatim}
  \center-column {
    one
    \vspace #2
    two
    \vspace #5
    three
  }
}
}
one

two

three

\wordwrap \text{args} \text{(markup list)}

Print \text{args} as left-aligned lines.

This function provides simple word-wrap. Use \texttt{\textbackslash override \#'(line-width . \textit{X})} to set the line width; \textit{X} is the number of staff spaces.

\markup {
  \wordwrap {
    Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
  }
}

\texttt{Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.}

The baseline of the output of \texttt{\wordwrap} is the baseline of its first line.

Used properties:

- \texttt{text-direction (1)}
- \texttt{word-space}
- \texttt{line-width (#f)}
- \texttt{baseline-skip}

\texttt{\textbackslash wordwrap-field symbol \texttt{(symbol)}}

Word-wrap the data that has been assigned to \texttt{symbol}.

\header {
  title = "My title"
  myText = "Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat."
}

\paper {
  bookTitleMarkup = \markup {

My title

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.

\wordwrap-string arg (string)
Print string \textit{arg} as left-aligned lines.

Paragraphs are indicated by double newlines. Use \texttt{\textbackslash override \#'(line-width . \textit{\texttt{\textbackslash markup}}} to set the line width; \textit{\texttt{\textbackslash X}} is the number of staff spaces.

\item \texttt{\textbackslash markup}
\begin{verbatim}
\texttt{\textbackslash override \#'(line-width . 40)}
\texttt{\textbackslash wordwrap-string \#"Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat."

Excepcetor sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum"
\end{verbatim}

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.

The baseline of the output of \wordwrap-string is the baseline of its first line.

Used properties:
- text-direction (1)
- word-space
- line-width
- baseline-skip

### A.12.3 Graphical markup

\arrow-head axis (integer) dir (direction) filled (boolean)

Print an arrow head along axis in direction dir. Fill the head if filled is set to #t.

\markup {
  \fontsize #5 {
    \general-align #Y #DOWN {
      \arrow-head #Y #UP ##t
      \arrow-head #Y #DOWN ##f
      \hspace #2
      \arrow-head #X #RIGHT ##f
      \arrow-head #X #LEFT ##f
    }
  }
}

\beam width (number) slope (number) thickness (number)

Draw a beam with given width, slope, and thickness.

\markup {
  \beam #5 #1 #2
}

\bracket arg (markup)

Draw vertical brackets around arg.

\markup {

\beamwidth (number) slope (number) thickness (number)

Draw a beam with given width, slope, and thickness.
\textbf{\textbackslash bracket} \{ 
  \textbf{\textbackslash note} \{2.\} \#UP 
\}

\textbf{\textbackslash circle} \textit{arg} \textbackslash (\textit{markup})

Draw a circle around \textit{arg}.
Use properties thickness, \textit{circle-padding}, and \textit{font-size} to set the line thickness and padding around the markup.

\textbf{\textbackslash markup} \{ 
  \textbf{\textbackslash circle} \{ 
    \textit{Hi} 
  \} 
\}

\textbf{\textbackslash draw-circle \textit{radius} \textbackslash (number) \textit{thickness} \textbackslash (number) \textit{filled} \textbackslash (boolean)}

Draw a circle with given \textit{radius} and \textit{thickness}.
Fill the circle if \textit{filled} is set to \#t.

\textbf{\textbackslash markup} \{ 
  \textbf{\textbackslash draw-circle} \#2 \#0.5 ##f 
  \hspace \#2 
  \textbf{\textbackslash draw-circle} \#2 \#0 ##t 
\}

\textbf{\textbackslash draw-dashed-line} \textit{dest} \textbackslash (pair of numbers)

Draw a dashed line along vector \textit{dest}.
Properties \textit{on} and \textit{off} give the length of a dash and the space between two dashes, respectively; \textit{phase} shortens the first dash by the given amount.
If the \textit{full-length} property is set to \#t (which is the default), the value of property \textit{off} (and on under some boundary conditions) gets adjusted so that there is neither whitespace at the end of the line nor the last dash truncated.

\textbf{\textbackslash markup} \{ 
  \textbf{\textbackslash override} '#((on . 0.3) (off . 0.5)) 
  \textbf{\textbackslash draw-dashed-line} #'(6 . 2) 
\}

\textbf{\textbackslash override} '#(full-length . #f) 
\textbf{\textbackslash draw-dashed-line} #'(6 . 2)
\override #(phase . 0.5)
\draw-dashed-line #'(6 . 2)

\override #'(full-length . #f) (phase . 0.5))
\draw-dashed-line #'(6 . 2)
}

Used properties:
- full-length (#t)
- phase (0)
- off (1)
- on (1)
- thickness (1)

\draw-dotted-line dest (pair of numbers)
Draw a dotted line along vector dest.
Property off gives the space between two dots; its value gets adjusted so that the first and last dot exactly start and end the line, respectively. phase shifts all dots along the vector by the given amount.

\markup {
\draw-dotted-line #'(5.1 . 2.3)
\override #'(thickness . 2) (off . 0.2))
\draw-dotted-line #'(5.1 . 2.3)
}

Used properties:
- phase (0)
- off (1)
- thickness (1)

\draw-hline
Draw a horizontal line.
The property span-factor sets the length of the line as a multiple of the line-width property.

\markup {
\column {
\draw-hline
\override #(span-factor . 1/3)
\draw-hline
}
}

Used properties:
- span-factor (1)
Appendix A: Notation manual tables

- line-width
- thickness (1)

\draw-line dest (pair of numbers)
Draw a line along vector dest.
\markup
{\draw-line #'(4 . 4)
\override #'(thickness . 5)
\draw-line #'(-3 . 0)}

Used properties:
- thickness (1)

\draw-squiggle-line sq-length (number) dest (pair of numbers) eq-end? (boolean)
Draw a squiggled line along vector dest.
\column
{\draw-squiggle-line #0.5 #'(6 . 0) ##t
\override #'(orientation . -1)
\draw-squiggle-line #0.5 #'(6 . 0) ##t
\draw-squiggle-line #0.5 #'(6 . 0) ##f
\override #'(height . 1)
\draw-squiggle-line #0.5 #'(6 . 0) ##t
\override #'(thickness . 5)
\draw-squiggle-line #0.5 #'(6 . -2) ##t
\override #'(angularity . 2)
\draw-squiggle-line #0.5 #'(6 . 2) ##t}

Used properties:
- orientation (1)
- height (0.5)
- angularity (0)
- thickness (0.5)
\ellipse arg (markup)
Draw an ellipse around \textit{arg}.
Use properties thickness, x-padding, y-padding, and font-size to set the line thickness and padding around the markup.
This is the same as function \texttt{\oval} but with different padding defaults.
\begin{verbatim}
\markup {
    \ellipse {
        Hi
    }
} \end{verbatim}

Used properties:
- \texttt{y-padding} (0.2)
- \texttt{x-padding} (0.2)
- \texttt{font-size} (0)
- \texttt{thickness} (1)

\epsfile axis (number) size (number) file-name (string)
Inline an image \texttt{file-name}, scaled along \texttt{axis} to \texttt{size}.
See \texttt{\image} for details on this command; calling
\begin{verbatim}
\markup \epsfile axis size file-name
\end{verbatim}
is the same as
\begin{verbatim}
\markup
\override #'(background-color . #f)
\image axis size file-name
\end{verbatim}

\filled-box xext (pair of numbers) yext (pair of numbers) blot (number)
Draw a box of dimensions \texttt{xext} and \texttt{yext}, with rounded corners given by \texttt{blot}.
For example,
\begin{verbatim}
\filled-box #'(-.3 . 1.8) #'(-.3 . 1.8) #0
\end{verbatim}
creates a box extending horizontally from -0.3 to 1.8 and vertically from -0.3 up to 1.8, with corners formed from a circle of diameter 0 (i.e., sharp corners).
\begin{verbatim}
\markup {
    \filled-box #'(0 . 4) #'(0 . 4) #0
    \filled-box #'(0 . 2) #'(-4 . 2) #0.4
    \combine
    \filled-box #'(1 . 8) #'(0 . 7) #0.2
    \with-color #white
    \filled-box #'(3.6 . 5.6) #'(3.5 . 5.5) #0.7
} \end{verbatim}

\hbracket arg (markup)
Draw horizontal brackets around \textit{arg}.
\begin{verbatim}
\markup {
} \end{verbatim}
\hbracket \line \onetwothree
\onetwothree

\image axis (number) size (number) file-name (string)
Inline an image file-name, scaled along axis to size.
The image format is determined based on the extension of file-name, which should be .png for a PNG image, or .eps for an EPS image (.PNG and .EPS are allowed as well).
EPS files are only supported in the PostScript backend – for all output formats –, and in the Cairo backend – when creating PostScript or EPS output.
If the image has transparency, it will appear over a colored background with the color specified by the background-color property, which defaults to "white".
To disable the colored background, set background-color to #f. For EPS images, this always works (where EPS images work in the first place). On the other hand, for PNG images, it works in the Cairo backend (which can output all supported formats), as well as in the SVG backend, but not in the PostScript backend, which is the default. See Section “Advanced command-line options for LilyPond” in Application Usage for how to activate the Cairo backend.

Used properties:
• background-color ("white")

\oval arg (markup)
Draw an oval around arg.
Use properties thickness, x-padding, y-padding, and font-size to set the line thickness and padding around the markup.
This is the same as function \ellipse but with different padding defaults.
\markup \oval \Hi

Used properties:
• y-padding (0.75)
• x-padding (0.75)
• font-size (0)
• thickness (1)

\parenthesize arg (markup)
Draw parentheses around arg.
This is useful for parenthesizing a column containing several lines of text.
\markup \parenthesize
Draw a path with line thickness according to the directions given in commands. commands is a list of lists where the car of each sublist is a drawing command and the cdr comprises the associated arguments for each command.

There are seven commands available to use in commands: moveto, rmoveto, lineto, rlineto, curveto, rcurveto, and closepath. Note that the commands that begin with ‘r’ are the relative variants of the other three commands. You may also use the standard SVG single-letter equivalents: moveto = M, lineto = L, curveto = C, closepath = Z. The relative commands are written lowercase: rmoveto = r, rlineto = l, rcurveto = c.

The commands moveto, rmoveto, lineto, and rlineto take 2 arguments, namely the X and Y coordinates of the destination point.

The commands curveto and rcurveto create cubic Bézier curves, and take 6 arguments; the first two are the X and Y coordinates for the first control point, the second two are the X and Y coordinates for the second control point, and the last two are the X and Y coordinates for the destination point.

The closepath command takes zero arguments and closes the current subpath in the active path.

Line-cap styles and line-join styles may be customized by overriding the line-cap-style and line-join-style properties, respectively. Available line-cap styles are butt, round, and square. Available line-join styles are miter, round, and bevel.

The property filled specifies whether or not the path is filled with color.

\begin{verbatim}
\path thickness (number) commands (list)
\end{verbatim}
Appendix A: Notation manual tables

\(\text{(lineto 1 -1)}\)
\(\text{(curveto -5 -5 -5 5 -1 0)}\)
\(\text{(closepath)}\)

\(\text{\textbackslash markup \ scale #'(2 . 2) { }\text{\textbackslash path #0.25 #samplePath}\}}\)

\(\text{\textbackslash override #'(line-join-style . miter)\text{\textbackslash path #0.25 #samplePath}\}}\)

\(\text{\textbackslash override #'(filled . #f)\text{\textbackslash path #0.25 #samplePath}\}}\)

\[\text{Used properties:}\]
\[\text{• filled (#f)}\]
\[\text{• line-join-style (round)}\]
\[\text{• line-cap-style (round)}\]

\(\text{\textbackslash polygon points (list of number pairs)}\)

A polygon delimited by the list of points.

Property extroversion defines how the shape of the polygon is adapted to its thickness: if it is 0, the polygon is traced as-is. If it is -1, the outer side of the line is just on the given points. If set to 1, the line has its inner side on the points.

The thickness property controls the thickness of the line; for filled polygons, this means the diameter of the blot.

\(\text{regularPentagon =}\)
\(\text{#'((1 . 0) (0.31 . 0.95) (-0.81 . 0.59) (-0.81 . -0.59) (0.31 . -0.95))}\)

\(\text{\textbackslash markup \ scale #'(2 . 2) { }\text{\textbackslash polygon #'(\text{-1 . -1} (0 . -3) (2 . 2) (1 . 2))\text{\textbackslash override #'(filled . #f)\text{\textbackslash override #'(thickness . 2)\text{\textbackslash combine\text{\textbackslash with-color #'(universal-color 'blue)\text{\textbackslash polygon #regularPentagon\text{\textbackslash with-color #'(universal-color 'vermillion)\text{\textbackslash override #'(extroversion . 1)\text{\textbackslash polygon #regularPentagon}}}}}}}}}}\)

\[\text{Used properties:}\]
\[\text{• thickness (1)}\]
\[ \text{filled (t)} \]
\[ \text{extroversion (0)} \]

\[ \text{\texttt{\textbackslash postscript str (string)}} \]

Insert \texttt{str} directly into the output as a PostScript command string.

This command is meant as a \textit{last resort}. Almost all needs are better fulfilled by other markup commands (see, for example, \texttt{\textbackslash path} and \texttt{\textbackslash draw-line}). If you do use this command, keep the following points in mind:

- \texttt{\textbackslash postscript} does not work in SVG output.
- There are no stability guarantees on the details of how LilyPond produces its own output (i.e., the context into which the PostScript code is inserted). They may change substantially across versions.
- LilyPond cannot understand the shape of the drawing, leading to suboptimal spacing.
- Depending on how you install LilyPond, the version of the PostScript interpreter (GhostScript) can vary, and some of its features may be disabled.

\begin{verbatim}
ringps = "
0.15 setlinewidth
0.9 0.6 moveto
0.4 0.6 0.5 0 361 arc
stroke
1.0 0.6 0.5 0 361 arc
stroke"

rings = \texttt{\textbackslash markup} {
 \texttt{\textbackslash with-dimensions} '#(-0.2 . 1.6) '#(0 . 1.2)
 \texttt{\textbackslash postscript} #\texttt{ringps}
}

\relative c'' {
 c2"\texttt{rings}
 a2_\texttt{rings}
}
\end{verbatim}

\[ \text{\texttt{\textbackslash rounded-box arg (markup)}} \]

Draw a box with rounded corners around \texttt{arg}.

This function looks at properties \texttt{thickness}, \texttt{box-padding}, and \texttt{font-size} to determine the line thickness and padding around the \texttt{arg}. The \texttt{corner-radius} property defines the radius of the round corners (default value is 1).

\begin{verbatim}
c4\texttt{\textbackslash markup} {
 \texttt{\textbackslash rounded-box} {
 Overtura
 }
}
c,8. c16 c4 r
\end{verbatim}
Note that the box does not horizontally displace its argument. Use markup commands like \left-align or \table to make LilyPond realign it.

\markup {
  \override #'(box-padding . 1.5)
  \column {
    "text"
    \rounded-box "text"
    \left-align \rounded-box "text"
  }
}

\text
\text
\text

Used properties:
- box-padding (0.5)
- font-size (0)
- corner-radius (1)
- thickness (1)

\scale factor-pair (pair of numbers) arg (markup)
Scale arg.

factor-pair is a pair of numbers representing the scaling factor of the X and Y axes. Negative values may be used to produce mirror images.

\markup {
  \line {
    \scale #'(2 . 1)
    stretched
    \scale #'(1 . -1)
    mirrored
  }
}

\text
\text
\text

\triangle filled (boolean)
Draw a triangle.
Fill the triangle if filled is set to #t.

The appearance can be controlled with properties extroversion, font-size, and thickness.

\markup {
  \triangle ##t
  \triangle ##f
  \override #'(font-size . 5)
\override #'(thickness . 5) {
  \override #'(extroversion . 1)
  \triangle ##f
  \override #'(extroversion . -1)
  \triangle ##f
}

\markup { \with-url \#"https://lilypond.org/" { LilyPond ... \italic { music notation for everyone } } }

LilyPond ... *music notation for everyone*

A.12.4 Markup for music and musical symbols

\accidental alteration (an exact rational number)
Select an accidental glyph for *alteration*, given as a rational number.
Use \number instead if you need glyph representation forms that fit and align well with text.

\markup {
  text
  \tiny \accidental #1/2 \accidental #-1/2 text
  \tiny \number { \char \#x266F \char \#x266D } text
}

\text #& text #& text

Used properties:
- alteration-glyph-name-alist

\coda Draw a coda sign.

\markup {
  \coda
}

---

2 Due to technical limitations the link doesn’t work here in the Notation Reference.
\compound-meter time-sig (number or pair)

Draw a numeric time signature based on time-sig.

\begin{verbatim}
\markup {
    \override #'(baseline-skip . 4.5)
    \column {
        \line { Single number: \compound-meter #3 }
        \line { Conventional: \compound-meter #'(4 . 4) or \compound-meter #'(4 4) }
        \line { Compound: \compound-meter #'((2 3 5 8) ) }
        \line { Single-number compound: \compound-meter #'((2) (3) ) }
        \line { Complex compound: \compound-meter #'((2 3 8) (3 4)) }
    }
}
\end{verbatim}

Single number: 3

Conventional: \frac{4}{4} or \frac{4}{4}

Compound: \frac{2}{8} + 3 + 5\frac{8}{3}

Single-number compound: 2 + 3

Complex compound: \frac{2}{8} + \frac{3}{3} + \frac{3}{4}

\customTabClef num-strings (integer) staff-space (number)

Draw a clef in sans-serif style for a tablature with num-strings lines spaced by staff-space.

This markup command is used to implement \clef moderntab within a TabStaff context.

\begin{verbatim}
\markup { 
    \customTabClef #4 #1
}
\end{verbatim}

\doubleflat

Draw a double flat symbol.

\begin{verbatim}
\markup { 
    \doubleflat
}
\end{verbatim}
\doubleslash
Draw a double sharp symbol.
\markup {
  \doubleslash
}

\fermata
Create a fermata glyph.
If property direction is DOWN, use an inverted glyph.
Note that within music, one would normally use the \fermata articulation instead of a markup.
\markup {
  c'\("\fermata d'\(" \fermata
}
\markup {
  \fermata \override #'(direction . ,DOWN) \fermata
}

Used properties:
- direction (1)

\flat
Draw a flat symbol.
\markup {
  \flat
}

\multi-measure-rest-by-number length (non-negative, exact integer)
Return a multi-measure rest symbol for length measures.
If the number of measures is greater than the number given by expand-limit a thick horizontal line is printed. For every multi-measure rest lasting more than one measure a number is printed on top. However, if property multi-measure-rest-number is set to #t, this number gets suppressed.
\markup {
  Multi-measure rests may look like
  \multi-measure-rest-by-number #12
  or
  \override #'(multi-measure-rest-number . #f)
  \multi-measure-rest-by-number #7
  (church rests)
}

Multi-measure rests may look like \(\begin{array}{c}
  12 \\
  \end{array}\) or \(\begin{array}{c}
  12 \\
  \end{array}\) (church rests)

Used properties:
- multi-measure-rest-number (#t)
- width (8)
• expand-limit (10)
• hair-thickness (2.0)
• thick-thickness (6.6)
• word-space
• style ()
• font-size (0)

`\musicglyph glyph-name` (string)
Print music symbol `glyph-name`.
See Section “The Emmentaler font” in Notation Reference for a complete listing of the possible glyph names.

```latex
\markup {
 \musicglyph #"f"
 \musicglyph #"rests.2"
 \musicglyph #"clefs.G_change"
}
```

\natural Draw a natural symbol.

```latex
\markup {
 \natural
}
```

\note `duration` (duration) `dir` (number)
Draw a note of given `duration` with a stem pointing into direction `dir`.
`duration` gives the note head type and augmentation dots; `dir` controls both the direction and length of the stem.
See also function `\note-by-number`.

```latex
\markup {
 \note {4..} #UP
 \hspace #2
 \override #'(style . cross)
 \note {4..} #0.75
 \hspace #2
 \note {\breve} #0
}
```

Used properties:
• style ()
• dots-direction (0)
• flag-style ()
• font-size (0)
\note-by-number \log (number) \dot-count (number) \dir (number)

Draw a note of length \log, with \dot-count dots and a stem pointing into direction \dir.

By using fractional values for \dir, longer or shorter stems can be obtained.

Ancient note-head styles (via the style property, see Section A.9 [Note head styles], page 757) get mensural-style flags by default; use flag-style to override this. Supported flag styles are default, old-straight-flag, modern-straight-flag, flat-flag, mensural, and neomensural. The last flag style is the same as mensural and provided for convenience.

\markup {
  \note-by-number #3 #0 #DOWN
  \hspace #2
  \note-by-number #1 #2 #0.8
  \hspace #2
  \override #(style . petrucci)
  \note-by-number #3 #0 #UP
  \hspace #2
  \override #(flag-style . modern-straight-flag)
  \note-by-number #4 #0 #DOWN
}

Used properties:
- style()
- dots-direction(0)
- flag-style()
- font-size(0)

\rest \duration (duration)

Return a rest symbol with length \duration.

If the multi-measure-rest property is set to #t, a multi-measure rest symbol may be returned. In this case the duration needs to be entered as \{ 1*\N \} to get a multi-measure rest for \N bars. Actually, only the scaling factor (i.e., the number after ‘*’) determines the length; the basic duration is disregarded.

See also functions \rest-by-number and \multi-measure-rest-by-number for more information on the used properties.

\markup {
  \Rests:
  \hspace #2
  \rest \{ 4.. \}
  \hspace #2
  \rest \{ \breve \}
  \hspace #2
  Multi-measure rests:
  \override #(multi-measure-rest . #t)
  {\hspace #2
    \rest \{ 1*7 \}
Rests: \hspace #2 rest \{ 1*12 \}
}
}

\rest-by-number \log (integer) \dot-count (integer)
Draw a rest of length \log, with \dot-count dots.
For duration logs that appear in the ledgers property, rest symbols with ledger
lines are selected.
\markup {
\rest-by-number #3 #2 \hspace #2
\rest-by-number #0 #1 \hspace #2
\rest-by-number #-1 #0 \hspace #2
\override #'(ledgers . ())
\rest-by-number #-1 #0
}

\rhythm music (music)
Draw embedded rhythmic pattern as specified by music.
\relative { tempo \markup {
\rhythm \{ 8[ 8 ] \} = \rhythm \{ \tuplet 3/2 \{ 4 8 \} \}
}
Within \rhythm, there is no time signature and no division in measures (as with \cadenza\texttt{On}, see [Unmetered music], page 82). Beaming must be added explicitly with the syntax explained in [Manual beams], page 103.

\markup {
  The rhythmic pattern \rhythm \{ 16[ 8 16 ] \} is a type of syncopation.
}

\rhythm works by creating a StandaloneRhythmVoice context. The parents of this context are StandaloneRhythmStaff and StandaloneRhythmScore. It is possible to apply global tweaks to the output by using a \layout block.

\layout {
  \context {
    \StandaloneRhythmVoice
    \xNotesOn
  }
}

\markup \rhythm \{ 8 16 8 \}

\score score (score)

Inline an image of music as specified by score.

The reference point (usually the middle staff line) of the lowest staff in the top system is placed on the baseline.

\markup {
  Text before the score.
  \score {
    \new PianoStaff <<
    \new Staff \relative c' {
      \key f \major
      \time 3/4
      \mark \markup \{ Allegro \}
  }
}

b8 g' c, d ees d16 ees d c r8

\Swing = 3

\timesig.C44/clefs.G/noteheads.s2

Within \rhythm, there is no time signature and no division in measures (as with \cadenza\texttt{On}, see [Unmetered music], page 82). Beaming must be added explicitly with the syntax explained in [Manual beams], page 103.

\markup {
  The rhythmic pattern \rhythm \{ 16[ 8 16 ] \} is a type of syncopation.
}

\rhythm works by creating a StandaloneRhythmVoice context. The parents of this context are StandaloneRhythmStaff and StandaloneRhythmScore. It is possible to apply global tweaks to the output by using a \layout block.

\layout {
  \context {
    \StandaloneRhythmVoice
    \xNotesOn
  }
}

\markup \rhythm \{ 8 16 8 \}

\score score (score)

Inline an image of music as specified by score.

The reference point (usually the middle staff line) of the lowest staff in the top system is placed on the baseline.

\markup {
  Text before the score.
  \score {
    \new PianoStaff <<
    \new Staff \relative c' {
      \key f \major
      \time 3/4
      \mark \markup \{ Allegro \}
  }
}

b8 g' c, d ees d16 ees d c r8

\Swing = 3

\timesig.C44/clefs.G/noteheads.s2

Within \rhythm, there is no time signature and no division in measures (as with \cadenza\texttt{On}, see [Unmetered music], page 82). Beaming must be added explicitly with the syntax explained in [Manual beams], page 103.

\markup {
  The rhythmic pattern \rhythm \{ 16[ 8 16 ] \} is a type of syncopation.
}

\rhythm works by creating a StandaloneRhythmVoice context. The parents of this context are StandaloneRhythmStaff and StandaloneRhythmScore. It is possible to apply global tweaks to the output by using a \layout block.

\layout {
  \context {
    \StandaloneRhythmVoice
    \xNotesOn
  }
}

\markup \rhythm \{ 8 16 8 \}

\score score (score)

Inline an image of music as specified by score.

The reference point (usually the middle staff line) of the lowest staff in the top system is placed on the baseline.

\markup {
  Text before the score.
  \score {
    \new PianoStaff <<
    \new Staff \relative c' {
      \key f \major
      \time 3/4
      \mark \markup \{ Allegro \}
  }
}
\begin{music}
\begin{staff}
\relative c {
\clef bass
\key f \major
\time 3/4
f8{ a c a c a }
}
>>
\layout {
\indent = 0.0 \text{cm}
}
\end{staff}
\end{music}

Text after the score.

\begin{music}
\begin{staff}
\relative c {
\clef bass
\key f \major
\time 3/4
f8{ a c a c a }
}
>>
\layout {
\indent = 0.0 \text{cm}
}
\end{staff}
\end{music}

Text after the score.

Text before the score.

Text before the score.

Text after the score.
Draw a 3/2 sharp symbol.
\markup { \sesquisharp }

\sharp
Draw a sharp symbol.
\markup { \sharp }

\tied-lyric str (string)
Replace ’~’ tilde symbols with tie characters in str.
\markup \column { \tied-lyric
  #"Siam navi~all'onde~algenti Lasciate~in abbandono"
  \tied-lyric
  #"Impetuosi venti I nostri~affetti sono"
  \tied-lyric
  #"Ogni diletto~e~scoglio Tutta la vita~e~un mar."
}

Siam navi all'onde algenti Lasciate in abbandono
Impetuosi venti I nostri affetti sono
Ogni diletto e scoglio Tutta la vita e un mar.

Used properties:
* word-space

\varcoda
Draw a varcoda sign.
\markup { \varcoda }

A.12.5 Conditional markup

\if condition? (procedure) argument (markup)
Test condition?, and only insert argument if it is true.
The condition is provided as a procedure taking an output definition and a property alist chain. The procedure is applied, and its result determines whether to print the markup. This command is most useful inside oddHeaderMarkup or similar. Here is an example printing page numbers in bold:
\paper { }
oddHeaderMarkup =
\markup {\fill-line {
  ""
  \if #print-page-number
    \bold \fromproperty #'page:page-number-string
  }
}
evenHeaderMarkup =
\markup {\fill-line {
  \if #print-page-number
    \bold \fromproperty #'page:page-number-string
  ""
}
}
\unless condition? (procedure) argument (markup)
Test condition?, and only insert argument if it is false.
This function is similar to \if; the following example shows how to print the copyright notice on all pages but the last instead of just the first page.
\paper {
oddFooterMarkup = \markup {
  \unless #on-last-page-of-part \fill-line {
    \fromproperty #'header:copyright
  }
}
}
\header {
copyright = "© LilyPond Authors. License: GFDL."
tagline = "© LilyPond Authors. Documentation placed under the GNU Free Documentation License version 1.3."
}

A.12.6 Instrument-specific markup
\fret-diagram definition-string (string)
Make a (guitar) fret diagram based on definition-string.
For example, say
\markup \fret-diagram #"s:1.25;6-x;5-x;4-o;3-2;2-3;1-2;"

for fret spacing 5/4 of staff space, D chord diagram.
Syntax rules for definition-string:
- Diagram items are separated by semicolons.
- Possible items:
  - s:number – Set the fret spacing of the diagram (in staff spaces). Default: 1.
  - t:number – Set the line thickness (relative to normal line thickness). Default: 0.5.
  - h:number – Set the height of the diagram in frets. Default: 4.
Appendix A: Notation manual tables

- \( w: \text{number} \) – Set the width of the diagram in strings. Default: 6.
- \( f: \text{number} \) – Set fingering label type (0 = none, 1 = in circle on string, 2 = below string). Default: 0.
- \( d: \text{number} \) – Set radius of dot, in terms of fret spacing. Default: 0.25.
- \( p: \text{number} \) – Set the position of the dot in the fret space. 0.5 is centered; 1 is on lower fret bar, 0 is on upper fret bar. Default: 0.6.
- \( c: \text{string1-string2-fret} \) – Include a barre mark from string1 to string2 on fret.
- \( \text{string-fret} \) – Place a dot on string at fret. If fret is ‘o’, string is identified as open. If fret is ‘x’, string is identified as muted.
- \( \text{string-fret-fingering} \) – Place a dot on string at fret, and label with fingering as defined by the \( f: \) code.

- Note: There is no limit to the number of fret indications per string.

Used properties:
- \text{thickness} (0.5)
- \text{fret-diagram-details}
- \text{size} (1.0)
- \text{align-dir} (-0.4)

\fret-diagram-terse \text{definition-string} (\text{string})

Make a fret diagram markup using terse string-based syntax.

For example,

\verbatim
\markup \fret-diagram-terse #$"x;x;o;2;3;2;"$
\endverbatim

\[
\begin{array}{c}
\includegraphics[width=0.2\textwidth]{chord.png}
\end{array}
\]

displays a D chord diagram.

Syntax rules for \text{definition-string}:
- Strings are terminated by semicolons; the number of semicolons is the number of strings in the diagram.
- Mute strings are indicated by ‘x’.
- Open strings are indicated by ‘o’.
- A number indicates a fret indication at that fret.
- If there are multiple fret indicators desired on a string, they should be separated by spaces.
- Fingerings are given by following the fret number with a ‘-’ followed by the finger indicator, e.g., ‘3-2’ for playing the third fret with the second finger.
- Where a barre indicator is desired, follow the fret (or fingering) symbol with ‘-’ to start a barre and ‘-’ to end the barre.

Used properties:
- \text{thickness} (0.5)
- \text{fret-diagram-details}
- \text{size} (1.0)
- \text{align-dir} (-0.4)
Appendix A: Notation manual tables

\fret-diagram-verbose marking-list (pair)

Make a fret diagram containing the symbols indicated in marking-list.

The following example produces a standard D chord diagram without fingering indications.

\markup \scale #'(1.5 . 1.5)
\fret-diagram-verbose
#'(mute 6) (mute 5) (open 4) (place-fret 3 2) (place-fret 2 3) (place-fret 1 2))

Possible elements in marking-list:

(mute string-number)
   Place a small ‘x’ at the top of string string-number.

(open string-number)
   Place a small ‘o’ at the top of string string-number.

(barre start-string end-string fret-number)
   Place a barre indicator (much like a tie) from string start-string to string end-string at fret fret-number.

(capo fret-number)
   Place a capo indicator (a large solid bar) across the entire fretboard at fret location fret-number. Also, set fret fret-number to be the lowest fret on the fret diagram.

(place-fret string-number fret-number [finger-value] [color-modifier] [color] ['parenthesized ['default-paren-color]])
   Place a fret playing indication on string string-number at fret fret-number with an optional fingering label finger-value, an optional color modifier color-modifier, an optional color color, an optional parenthesis 'parenthesized and an optional parenthesis color 'default-paren-color.

By default, the fret playing indicator is a solid dot. This can be globally changed by setting the value of the property dot-color or for a single dot by setting the value of color. The dot can be parenthesized by adding 'parenthesized. By default the color for the parenthesis is taken from the dot. Adding 'default-paren-color will take the parenthesis color from the global dot-color property; as a fallback black will be used. Setting color-modifier to inverted inverts the dot color for a specific fingering.

The values for string-number, fret-number, and the optional finger should be entered first in that order. The order of the other optional arguments does not matter. If the finger part of the place-fret element is present, finger-value will be displayed according to the setting of the variable finger-code. There is no limit to the number of fret indications per string.

\markup \scale #'(1.5 . 1.5)
\fret-diagram-verbose #'(place-fret 6 3 1 red parenthesized default-paren-color)
(place-fret 5 3 1 inverted)
(place-fret 4 5 2 blue parenthesized)
(place-fret 3 5 3 blue)
(place-fret 2 5 4 blue)
(place-fret 1 3 1 inverted)
)

Used properties:
• thickness (0.5)
• fret-diagram-details
• size (1.0)
• align-dir (-0.4)

\harp-pedal definition-string (string)
Make a harp pedal diagram containing the symbols indicated in definition-string.
Possible elements in definition-string:
- pedal is up
- pedal is neutral
v pedal is down
| vertical divider line
o the following pedal should be circled (indicating a change)

\markup \harp-pedal #"^-v|--ov~"

The function also checks whether the string has the typical form of three pedals, then the divider, and then the remaining four pedals, printing a warning otherwise (without preventing the non-standard order).
Use the size property to control the overall size, and the thickness property for the line thickness of the horizontal line and the divider.
The remaining configuration is done via the harp-pedal-details property; it contains the following elements:

box-offset
vertical shift of the box center for up/down pedals

box-width
box width

box-height
box height

space-before-divider
spacing between two boxes before the divider

space-after-divider
spacing between two boxes after the divider
Appendix A: Notation manual tables

\markup {
  \override #(size . 1.5)
    (harp-pedal-details .
      ((box-width . 1)
        (box-offset . 2)))
  \harp-pedal "^-v|--ov^"
}

For global modification of harp-pedal-details, i.e., outside of the current \markup block, you can also use code similar to

\override Voice.TextScript.harp-pedal-details.box-width = #1

Used properties:
• thickness (0.5)
• harp-pedal-details ()
• size (1.2)

\woodwind-diagram instrument (symbol) user-draw-commands (list)

Make a woodwind-instrument diagram for instrument using user-draw-commands. user-draw-commands is a list of alists, specifying the left-hand keys, the elements on the central column, and the right-hand keys. For example, this diagram

\markup \woodwind-diagram
  #'oboe #'((lh . (d ees))
    (cc . (five3qT1q))
    (rh . (gis)))

shows an oboe with the left-hand d key, left-hand ees key, and right-hand gis key depressed, while the five-hole of the central column effectuating a trill between 1/4 and 3/4 is closed.

The following instruments are supported:
• piccolo
• flute
• oboe
• clarinet
• bass-clarinet
• saxophone
• bassoon
• contrabassoon

To see all of the callable keys for a given instrument, include the function call (print-keys 'instrument) in your .ly file, where instrument is the instrument whose keys you want to print.
Certain keys allow for special configurations. The entire gamut of configurations possible is as follows:

- **1q**: 1/4 covered
- **1h**: 1/2 covered
- **3q**: 3/4 covered
- **R**: ring depressed
- **F**: fully covered; the default if no state put

Additionally, these configurations can be used in trills. So, for example, three3qTR effectuates a trill between 3/4 full and ring depressed on the three hole. As another example, threeRT effectuates a trill between R and open, whereas threeTR effectuates a trill between open and shut. To see all of the possibilities for all of the keys of a given instrument, invoke (print-keys-verbose 'instrument).

Lastly, substituting an empty list for the pressed-key alist results in a diagram with all of the keys drawn but none filled, for example

```
\markup \woodwind-diagram #'flute #'()
```

Used properties:
- `woodwind-diagram-details (())`
- `font-size (0)`
- `graphical (#t)`
- `thickness (0.1)`
- `size (1)`

**A.12.7 Accordion registers**

```
\discant name (string)
```

Generate a discant accordion register symbol for `name`. To make it available,

```
#(use-modules (lily accreg))
```

is required near the top of your input file.

The register names in the default \discant register set have been modeled after the numeric Swiss notation (as depicted in http://de.wikipedia.org/wiki/Register_%28Akkordeon%29), omitting the slashes and dropping leading zeros.

The string `name` is basically a three-digit number with the lowest digit specifying the number of 16' reeds, the tens the number of 8' reeds, and the hundreds specifying the number of 4' reeds. Without modification, the specified number of reeds in 8' is centered in the symbol. Newer instruments may have registrations where 8' can be used either within or without a tone chamber, ‘cassotto’. Notationally, the central
dot then indicates use of cassotto. One can suffix the tens’ digits ‘1’ and ‘2’ with ‘+’ or ‘−’ to indicate clustering the dots at the right or left, respectively, rather than centered.

Some examples are

\( \text{\textbackslash discant "1" \ discant "1+0"} \)

\( \text{\textbackslash discant "120" \ discant "131"} \)

Used properties:
- font-size (0)

\( \text{\textbackslash freeBass \ name \ (string)} \)

Generate a free bass/converter accordion register symbol for the usual two-reed layout as given by \textit{name}.

To make it available,

\( \text{(#(use-modules \ (lily \ accreg)))} \)

is required near the top of your input file.

Available registrations are

\( \text{\textbackslash freeBass "1" \ freeBass "11"} \)

\( \text{\textbackslash freeBass "1\!0"} \)

Used properties:
- font-size (0)

\( \text{\textbackslash stdBass \ name \ (string)} \)

Generate a standard bass accordion register symbol for \textit{name}.

To make it available,

\( \text{(#(use-modules \ (lily \ accreg)))} \)

is required near the top of your input file.

The default bass register definitions have been modeled after the article http://www.accordions.com/index/art/stradella.shtml originally appearing in \textit{Accord Magazine}.

The underlying register model is

\[ \text{This kind of overlapping arrangement is common for Italian instruments though the exact location of the octave breaks differ.} \]
When not composing for a particular target instrument, using the five-reed definitions makes more sense than using a four-reed layout: in that manner, the ‘Master’ register is unambiguous. This is rather the rule in literature bothering about bass registrations at all.

Available registrations are

\begin{align*}
\text{\stdBass "Soprano"} & \quad \text{\stdBass "Soft Bass"} \\
\text{\stdBass "Alto"} & \quad \text{\stdBass "Soft Tenor"} \\
\text{\stdBass "Tenor"} & \quad \text{\stdBass "Bass/Alto"} \\
\text{\stdBass "Master"} & \quad \text{\stdBass "Soft Bass"}
\end{align*}

Used properties:

- font-size (0)

\stdBassIV name (string)

Generate a standard bass accordion register symbol for name.

To make it available,

\begin{verbatim}
#(use-modules (lily accreg))
\end{verbatim}

is required near the top of your input file.

The main use is for four-reed standard bass instruments with reedbank layout

Notable instruments are Morino models with MIII (the others are five-reed instead) and the Atlantic IV. Most of those models have three register switches. Some newer Morinos with MIII might have five or even seven.

The prevalent three-register layout uses the middle three switches ‘Tenor’, ‘Master’, ‘Soft Bass’. Note that the sound is quite darker than the same registrations of ‘c’, ‘b’-based instruments.

Available registrations are
Appendix A: Notation manual tables

\stdBassIV "Soprano" \stdBassIV "Soft Bass"
\stdBassIV "Alto" \stdBassIV "Bass/Alto"
\stdBassIV "Tenor" \stdBassIV "Soft Bass/Alto"
\stdBassIV "Master" \stdBassIV "Soft Tenor"

Used properties:
• font-size (0)

\stdBassV name (string)
Generate a standard bass accordion register symbol for name.
To make it available,

#(use-modules (lily accreg))
is required near the top of your input file.

The main use is for five-reed standard bass instruments with reedbank layout

This tends to be the bass layout for Hohner’s Morino series without converter or MIII manual.

With the exception of the rather new 7-register layout, the highest two chord reeds are usually sounded together. Older instruments offer 5 or 3 bass registers. The Tango VM offers an additional ‘Solo Bass’ setting that mutes the chord reeds. The symbol on the register buttons of the Tango VM would actually match the physical five-octave layout reflected here, but it is not used in literature.

Composers should likely prefer the five-reed versions of these symbols. The mismatch of a four-reed instrument with five-reed symbols is easier to resolve for the player than the other way round.

Available registrations are
\\stdBassV "Bass/Alto" \stdBassV "Soft Bass"

\stdBassV "Soft Bass/Alto" \stdBassV "Soft Tenor"

\stdBassV "Alto" \stdBassV "Soprano"

\stdBassV "Tenor" \stdBassV "Sopranos"

\stdBassV "Master" \stdBassV "Solo Bass"

Used properties:

- font-size (0)

\stdBassVI name (string)

Generate a standard bass accordion register symbol for six-reed basses as given by name.

To make it available,

#(use-modules (lily acreg))

is required near the top of your input file.

This is primarily the register layout for the Hohner “Gola” model. The layout is

![Diagram of bass accordion register]

The registers are effectively quite similar to that of \stdBass. An additional bass reed at alto pitch is omitted for esthetical reasons from the ‘Master’ setting, so the symbols are almost the same except for the ‘Alto/Soprano’ register with bass notes at Alto pitch and chords at Soprano pitch.

Available registrations are
A.12.8 Other markup commands

\auto-footnote {mkup (markup) note (markup)}

Have footnote note act as an annotation to the markup mkup.

\markup \auto-footnote a b
\override #'(padding . 0.2)
\auto-footnote c d

\[ a^1 c^2 \]

\backslashed-digit {num (integer)}

Print number num with the Emmentaler font, crossed through with a backslash. This is for use in the context of figured bass notation.

\markup {
\begin{verbatim}
\backslashed-digit #5
\hspace #2
\override #'(thickness . 3)
\backslashed-digit #7
\end{verbatim}

5%

Used properties:
- \texttt{thickness} \(1.6\)
- \texttt{font-size} \(0\)

\texttt{\char num (integer)}

Produce a single Unicode character with code \texttt{num}.

Characters encoded in hexadecimal format require the prefix \texttt{#x}.

\begin{verbatim}
\markup {
  \char #65 \char \#x00a9
}\end{verbatim}

\texttt{\eyeglasses}

Prints out eyeglasses, indicating strongly to look at the conductor.

\begin{verbatim}
\markup { \eyeglasses }
\end{verbatim}

\begin{verbatim}
\first-visible \texttt{args (markup list)}
Use the first markup in \texttt{args} that yields a non-empty stencil and ignore the rest.
\markup {
  \first-visible {
    \fromproperty #'header:composer
    \italic Unknown
  }
}
\end{verbatim}

\textit{Unknown}

\texttt{\footnote mkup (markup) note (markup)}

Have footnote \texttt{note} act as an annotation to the markup \texttt{mkup}.

\begin{verbatim}
\markup {
  \footnote a b
  \override #'(padding . 0.2)
  \footnote c d
}\end{verbatim}
The footnote will not be annotated automatically.

\texttt{\textbackslash fraction arg1 (markup) arg2 (markup)}

Make a fraction of markups \texttt{arg1} and \texttt{arg2}.

\texttt{\textbackslash markup \{}
\texttt{\pi \approx \textbackslash fraction 355 113 \}
\texttt{\pi \approx \frac{355}{113}}

Used properties:

- \texttt{font-size (0)}

\texttt{\textbackslash fromproperty symbol (symbol)}

Read \texttt{symbol} from the property settings and produce a stencil from the markup contained within.

If \texttt{symbol} is not defined, return an empty markup.

\texttt{\textbackslash header \{}
\texttt{\texttt{myTitle} = "myTitle"}
\texttt{title = \textbackslash markup \{}
\texttt{from}
\texttt{\texttt{italic}}
\texttt{\texttt{\textbackslash fromproperty \#'header:myTitle}}
\texttt{\}
\texttt{\}
\texttt{\textbackslash markup \{}
\texttt{\texttt{null}}
\texttt{\}
\texttt{\}

\texttt{from myTitle}

\texttt{\textbackslash left-brace size (number)}

Print a brace from the music font, of height \texttt{size} (in points).

\texttt{\textbackslash markup \{}
\texttt{\texttt{\textbackslash left-brace \#35}}
\texttt{\texttt{\textbackslash hspace \#2}}
\left-brace \#45
\}
\}
\}
\lookup\{\textit{glyph-name} \textit{string}\}
Print a brace glyph with name \textit{glyph-name}.
This is a historical command; \left-brace (which looks up the glyph by absolute
size and is independent of the font size) is recommended instead.
\markup\lookup\{#"brace200"
\}
\markalphabet\{\textit{num} \textit{integer}\}
Make a markup letter for \textit{num}.
The letters start with A to Z and continue with double letters.
\markup\{\markalphabet\#8
\hspace\#2
\markalphabet\#26
\}
\begin{tabular}{cc}
H & Z
\end{tabular}
\markletter\{\textit{num} \textit{integer}\}
Make a markup letter for \textit{num}.
The letters start with A to Z (skipping letter I), and continue with double letters.
\markup\{\markletter\#8
\hspace\#2
\markletter\#26
\}
\begin{tabular}{cc}
H & AA
\end{tabular}
\null
An empty markup with extents of a single point.
\markup\{\null\}
\on-the-fly\textit{procedure} \textit{procedure} \textit{arg} \textit{markup}Apply the \textit{procedure} markup command to \textit{arg}.
\textit{procedure} takes the same arguments as \textit{interpret-markup} and returns a stencil.
\override new-prop (pair) arg (markup)

Add the argument \texttt{new-prop} to the property list for printing \texttt{arg}.

In general, any property may be overridden that is part of font-interface (Section “font-interface” in \textit{Internals Reference}), text-interface (Section “text-interface” in \textit{Internals Reference}), or instrument-specific-markup-interface (Section “instrument-specific-markup-interface” in \textit{Internals Reference}). Additionally, various markup commands listen to other properties, too, as described in a markup function’s documentation.

\texttt{new-prop} is either a single alist pair or a non-empty list of alist pairs.

\begin{verbatim}
\markup {
  \undertie "undertied"
  \override \#'(offset . 15)
  \undertie "offset undertied"
  \override \#'(\(\text{ offset } . \ 15\) \(\text{ thickness } . \ 3\))
  \undertie "offset thick undertied"
}
\end{verbatim}

\texttt{undertied offset undertied offset thick undertied}

\page-link page-number (number) arg (markup)

Add a link to a score’s page \texttt{page-number} around \texttt{arg}.

This only works in the PDF backend.

\begin{verbatim}
\markup {
  \page-link \#2 { \italic { This links to page 2... } }
}
\end{verbatim}

\textit{This links to page 2...}

\page-ref label (symbol) gauge (markup) default (markup)

Print a page number reference.

\texttt{label} is the label set on the referenced page (using \texttt{\label} or \texttt{\tocItem}), \texttt{gauge} a markup used to estimate the maximum width of the page number, and \texttt{default} the value to display when \texttt{label} is not found.

If the current book or bookpart is set to use roman numerals for page numbers, the reference will be formatted accordingly – in which case the \texttt{gauge}’s width may require additional tweaking.

\begin{verbatim}
\pattern count (non-negative, exact integer) axis (non-negative, exact integer) space (number) pattern (markup)

Print a pattern markup \texttt{count} times.

Patterns are spaced apart by \texttt{space} (defined as for \texttt{\hspace} or \texttt{\vspace}, respectively) and distributed on \texttt{axis}.

\begin{verbatim}
\markup \column {
  "Horizontally repeated:"
  \pattern #7 #X #2 \flat
  \null
  "Vertically repeated:"
  \pattern #3 #Y #0.5 \flat
}
\end{verbatim}
\end{verbatim}
Appendix A: Notation manual tables

Horizontally repeated:
\begin{verbatim}
♭ ♭ ♭ ♭ ♭ ♭ ♭
\end{verbatim}

Vertically repeated:
\begin{verbatim}
♭
\end{verbatim}

\property-recursive \textit{symbol} (symbol)
Print out a warning when header field markup in \textit{symbol} contains some recursive markup definition.

\qr-code \textit{width} (non-negative number) \textit{str} (string)
Insert a QR code for string \textit{str}, usually a URL, with a given \textit{width}.
\begin{verbatim}
\markup \vcenter {
  \center-column { Engraved with LilyPond }
  \hspace #1.5 \qr-code #10.0 "https://lilypond.org"
}
\end{verbatim}

Engraved with LilyPond

The \textit{error-correction-level} property can be set to one of the symbols \textit{low}, \textit{medium}, \textit{quarter}, or \textit{high}. The higher the level of error correction is, the more the QR code contains redundancy, potentially helping detectors, e.g., in poor lighting conditions; however, a higher correction level also makes the code denser.

\begin{verbatim}
\markup \vcenter {
  \center-column { Engraved with LilyPond }
  \hspace #1.5
  \override #'(error-correction-level . high)
  \qr-code #10.0 "https://lilypond.org"
}
\end{verbatim}

Engraved with LilyPond

The \textit{quiet-zone-size} property specifies the width of the “quiet zone”, namely the white area around the QR code. It is expressed as a multiple of the width of one little square inside the QR code. Use at least 4 for best results.

Used properties:
\begin{itemize}
  \item quiet-zone-size \textit{(4)}
  \item error-correction-level \textit{(low)}
\end{itemize}

\right-brace \textit{size} (number)
A music brace in point size \textit{size}, rotated 180 degrees.
\begin{verbatim}
\markup {
\end{verbatim}
\right-brace \#45
\hspace \#2
\right-brace \#35
}

\slashed-digit num (integer)
Print number \textit{num} with the Emmentaler font, crossed through with a slash.
This is for use in the context of figured bass notation.
\markup
{\slashed-digit \#5
\hspace \#2
\override #'(thickness . 3)
\slashed-digit \#7
}

\f 7
Used properties:
\begin{itemize}
\item thickness (1.6)
\item font-size (0)
\end{itemize}
\stencil stil (stencil)
Use stencil \textit{stil} as markup.
\markup
{\stencil #{(make-circle-stencil 2 0 \texttt{t})}

\strut
Create a box of the same height as the space in the current font.
\transparent arg (markup)
Make \textit{arg} transparent.
\markup
{\transparent {
\invisible text
}
}

\verbatim-file name (string)
Read the contents of file \textit{name} and include it verbatim.
\markup
{\verbatim-file #'"en/included/simple.ly"
% A simple piece in LilyPond, a scale.
\version "2.19.21"
\relative {
    c' d e f g a b c
}
\whiteout arg (markup)

Provide a white background for arg.
The shape of the white background is determined by the style property. The default
is box which produces a rectangle. rounded-box produces a rounded rectangle, and
outline approximates the outline of the markup.

\markup {
    \combine
    \filled-box #(-1 . 15) #(-3 . 4) #1
    \override #'(thickness . 1.5)
    \whiteout whiteout-box
}
\markup {
    \combine
    \filled-box #(-1 . 24) #(-3 . 4) #1
    \override #'(style . rounded-box) (thickness . 3))
    \whiteout whiteout-rounded-box
}
\markup {
    \combine
    \filled-box #(-1 . 18) #(-3 . 4) #1
    \override #'(style . outline) (thickness . 3))
    \whiteout whiteout-outline
}

\with-color col (color) arg (markup)

Use color col to draw arg.
See [Coloring objects], page 264, for valid color specifications.

\markup {
    \with-color #red red
    \hspace #2
    \with-color #green green

Used properties:
- \texttt{thickness} ()
- \texttt{style} (box)
\hspace #2
\with-color "#0000ff" blue
}

red green blue

\with-dimension axis (integer) val (pair of numbers) arg (markup)
Set the dimension of arg along axis to val.
If axis is equal to X, set the horizontal dimension. If axis is equal to Y, set the vertical dimension.

\with-dimension-from axis (integer) arg\textsubscript{1} (markup) arg\textsubscript{2} (markup)
Print arg\textsubscript{2} but replace the dimension along axis with the one from arg\textsubscript{1}.
If axis is set to X, replace the horizontal dimension. If axis is set to Y, replace the vertical dimension.

\with-dimensions x (pair of numbers) y (pair of numbers) arg (markup)
Set the horizontal and vertical dimensions of arg to x and y.

\with-dimensions-from arg\textsubscript{1} (markup) arg\textsubscript{2} (markup)
Print arg\textsubscript{2} with the horizontal and vertical dimensions of arg\textsubscript{1}.

\with-link label (symbol) arg (markup)
Add a link to the page holding label label around arg.
This only works in the PDF backend.
\markup {
\with-link #'label {
  \italic { This links to the page
      containing the label... }
}
}

\with-outline outline (markup) arg (markup)
Print arg with the outline and dimensions of outline.
The outline is used by skylines to resolve collisions (not for whiteout).

\with-true-dimension axis (integer) arg (markup)
Give arg its actual dimension (extent) on axis.
Sometimes, the extents of a markup’s printed ink differs from the default extents.
The main case is if glyphs are involved. By default, the extents of a glyph are based
on the glyph’s metrics (i.e., a default vertical and horizontal size for the glyph),
which, for various reasons, are often not identical to its bounding box (i.e., the
smallest rectangle that completely encompasses the glyph’s outline) – in most cases,
the outline protrudes the box spanned up by the metrics.
\markup {
  text
  \fontsize #10
  \override #'((box-padding . 0) (thickness . 0.2))
  \box
    \musicglyph "scripts.trill"
  text
}
For purposes other than setting text, this behavior may not be wanted. You can use \with-true-dimension in order to give the markup its actual printed extent.

\markup {
    text
    \fontsize #10
    \override #'((box-padding . 0) (thickness . 0.2))
    \box
    \with-true-dimension #X
    \musicglyph "scripts.trill"
    text
}

\with-true-dimensions arg (markup)
Give arg its actual dimensions (extents).
Calling
\markup \with-true-dimensions arg
is short for
\markup
\with-true-dimension #X
\with-true-dimension #Y
arg
i.e., \with-true-dimensions has the effect of \with-true-dimension on both axes.

## A.13 Text markup list commands

The following commands can all be used with \markuplist.

\column-lines args (markup list)
Stack the markups in args vertically.
Like \column, but return a list of lines instead of a single markup. The property baseline-skip determines the space between each markup in args.
Used properties:
• baseline-skip

\justified-lines args (markup list)
Print args as lines aligned both at the left and the right.
Like \justify, but return a list of lines instead of a single markup. Use \override-lines #'(line-width . X) to set the line width; X is the number of staff spaces.
Used properties:
• text-direction (1)
• word-space
• line-width (#f)
• baseline-skip

\override-lines new-prop (pair) args (markup list)
Add the argument new-prop to the property list for printing args.
Like \override but for markup lists.
\score-lines (score)
Inline an image of music as specified by score.
Like \score but return a list of lines instead of a single markup.

\string-lines (string)
Split string str into lines.
The character to split at is specified by the property split-char, defaulting to \#newline. Surrounding whitespace is removed from every resulting string. The returned list of markups is ready to be formatted by other markup or markup list commands like \column, \line, etc.

\markup
\column
\string-lines
"foo, foo, 
bar, bar,
buzz, buzz!"

foo, foo, 
bar, bar, 
buzz, buzz!

Used properties:
• split-char (\#newline)

\table (number list) lst (markup list)
Print a table.
column-align specifies how each column is aligned; possible values are -1, 0, and 1. The number of elements in column-align determines how many columns will be printed.
The entries to print are given by lst, a markup list. If needed, the last row is filled up with point-stencils.
Override the padding property to increase the horizontal distance between columns.
Override baseline-skip to increase the vertical distance between rows.

% A markup command to print a fixed-width number.
\markup fwnum =
\markup \override #'(font-features . ("ss01" "-kern"))
\number \etc

\markuplist {
\override #(padding . 2)
\table #'(0 1 0 -1) {
\underline { center-aligned right-aligned
  center-aligned left-aligned }
  one \fwnum 1 thousandth \fwnum 0.001
  eleven \fwnum 11 hundredth \fwnum 0.01
  twenty \fwnum 20 tenth \fwnum 0.1
  thousand \fwnum 1000 one \fwnum 1.0
}
}

center-aligned  right-aligned  center-aligned  left-aligned
one \( 1 \) thousandth \( 0.001 \)
eleven \( 11 \) hundredth \( 0.01 \)
twenty \( 20 \) tenth \( 0.1 \)
thousand \( 1000 \) one \( 1.0 \)

Used properties:
- baseline-skip
- padding (0)

\[ \text{table-of-contents} \]
Print a table of contents.
This function uses the paper variable \texttt{tocTitleMarkup} for the title; it then prints \texttt{\tocItem} entries line by line.
See Section 3.3.7 [Table of contents], page 568, for a complete discussion.
Used properties:
- baseline-skip

\[ \text{\wordwrap-lines args (markup list)} \]
Print \texttt{args} as left-aligned lines.
Like \texttt{\wordwrap}, but return a list of lines instead of a single markup. Use \texttt{\override-lines \#'(line-width . X)} to set the line width, where \texttt{X} is the number of staff spaces.
Used properties:
- text-direction (1)
- word-space
- line-width (#f)
- baseline-skip

A.14 List of special characters
The following special characters references can be used; for more details, see [ASCII aliases], page 585.

The HTML syntax is used and most of these references are the same as HTML. The rest of them are inspired by \LaTeX.  

The characters are boxed so that you can see their size. A small padding has been added between the character and the box for more readability.

\[ \&\text{excl}; \] &excl;  \[ \&\text{quest}; \] &quest;  \[ \&\text{solidsus}; \] &solidsus;  \[ \&\text{flq}; \] &flq;  \[ \&\text{frq}; \] &frq;  \[ \&\text{frqq}; \] &frqq;  \[ \&\text{glq}; \] &glq;  \[ \&\text{grq}; \] &grq;  \[ \&\text{grqq}; \] &grqq;  \[ \&\text{elq}; \] &elq;  \[ \&\text{erq}; \] &erq;  \[ \&\text{erqq}; \] &erqq;  \[ \&\text{ensp}; \] &ensp;  \[ \&\text{emsp}; \] &emsp;  \[ \&\text{thinsp}; \] &thinsp;  \[ \&\text{nbsp}; \] &nbsp;  \[ \&\text{nnbsp}; \] &nnbsp;
<table>
<thead>
<tr>
<th>Notation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>‍</td>
<td>. ‌</td>
</tr>
<tr>
<td>·</td>
<td>. ·</td>
</tr>
<tr>
<td>•</td>
<td>□ •</td>
</tr>
<tr>
<td>&amp;copyright;</td>
<td>© &amp;registered;</td>
</tr>
<tr>
<td>&amp;trademark;</td>
<td>™ &amp;trademark;</td>
</tr>
<tr>
<td>†</td>
<td>† †</td>
</tr>
<tr>
<td>№</td>
<td>№ №</td>
</tr>
<tr>
<td>ª</td>
<td>‼ ª</td>
</tr>
<tr>
<td>º</td>
<td>‰ º</td>
</tr>
<tr>
<td>§</td>
<td>¶ §</td>
</tr>
<tr>
<td>°</td>
<td>§ °</td>
</tr>
<tr>
<td>‰</td>
<td>† ‰</td>
</tr>
<tr>
<td>¦</td>
<td>† ¦</td>
</tr>
<tr>
<td>´</td>
<td>† ´</td>
</tr>
<tr>
<td>&amp;acutedbl;</td>
<td>† &amp;acutedbl;</td>
</tr>
<tr>
<td>˘</td>
<td>† ˘</td>
</tr>
<tr>
<td>ˇ</td>
<td>† ˇ</td>
</tr>
<tr>
<td>&amp;cedilla;</td>
<td>† &amp;cedilla;</td>
</tr>
<tr>
<td>&amp;circumflex;</td>
<td>&amp;circumflex;</td>
</tr>
<tr>
<td>&amp;diaeresis;</td>
<td>&amp;diaeresis;</td>
</tr>
<tr>
<td>&amp;macron;</td>
<td>&amp;macron;</td>
</tr>
<tr>
<td>&amp;aa;</td>
<td>&amp;aa;</td>
</tr>
<tr>
<td>&amp;</td>
<td>&amp;</td>
</tr>
<tr>
<td>&amp;ae;</td>
<td>&amp;ae;</td>
</tr>
<tr>
<td>&amp;AE;</td>
<td>&amp;AE;</td>
</tr>
<tr>
<td>ä</td>
<td>ä</td>
</tr>
<tr>
<td>&amp;dh;</td>
<td>&amp;dh;</td>
</tr>
<tr>
<td>&amp;DH;</td>
<td>&amp;DH;</td>
</tr>
<tr>
<td>&amp;dj;</td>
<td>&amp;dj;</td>
</tr>
<tr>
<td>&amp;l;</td>
<td>&amp;l;</td>
</tr>
<tr>
<td>&amp;L;</td>
<td>&amp;L;</td>
</tr>
<tr>
<td>&amp;ng;</td>
<td>&amp;ng;</td>
</tr>
<tr>
<td>&amp;o;</td>
<td>&amp;o;</td>
</tr>
<tr>
<td>&amp;O;</td>
<td>&amp;O;</td>
</tr>
<tr>
<td>&amp;oe;</td>
<td>&amp;oe;</td>
</tr>
<tr>
<td>ö</td>
<td>ö</td>
</tr>
<tr>
<td>Ö</td>
<td>Ö</td>
</tr>
<tr>
<td>&amp;s;</td>
<td>&amp;s;</td>
</tr>
<tr>
<td>&amp;th;</td>
<td>&amp;th;</td>
</tr>
<tr>
<td>&amp;TH;</td>
<td>&amp;TH;</td>
</tr>
<tr>
<td>ü</td>
<td>ü</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>−</td>
<td>−</td>
</tr>
<tr>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>¹</td>
<td>¹</td>
</tr>
<tr>
<td>²</td>
<td>²</td>
</tr>
<tr>
<td>³</td>
<td>³</td>
</tr>
<tr>
<td>&amp;increment;</td>
<td>&amp;increment;</td>
</tr>
<tr>
<td>&amp;infty;</td>
<td>&amp;infty;</td>
</tr>
<tr>
<td>∑</td>
<td>∑</td>
</tr>
<tr>
<td>&amp;partial;</td>
<td>&amp;partial;</td>
</tr>
<tr>
<td>&amp;neg;</td>
<td>&amp;neg;</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
</tr>
<tr>
<td>€</td>
<td>€</td>
</tr>
<tr>
<td>&amp;pounds;</td>
<td>&amp;pounds;</td>
</tr>
<tr>
<td>¢</td>
<td>¢</td>
</tr>
</tbody>
</table>
A.15 List of articulations

In LilyPond’s internal logic, an ‘articulation’ is any object (other than dynamics) that may be attached directly after a rhythmic event: notes, chords; even silences and skips, or the empty chord construct `<>` (see Section “Structure of a note entry” in Learning Manual). Even slurs, fingerings and text scripts are technically articulations, although these are not shown here.

Therefore, the following lists include not only articulation marks, but also all other scripts in the Emmentaler font that may be attached to notes (the way an accent is entered as ‘c’\accent’ or ‘c’–>'). Each example shows the script in its two possible vertical positions: respectively up and down, as well as its default (neutral) position. See also [Script glyphs], page 750, for a more extensive list of glyphs, for use with the \musicglyph markup command as explained in [Music notation inside markup], page 307.

**Articulation scripts**

\accent or ->  \espressivo  \marcato or --  \portato or --

\staccatissimo or -!  \staccato or -  \tenuto or --

**Ornament scripts**

\prall  \prallup  \pralldown  \upprall

\downprall  \prallprall  \lineprall  \prallmordent

\mordent  \upmordent  \downmordent  \trill
Appendix A: Notation manual tables

Fermata scripts

\veryshortfermata \shortfermata \fermata \longfermata

\verylongfermata \henzeshortfermata \henzelongfermata

Instrument-specific scripts

\upbow \downbow \flageolet \open

\halfopen \lheel \rheel \ltoe

\rtoe \snappizzicato \stopped or ++ \thumb

Repeat sign scripts
Appendix A: Notation manual tables

\[\text{\textbackslash segno} \quad \text{\textbackslash coda} \quad \text{\textbackslash varcoda}\]

\[\begin{array}{ccc}
\frac{\text{\textbackslash segno}}{\text{\textbackslash coda}} & \frac{\text{\textbackslash varcoda}}{
\end{array}\]

Ancient scripts

\[\text{\textbackslash accentus} \quad \text{\textbackslash circulus} \quad \text{\textbackslash ictus}\]

\[\begin{array}{ccc}
\frac{\text{\textbackslash accentus}}{\text{\textbackslash circulus}} & \frac{\text{\textbackslash ictus}}{
\end{array}\]

A.16 List of breath marks

\[\text{\textquoteleft chantquarterbar} \quad \text{\textquoteleft chanthalfbar} \quad \text{\textquoteleft chantfullbar} \quad \text{\textquoteleft chantdoublebar}\]

\[\begin{array}{cccc}
\frac{\text{\textquoteleft chantquarterbar}}{\text{\textquoteleft chanthalfbar}} & \frac{\text{\textquoteleft chantfullbar}}{\text{\textquoteleft chantdoublebar}}
\end{array}\]

\[\text{\textquoteleft comma} \quad \text{\textquoteleft varcomma} \quad \text{\textquoteleft tickmark} \quad \text{\textquoteleft upbow}\]

\[\begin{array}{cccc}
\frac{\text{\textquoteleft comma}}{\text{\textquoteleft varcomma}} & \frac{\text{\textquoteleft tickmark}}{\text{\textquoteleft upbow}}
\end{array}\]

\[\text{\textquoteleft outsidecomma} \quad \text{\textquoteleft caesura} \quad \text{\textquoteleft curvedcaesura} \quad \text{\textquoteleft spacer}\]

\[\begin{array}{cccc}
\frac{\text{\textquoteleft outsidecomma}}{\text{\textquoteleft caesura}} & \frac{\text{\textquoteleft curvedcaesura}}{\text{\textquoteleft spacer}}
\end{array}\]

A.17 Percussion notes

\[\text{bassdrum} \quad \text{acousticbassdrum} \quad \text{snare} \quad \text{acousticsnare}\]

\[\begin{array}{cccc}
\frac{\text{bassdrum}}{\text{acousticbassdrum}} & \frac{\text{snare}}{\text{acousticsnare}}
\end{array}\]
<table>
<thead>
<tr>
<th>Notation</th>
<th>MIDI Code</th>
<th>Notation</th>
<th>MIDI Code</th>
<th>Notation</th>
<th>MIDI Code</th>
<th>Notation</th>
<th>MIDI Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>electricsnare</td>
<td>sne</td>
<td>lowfloortom</td>
<td>tomfl</td>
<td>highfloortom</td>
<td>tomfh</td>
<td>lowtom</td>
<td>toml</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hightom</td>
<td>tomh</td>
<td>lowmidtom</td>
<td>tomml</td>
<td>himidtom</td>
<td>tommh</td>
<td>hihat</td>
<td>hh</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>closedhihat</td>
<td>hhc</td>
<td>openhihat</td>
<td>hho</td>
<td>halfopenhihat</td>
<td>hhho</td>
<td>pedalhihat</td>
<td>hhp</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>crashcymbal</td>
<td>cymc</td>
<td>crashcymbala</td>
<td>cymca</td>
<td>crashcymbalb</td>
<td>cymcb</td>
<td>ridecymbal</td>
<td>cymr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ridecymbala</td>
<td>cymra</td>
<td>ridecymbalb</td>
<td>cymrb</td>
<td>chinesecymbal</td>
<td>cymch</td>
<td>splashcymbal</td>
<td>cyms</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ridebell</td>
<td>rb</td>
<td>cowbell</td>
<td>cb</td>
<td>hibongo</td>
<td>boh</td>
<td>openhibongo</td>
<td>boho</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mutehibongo</td>
<td>bohm</td>
<td>lobongo</td>
<td>bol</td>
<td>openlobongo</td>
<td>bolo</td>
<td>mutelobongo</td>
<td>bolm</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Instrument</td>
<td>Short Form</td>
<td>Long Form</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>-----------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hiconga</td>
<td>cgh</td>
<td>cgho</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Hiconga</td>
<td>cgho</td>
<td>cghm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mute Hiconga</td>
<td>cghm</td>
<td>cgl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Loconga</td>
<td>cglo</td>
<td>cglo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mute Loconga</td>
<td>cglo</td>
<td>cglo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hitimbale</td>
<td>timh</td>
<td>timh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lotimbale</td>
<td>timl</td>
<td>timl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi Agogo</td>
<td>agh</td>
<td>agh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lo Agogo</td>
<td>agl</td>
<td>agl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sidestick</td>
<td>ss</td>
<td>ss</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hisidestick</td>
<td>ssh</td>
<td>ssh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lo Sidestick</td>
<td>ssl</td>
<td>ssl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guiro</td>
<td>gui</td>
<td>gui</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Guiro</td>
<td>guis</td>
<td>guis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Guiro</td>
<td>guil</td>
<td>guil</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cabasa</td>
<td>cab</td>
<td>cab</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maracas</td>
<td>mar</td>
<td>mar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short Whistle</td>
<td>whs</td>
<td>whs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long Whistle</td>
<td>whl</td>
<td>whl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handclap</td>
<td>hc</td>
<td>hc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tambourine</td>
<td>tamb</td>
<td>tamb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vibraslap</td>
<td>vibs</td>
<td>vibs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tamtam</td>
<td>tt</td>
<td>tt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Claves</td>
<td>cl</td>
<td>cl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hi Woodblock</td>
<td>wbh</td>
<td>wbh</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low Woodblock</td>
<td>wbl</td>
<td>wbl</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Open Cuica</td>
<td>cuio</td>
<td>cuio</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

<table>
<thead>
<tr>
<th>mutecuica</th>
<th>triangle</th>
<th>opentriangle</th>
<th>mutetriangle</th>
</tr>
</thead>
<tbody>
<tr>
<td>cuim</td>
<td>tri</td>
<td>trio</td>
<td>trim</td>
</tr>
</tbody>
</table>

A.18 List of bar lines

Each system following shows the appearance of a particular bar type at the beginning, middle, and end of a line.

For more information, see [Bar lines], page 107, and [Automatic bar lines], page 117.

Simple bar lines

"; "

"; "

"; "

"|-s"

"| "

"| "

End-of-line bar lines

"x- ."

"x- | "

"x- | "
Appendix A: Notation manual tables

Chant bar lines

"-span|"

"||"

"-span|"

"||"

Section bar lines

"|.|"

".-|"

"|.|"

".-|"

"|.|"
Segno bar lines

"|.S-S"  "S-S"  "S-|"

"|.S"  "S-||"  "S"

Appendix A: Notation manual tables
Start-repeat bar lines

"s.|:-s"

".|:-|"
A.19 Default values for outside-staff-priority

The following table shows the default outside-staff-priority of all outside-staff grobs. Objects with smaller values are placed closer to the staff.

<table>
<thead>
<tr>
<th>Grob</th>
<th>Priority</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccidentalSuggestion</td>
<td>0</td>
</tr>
</tbody>
</table>
A.20 Technical glossary

This glossary lists some of the technical terms and concepts used internally in LilyPond. These terms may appear in the manuals, on mailing lists or in the source code.

alist An association list or alist for short is a Scheme pair that associates a value with a key: (key . value). For example, in scm/lily.scm, the alist type-p-name-alist associates certain type predicates (e.g., ly:music?) with names (e.g., “music”) so that type check failures can be reported with a console message that includes the name of the expected type predicate.

callback A callback is a routine, function or method whose reference is passed as an argument in a call to another routine, thus allowing the called routine to invoke it. The technique enables a lower-level software layer to call a function defined in a higher layer. Callbacks are used extensively in LilyPond to make user-level Scheme code control many low-level actions.

closure In Scheme, a closure is created when a function, usually a lambda expression (i.e., an ad-hoc, anonymous function), is passed as a variable. The closure contains the function’s code plus references to the lexical bindings of the function’s free variables (i.e., those variables used in the expression but defined outside it). When this function is applied to different arguments later, the free variable bindings that were captured in the closure are used to obtain the values of the free variables, which in turn are used in the calculation. One useful property of closures is the preservation of internal variable values between invocations, thus permitting state to be maintained.

glyph A glyph is a particular graphical representation of a typographic character, or a combination of two (or more) characters forming a ligature. A set of glyphs with a
single style and shape comprise a font, and a set of fonts covering several styles and sizes comprise a typeface.

See also: Section 1.8.3 [Fonts], page 309, Section 3.4.4 [Special characters], page 583.

grob LilyPond objects that represent items of notation in the printed output such as note heads, stems, slurs, ties, fingering, clefs, etc., are called ‘Layout objects’, often known as ‘GRaphical OBjects’, or grobs for short. They are represented by instances of the Grob class.

See also: Section “Objects and interfaces” in Learning Manual, Section “Properties of layout objects” in Learning Manual.

Section A.24 [Naming conventions], page 871.

Section “grob-interface” in Internals Reference, Section “All layout objects” in Internals Reference.

immutable An immutable object is one whose state cannot be modified after creation, in contrast to a mutable object, which can be modified after creation.

In LilyPond, immutable or shared properties define the default style and behavior of grobs. They are shared between many objects. In apparent contradiction to the name, they can be changed using \override and \revert.

See also below for mutable objects.

interface Actions and properties that are common to a number of grobs are grouped together in an object called a grob-interface, or just interface for short.

See also: Section A.24 [Naming conventions], page 871, Section 5.2.2 [Layout interfaces], page 683.

Section “Objects and interfaces” in Learning Manual, Section “Properties found in interfaces” in Learning Manual.

Section “Graphical Object Interfaces” in Internals Reference.

lexer A lexer is a program that converts a sequence of characters into a sequence of tokens, a process called lexical analysis. The LilyPond lexer converts the stream obtained from an input .ly file into a tokenized stream more suited to the next stage of processing – parsing (see below). The LilyPond lexer is built using the flex program from the lexer file lily/lexer.ll, which contains the lexical rules. This file is part of the source code and not included in the LilyPond binary installation.

mutable A mutable object is one whose state can be modified after creation, in contrast to an immutable object, whose state is fixed at the time of creation.

In LilyPond, mutable properties contain values that are specific to one grob. Typically, lists of other objects or results from computations are stored in mutable properties.

See also above for immutable objects.

output-def An instance of the Output-def class contains the methods and data structures associated with an output block. Instances are created for MIDI, layout, and paper blocks.

parser A parser analyzes the sequence of tokens produced by a lexer to determine its grammatical structure, grouping the tokens progressively into larger groupings according to the rules of the grammar. If the sequence of tokens is valid the end product is a tree of tokens whose root is the grammar’s start symbol. If this cannot be achieved the file is invalid and an appropriate error message is produced. The syntactic groupings and the rules for constructing the groupings from their parts for
the LilyPond syntax are defined in file `lily/parser.yy`. During compilation, this file gets processed by a parser generator, `bison`, to build the parser. It is part of the source code and not included in the LilyPond binary installation.

**parser variable**

These are variables defined directly in Scheme. Their direct use by users is strongly discouraged because their scoping semantics can be confusing.

When the value of such a variable is changed in a `.ly` file, the change is global, and unless explicitly reverted, the new value persists to the end of the file, affecting subsequent `\score` blocks as well as external files added with the `\include` command. This can lead to unintended consequences, and in complex typesetting projects the consequent errors can be difficult to track down.

Among others, the following parser variables are used by LilyPond:

- `afterGraceFraction`
- `musicQuotes`
- `output-count`
- `output-suffix`
- `partCombineListener`
- `pitchnames`
- `toplevel-bookparts`
- `toplevel-scores`
- `showLastLength`
- `showFirstLength`

**prob**

PRoperty OBjects, or `probs` for short, are instances of the `Prob` class, a simple base class for objects that have mutable and immutable property alists and the methods to manipulate them. The `Music` and `Stream_event` classes derive from `Prob`. Instances of the `Prob` class are also created to hold the formatted content of system grobs and titling blocks during page layout.

**smob**

Smobs, or ScheMe OBjects, are part of the mechanism used by Guile to export C and C++ objects to Scheme code. In LilyPond, smobs are created from C++ objects through macros. There are two types of smob objects: simple smobs, intended for simple immutable objects like numbers, and complex smobs, used for objects with identities. If you have access to the LilyPond sources, more information can be found in file `lily/includes/smob.hh`.

**spanner**

Spanners are a class of grobs that are not horizontally fixed on one point of the score but extend from one point to another. Examples include beams, ties, and slurs, as well as hairpins and staff lines. Whereas non-spanners can only be broken into at most two visible pieces (for example, a clef duplicated at the end of the line and the beginning of the next line), spanners are broken into as many pieces as required by their start and end points (such as a long crescendo extending on three systems, or staff lines, which always span the whole score).

Technically, spanners are defined as grobs having the `spanner-interface`; on the C++ side of LilyPond, they are instances of the `Spanner` subclass of `Grob`. The left and right bounds of a spanner can be retrieved and set using `ly:spanner-bound` and `ly:spanner-set-bound!`, respectively. The bounds are always items. The X parent of a spanner has little musical sense, but is usually set to the left bound.

See also: Section 5.4.4 [Spanners], page 700.

Section “all-layout-objects” in *Internals Reference*, Section “spanner-interface” in *Internals Reference.*
stencil  An instance of the Stencil class holds the information required to print a typographical object, a stencil. It is a simple smob containing a confining box, which defines the vertical and horizontal extents of the object, and a Scheme expression, which prints the object when evaluated. Stencils may be combined to form more complex stencils defined by a tree of Scheme expressions, which in turn are formed from the Scheme expressions of the component stencils.

The stencil property, which connects a grob to its stencil, is defined in the grob-interface interface.

See also Section “grob-interface” in Internals Reference.

A.21 Available music functions

In the following, the first argument of a function is printed with a slanted typeface, followed by the first argument’s type in parentheses. Then comes the second argument, followed by the second argument’s type, again in parentheses, and so on. After the arrow the type of the return value is printed.

If an argument and its type is enclosed in brackets, the argument is optional and can be omitted, indicating that LilyPond should use a default value instead. However, if a function’s last argument is tagged as optional, it cannot be omitted: you have to pass \default if you do not want to explicitly specify a value. See Section “Scheme function usage” in Extending for more details on how optional arguments are handled.

\absolute music (music) ⇒ music
  Make music absolute.
  This does not actually change the music itself but rather hides it from surrounding \relative and \fixed commands.

\acciaccatura music (music) ⇒ music
  Create an acciaccatura from music.

\accidentalStyle style (symbol list) ⇒ music
  Set accidental style to style.
  style is a (predefined) symbol list like piano-cautionary; see [Automatic accidentals], page 29, for the available styles. If it is preceded by a context name, the settings are applied to that context (example: Staff.piano-cautionary). Otherwise, the context defaults to Staff, except for piano styles, which use GrandStaff as a context.

\addChordShape key-symbol (symbol) tuning (pair) shape-definition (string or pair) ⇒ void
  Add shape-definition as a chord shape.
  It gets added to the chord-shape-table hash with the key (cons key-symbol tuning).

\addInstrumentDefinition name (string) lst (list) ⇒ void
  Create instrument name with properties lst.
  This function is deprecated.

\addQuote name (string) music (music) ⇒ void
  Define music as a quotable music expression named name.

\after delta (duration) ev (music) mus (music) ⇒ music
  Add music ev with a delay of delta after the onset of mus.
  ev is usually a post-event.
\afterGrace [fraction (non-negative rational, fraction, or moment)] main (music) grace (music) \Rightarrow \text{music}
Create grace as grace notes after a main music expression.
The musical position of the grace expression is after a given fraction of the main note’s duration has passed. If optional argument fraction is omitted, the fraction value is taken from afterGraceFraction, defaulting to 3/4.

\allowPageTurn \Rightarrow \text{music}
Allow a page turn.
May be used at top level (i.e., between scores or markups), or inside a score.

\allowVoltaHook bar (string) \Rightarrow \text{void}
Allow the volta bracket hook being drawn over bar line bar.

\alterBroken property (key list or symbol) arg (list) target (key list or music) \Rightarrow \text{music}
Override property for pieces of broken spanner target with arg.
target may either be music in the form of a starting spanner event, or a symbol list of the form Context.Grob or just Grob. If target is in the form of a spanner event, property may also have the form Grob.property for specifying a directed tweak.
arg is a list of values, one for each broken piece.

\ambitusAfter target (symbol) \Rightarrow \text{music}
Move the ambitus after the break-align symbol target.

\appendToTag tag (symbol) more (music) music (music) \Rightarrow \text{music}
Append more to music tagged with tag.
A post-event can be added to the articulations of rhythmic events or chords; other expressions may be added to chords, sequential or simultaneous music.

\applyContext proc (procedure) \Rightarrow \text{music}
Modify context properties with Scheme procedure proc.

\applyMusic func (procedure) music (music) \Rightarrow \text{music}
Apply procedure func to music.

\applyOutput target (symbol list or symbol) proc (procedure) \Rightarrow \text{music}
Apply function proc to every layout object matched by target.
target takes the form Context or Context.Grob.

\appoggiatura music (music) \Rightarrow \text{music}
Create an appoggiatura from music.

\assertBeamQuant l (pair) r (pair) \Rightarrow \text{music}
Testing function: check whether the beam quant l and r are correct.

\assertBeamSlope comp (procedure) \Rightarrow \text{music}
Testing function: check whether the slope of the beam is the same as comp.

\augmentum expr (music) \Rightarrow \text{music}
Add augmentum dots (morae) to Gregorian chant expr.

\autoChange [pitch (pitch)] [clef-1 (context modification)] [clef-2 (context modification)] music (music) \Rightarrow \text{music}
Make voices for music that switch between staves automatically.
The optional argument pitch specifies where to switch staves; the default is c’. Optional arguments clef-1 and clef-2 specify which clefs to use; this only works for implicitly instantiated staves.
Example:
\autoChange d’ \with { \clef alto } { g4 d’ g’ }
\balloonGrobText \texttt{grob-name} (symbol) \texttt{offset} (pair of numbers) \texttt{text} (markup) ⇒ music
Attach \texttt{text} to \texttt{grob-name} at \texttt{offset} \texttt{offset} (use like \texttt{\once}).

\balloonText \texttt{offset} (pair of numbers) \texttt{text} (markup) ⇒ post-event
Attach \texttt{text} at \texttt{offset} (use like \texttt{\tweak}).

\bar \texttt{type} (string) ⇒ music
Insert a bar line of type \texttt{type}, overriding any automatic bar lines.

\barNumberCheck \texttt{n} (integer) ⇒ music
Print a warning if the current bar number is not \texttt{n}.

\beamExceptions \texttt{music} (music) ⇒ any type
Set beam exceptions.
This function extracts a value suitable for setting \texttt{Timing.beamExceptions} from the
given pattern with explicit beams in \texttt{music}. A bar check ‘|’ has to be used between
bars of patterns in order to reset the timing.

\bendAfter \texttt{delta} (real number) ⇒ post-event
Create a fall or doit of pitch interval \texttt{delta}.

\bendHold \texttt{mus} (music) ⇒ post-event
Set \texttt{BendSpanner.style} to ‘hold for \texttt{mus}.

\bendStartLevel \texttt{idx} (non-negative, exact integer) \texttt{mus} (music) ⇒ post-event
Set \texttt{Bendspanner.details.successive-level} to \texttt{idx} for \texttt{mus}.

\bookOutputName \texttt{newfilename} (string) ⇒ void
Direct output for the current book block to \texttt{newfilename}.
This is equivalent to setting output-filename in the current book’s \texttt{\paper} block.

\bookOutputSuffix \texttt{newsuffix} (string) ⇒ void
Set the output file name suffix for the current book block to \texttt{newsuffix}.
This is equivalent to setting output-suffix in the current book’s \texttt{\paper} block.

\breathe ⇒ music
Insert a breath mark.

\caesura ⇒ music
Insert a caesura.

\chordRepeats \texttt{[event-types (list)]} \texttt{music} (music) ⇒ music
Extend ‘q’ to also repeat articulation.
This function walks through \texttt{music}, putting the notes of the previous
chord into repeat chords, as well as an optional list of \texttt{event-types} such as
\texttt{#'(string-number-event)}.

\clef \texttt{type} (string) ⇒ music
Set the current clef to \texttt{type}.

\codaMark \texttt{[num} (non-negative, exact integer]\texttt{]} ⇒ music
Create a coda mark.
\texttt{num} may be 1 for the first mark, 2 for the second, etc., or it may be \texttt{\default} to
use the next number in sequence automatically.

\compoundMeter \texttt{args} (pair) ⇒ music
Create a compound time signature.
The argument \texttt{args} is a Scheme list of lists. Each list represents one fraction, where
all entries but the last hold the summands in the enumerator, and the last entry
Appendix A: Notation manual tables

is the denominator. If the time signature consists of just one fraction, the list can be given directly, i.e., not as a list containing a single list. For example, a time signature of \((3+1)/8 + 2/4\) can be created with \(\text{\texttt{\textbackslash compoundMeter \#'((3 1 8) (2 4))}}\), and a time signature of \((3+2)/8\) with either \(\text{\texttt{\textbackslash compoundMeter \#'((3 2 8))}}\) or the shorter version \(\text{\texttt{\textbackslash compoundMeter \#'(3 2 8)}}\).

\texttt{\textbackslash compressMMRests music (music)} \Rightarrow \text{music}

Convert empty bars to multi-measure rests in \texttt{music}.

\texttt{\textbackslash crossStaff notes (music)} \Rightarrow \text{music}

Create cross-staff stems for \texttt{notes}.

\texttt{\textbackslash cueClef type (string)} \Rightarrow \text{music}

Set the current cue clef to \texttt{type}.

\texttt{\textbackslash cueClefUnset} \Rightarrow \text{music}

Unset the current cue clef.

\texttt{\textbackslash cueDuring what (string) dir (direction) main-music (music)} \Rightarrow \text{music}

Create a cue.

This function inserts the contents of quote \texttt{what} corresponding to \texttt{main-music}, in a \texttt{CueVoice} context called \texttt{cue} oriented by \texttt{dir}.

\texttt{\textbackslash cueDuringWithClef what (string) dir (direction) clef (string) main-music (music)} \Rightarrow \text{music}

Create a cue with clef.

This function inserts the contents of quote \texttt{what} corresponding to \texttt{main-music}, in a \texttt{CueVoice} context called \texttt{cue} oriented by \texttt{dir} and using clef \texttt{clef}.

\texttt{\textbackslash deadNote note (music)} \Rightarrow \text{music}

Print \texttt{note} with a cross-shaped note head.

\texttt{\textbackslash defineBarLine bar (string) glyph-list (list)} \Rightarrow \text{void}

Define bar line settings for bar line \texttt{bar}.

The list \texttt{glyph-list} must have three entries, defining substitute glyphs for the end of a line, the beginning of a line, and a span bar, respectively. The substitute glyphs may be either strings or Booleans: \#t calls for the same value as \texttt{bar} and \#f calls for no glyph.

\texttt{\textbackslash displayLilyMusic [port (output port)] music (music)} \Rightarrow \text{music}

Write LilyPond’s input representation of \texttt{music}.

If \texttt{port} is omitted, the output defaults to the console (stdout).

\texttt{\textbackslash displayMusic [port (output port)] music (music)} \Rightarrow \text{music}

Write the internal representation of \texttt{music}.

If \texttt{port} is omitted, the output defaults to the console (stdout).

\texttt{\textbackslash displayScheme [port (output port)] expr (any type)} \Rightarrow \text{any type}

Write the internal Scheme representation of \texttt{expr}.

If \texttt{port} is omitted, the output defaults to the console (stdout).

\texttt{\textbackslash dropNote num (integer) music (music)} \Rightarrow \text{music}

‘Drop’ the \texttt{num}-th note in each chord of \texttt{music}.

This function moves the affected notes down (usually by an octave) to be lower than the other notes of the chord. The position in a chord is counted downwards from the top.

The opposite function is \texttt{\textbackslash raiseNote}. 

\enablePolymeter ⇒ void
   Enable polymetry.
   This function moves the timing management from Score to Staff-like contexts.
   This is done by removing the Timing_translator from Score, and adding it to all
   contexts having the Staff alias.
   Use this within an output definition.

\endSpanners music (music) ⇒ music
   Terminate spanners.
   This function prematurely ends all spanners in music by inserting an end-spanner
   event at the end of the argument, without the need of specific end-spanner com-
   mands.

\eventChords music (music) ⇒ music
   Compatibility function: Handle isolated rhythmic events.
   Use this to wrap EventChord around isolated rhythmic events occuring since version
   2.15.28, after expanding repeat chords ‘q’.
   Not needed for new code.

\featherDurations scale (non-negative rational, fraction, or moment) music (music) ⇒ music
   Adjust feathered beam durations in music by scale.

\finger finger (index or markup) ⇒ post-event
   Apply finger as a fingering indication.

\fixed pitch (pitch) music (music) ⇒ music
   Use the octave of pitch as the default octave for music.

\footnote [mark (markup)] offset (pair of numbers) footnote (markup) item (symbol list or
music) ⇒ music
   Make the markup footnote a footnote on item.
   The footnote is marked with a markup mark moved by offset with respect to the
   marked music.
   If mark is not given or specified as \default, it is replaced by an automatically
   generated sequence number. If item is a symbol list of form Grob or Context.Grob,
   then grobs of that type are marked at the current time step in the given context
   (default Bottom).
   If item is music, the music gets a footnote attached to a grob immediately attached
   to the event, like \tweak does. For attaching a footnote to an indirectly caused grob,
   write \single\footnote, use item to specify the grob, and follow it with the music
   to annotate.
   Like with \tweak, if you use a footnote on a following post-event, the \footnote
   command itself needs to be attached to the preceding note or rest as a post-event
   with ‘-’.

\grace music (music) ⇒ music
   Insert music as grace notes.

\grobdescriptions descriptions (list) ⇒ any type
   Create a context modification from descriptions.
   The argument is a list in the format of all-grob-descriptions.

\harmonicByFret fret (number) music (music) ⇒ music
   Convert music into mixed harmonics.
   The resulting notes resemble harmonics played on a fretted instrument by touching
   the strings at fret.
\harmonicByRatio ratio (number) music (music) ⇒ music
Convert music into mixed harmonics.
The resulting notes resemble harmonics played on a fretted instrument by touching
the strings at the point given through ratio.

\harmonicNote note (music) ⇒ music
Print note with a diamond-shaped note head.

\harmonicsOn ⇒ music
Set the default note head style to a diamond-shaped style.

\hide item (symbol list or music) ⇒ music
Make item invisible while still retaining its dimensions.
If item is a symbol list of form GrobName or Context.GrobName, the result is an
override for the grob name specified by it. If item is a music expression, the result
is the same music expression with an appropriate tweak applied to it.
This function sets item’s transparent property to #t.

\incipit incipit-music (music) ⇒ music
Output incipit-music as an incipit.
incipit-music is typeset within a MensuralStaff context; the result is positioned
before the main staff (as part of an InstrumentName grob) to indicate the music’s
original notation.

\inherit-acceptability to (symbol) from (symbol) ⇒ void
Make two contexts ‘compatible’.
When used in an output definition, modify all context definitions such that context
to is accepted as a child by all contexts that also accept from.

\initialContextFrom music (music) ⇒ music
Enter the initial context of music and ignore the rest of it.
This is useful for prepending music while preserving the influence of the original
music on the context.
Example:

{\initialContextFrom \originalMusic
\prependedMusic
\originalMusic
\appendedMusic
}

\inStaffSegno ⇒ music
Put the segno variant varsegno at this position into the staff.
This is compatible with the repeat command.

\instrumentSwitch name (string) ⇒ music
Switch instrument to name.
name must have been predefined with function \addInstrumentDefinition.
This function is deprecated.

\inversion around (pitch) to (pitch) music (music) ⇒ music
Invert music about around and transpose from around to to.

\invertChords num (integer) music (music) ⇒ music
Invert any chords in music into their num-th position.
Chord inversions may be directed downwards using negative integers.
\jump text (markup) ⇒ music
Use text to mark a point of departure, e.g., ‘Gavotte I D.C.’.

\keepWithTag tags (symbol list or symbol) music (music) ⇒ music
Keep tagged music.
This function only includes elements of music that are tagged with one of the tags in tags. tags may be either a single symbol or a list of symbols.
Each tag may be declared as a member of at most one tag group (defined with \tagGroup). If none of a music element’s tags share a tag group with one of the specified tags, the element is retained.

\key [tonic (pitch)] [pitch-alist (list of number pairs)] ⇒ music
Set key to tonic and scale pitch-alist.
If both arguments are omitted (i.e., replaced by \default), just generate a KeyChangeEvent, which prints the current key signature again.

\killCues music (music) ⇒ music
Remove cue notes from music.

\label label (symbol) ⇒ music
Create label as a referrable label.
The value stored in label is the page number, which can be extracted with the \page-ref markup command later on.

\language language (string) ⇒ void
Set note names for language language.
The value is stored in the pitchnames alist.

\languageRestore ⇒ void
Restore the previously-saved pitchnames alist.

\languageSaveAndChange language (string) ⇒ void
Save current pitchnames alist and change note names to language.

\ligature music (music) ⇒ music
Make a ligature from Gregorian Chant music.
This is equivalent to enclosing music with \[ and \].

\magnifyMusic mag (positive number) music (music) ⇒ music
Magnify the size of music by factor mag.
This doesn’t change the staff size. Stems, beams, slurs, ties, and horizontal spacing are adjusted automatically.

\magnifyStaff mag (positive number) ⇒ music
Change the staff size by factor mag.
This adjusts notation size and horizontal spacing automatically.

\makeClusters arg (music) ⇒ music
Display chords in arg as clusters.

\makeDefaultStringTuning symbol (symbol) pitches (list) ⇒ void
Define string tuning symbol by a list of pitches.
symbol also gets registered in defaultStringTunings for documentation purposes.

\mark [label (index or markup)] ⇒ music
Create a rehearsal mark.
If label is an integer, create the rehearsal mark for the given sequence number. If label is \default, create the next sequential rehearsal mark. If label is markup, use it for the mark.
\markupMap \path \symbol list or symbol \markupfun \markup-function \music \music \Rightarrow \music

Apply \markupfun to property \path in \music.

Argument \path is either of the form \property or \MusicExpression.property. If \MusicExpression is not given, \markupfun gets applied to all properties called \property, otherwise it is restricted to \MusicExpression events. If \property is not a markup, it is ignored.

In the following example, both the tempo indication and the bowing instruction are printed in red. If you replace \text with \TempoChangeEvent.text, only the tempo indication changes the color.

\markupMap \text
\markup \with-color \#red \etc
{ \tempo "Largo" g'2_"arco" c' } 

\modalInversion \around \to \scale \Rightarrow \music

Invert \music about \around using \scale and transpose from \around to \to.

\modalTranspose \from \to \scale \Rightarrow \music

Transpose \music from \from to \to using \scale.

\musicLength \music \Rightarrow \any type

Return the length of \music as a moment.

\musicMap \proc \procedure \mus \music \Rightarrow \music

Apply \proc to \mus and all of the music it contains.

\noPageBreak \Rightarrow \music

Forbid a page break.

May be used at top level (i.e., between scores or markups), or inside a score.

\noPageTurn \Rightarrow \music

Forbid a page turn.

May be used at top level (i.e., between scores or markups), or inside a score.

\octaveCheck \pitch \Rightarrow \music

Do an octave check.

This prints a warning if the interval between the previous note and \pitch is not within a fourth.

\offset \property \symbol list or symbol \offsets \any type \item \key list or music \Rightarrow \music

Offset the default value of \property of \item by \offsets.

If \item is a string, the result is an override for the specified grob type. If \item is a music expression, the result is the same music expression with an appropriate tweak applied to it.

\omit \item \symbol list or music \Rightarrow \music

Omit \item without taking up space.

If \item is a symbol list of form \GrobName or \Context.GrobName, the result is an override for the grob name specified by it. If \item is a music expression, the result is the same music expression with an appropriate tweak applied to it.

This function sets \item’s \text{stencil} property to \#f.

\once \music \Rightarrow \music

Set property once to \#t on all layout instruction events in \music.
\ottava \text{octave} \text{(integer)} \Rightarrow \text{music}

Set the octavation to \text{octave}.

A positive value $n$ indicates $n$ octaves higher; a negative value $n$ octaves lower, and value 0 means no octavation.

\overrideProperty \text{grob-property-path} \text{(list of indices or symbols)} \text{value} \text{(any type)} \Rightarrow \text{music}

Set the grob property specified by \text{grob-property-path} to \text{value}.

\text{grob-property-path} is a symbol list of the form Context.GrobName.property or GrobName.property, possibly with subproperties given as well.

As opposed to \text{\override}, which overrides the context-dependent defaults with which a grob is created, this command uses Output_property_ engraver at the grob acknowledge stage. This may be necessary for overriding values set after the initial grob creation.

\overrideTimeSignatureSettings \text{time-signature} \text{(boolean-or-fraction)} \text{base-moment} \text{(fraction, as pair)} \text{beat-structure} \text{(list)} \text{beam-exceptions} \text{(list)} \Rightarrow \text{music}

Override time signature settings.

This function sets timeSignatureSettings for time signatures equal to \text{time-signature} to have settings of \text{base-moment}, \text{beat-structure}, and \text{beam-exceptions}.

\pageBreak \Rightarrow \text{music}

Force a page break.

May be used at top-level (i.e., between scores or markups), or inside a score.

\pageTurn \Rightarrow \text{music}

Force a page turn.

May be used at top-level (i.e., between scores or markups), or inside a score.

\palmMute \text{note} \text{(music)} \Rightarrow \text{music}

Print \text{note} with a triangle-shaped note head.

\palmMuteOn \Rightarrow \text{music}

Set the default note head style to a triangle-shaped style.

\parallelMusic \text{voice-ids} \text{(list)} \text{music} \text{(music)} \Rightarrow \text{void}

Define parallel music sequences.

Within \text{music}, parallel music sequences are separated by ‘|’ characters. The sequences are assigned to the LilyPond music identifiers provided in \text{voice-ids}.

For example, this code

\begin{verbatim}
\parallelMusic A,B,C \{
  c c | d d | e e |
  d d | e e | f f |
\}
\end{verbatim}

is equivalent to

\begin{verbatim}
A = \{ c c | d d \}
B = \{ d d | e e \}
C = \{ e e | f f \}
\end{verbatim}

The last bar checks in a sequence are not copied to the result in order to facilitate ending the last entry at non-bar boundaries.

\parenthesize \text{arg} \text{(symbol list or music)} \Rightarrow \text{music}

Tag \text{arg} to be parenthesized.

\text{arg} may be either a music event or a grob path.
\partCombine \[chord-range \text{(pair of numbers)}\] part1 \text{(music)} part2 \text{(music)} \Rightarrow \text{music}

Combine two parts into a single staff.

This takes the music in part1 and part2 and returns a music expression containing simultaneous Voice contexts (called one for the upper and two for the lower voice). Where appropriate, part1 and part2 are combined into a single voice (called shared or solo, depending on context).

Optional argument chord-range is a pair (start . stop) that defines the range in which the two voices are printed as chords (or unison); the default value is (0 . 8), which means that intervals up to and including a ninth are unified.

\partCombineDown \[chord-range \text{(pair of numbers)}\] part1 \text{(music)} part2 \text{(music)} \Rightarrow \text{music}

Combine two parts into a single staff with all stems downwards.

See function \partCombine for details.

\partCombineForce \[\text{type} \text{(symbol)}\] \Rightarrow \text{music}

Override the part-combiner mode with type.

The following table gives the possible values for type, together with the corresponding shorthand functions.

<table>
<thead>
<tr>
<th>type</th>
<th>Shorthand</th>
</tr>
</thead>
<tbody>
<tr>
<td>apart</td>
<td>\partCombineApart</td>
</tr>
<tr>
<td>chords</td>
<td>\partCombineChords</td>
</tr>
<tr>
<td>unisono</td>
<td>\partCombineUnisono</td>
</tr>
<tr>
<td>solo1</td>
<td>\partCombineSoloI</td>
</tr>
<tr>
<td>solo2</td>
<td>\partCombineSoloII</td>
</tr>
<tr>
<td>default</td>
<td>\partCombineAutomatic</td>
</tr>
</tbody>
</table>

\partCombineUp \[chord-range \text{(pair of numbers)}\] part1 \text{(music)} part2 \text{(music)} \Rightarrow \text{music}

Combine two parts into a single staff with all stems upwards.

See function \partCombine for details.

\partial dur \text{(duration)} \Rightarrow \text{music}

Make a partial measure of duration dur.

\phrasingSlurDashPattern dash-fraction \text{(number)} dash-period \text{(number)} \Rightarrow \text{music}

Set up a custom dash pattern style for phrasing slurs.

dash-fraction gives the size of one dash relative to dash-period; dash-period is the length of one dash plus one space. LilyPond adjusts dash-period to produce symmetrical output.

More complex patterns can be achieved by directly manipulating the PhrasingSlur .dash-definition property.

\pitchedTrill main-note \text{(music)} secondary-note \text{(music)} \Rightarrow \text{music}

Print a pitched trill.

main-note is the main note of the trill; secondary-note gets printed as a stemless note head in parentheses.

\pointAndClickOff \Rightarrow \text{void}

Suppress links to LilyPond source code in music output.

\pointAndClickOn \Rightarrow \text{void}

Generate links to LilyPond source code in music output.

This enables the creation of code in a PDF or SVG output file to reference the originating LilyPond source code (i.e., file name, line number, and column). This is helpful when developing a score; however, the output file becomes much larger.
\pointAndClickTypes types (symbol list or symbol) ⇒ void
Generate point-and-click info for music of type types only.
types is a single music expression (such as #'note-event) or a list of music expressions.

\preBend mus (music) ⇒ post-event
Set BendSpanner.style to 'pre-bend for mus.

\preBendHold mus (music) ⇒ post-event
Set BendSpanner.style to 'pre-bend-hold for mus.

\propertyOverride grob-property-path (list of indices or symbols) value (any type) ⇒ music
Set the grob property specified by grob-property-path to value.
grob-property-path is a symbol list of the form Context.GrobName.property or GrobName.property, possibly with subproperties given as well. This music function is mostly intended for use from Scheme as a substitute for the built-in \override command.

\propertyRevert grob-property-path (list of indices or symbols) ⇒ music
Revert the grob property specified by grob-property-path to its previous value.
grob-property-path is a symbol list of the form Context.GrobName.property or GrobName.property, possibly with subproperties given as well. This music function is mostly intended for use from Scheme as a substitute for the built-in \revert command.

\propertySet property-path (symbol list or symbol) value (any type) ⇒ music
Set the context property specified by property-path to value.
This music function is mostly intended for use from Scheme as a substitute for the built-in \set command.

\propertyTweak prop (key list or symbol) value (any type) item (key list or music) ⇒ music
Add a tweak to item, usually music.
This function sets the value of property prop to value; it generally behaves like \tweak but will turn into an \override when item is a symbol list. In that case, item specifies the grob path to override. This is mainly useful when using \propertyTweak as a component for building other functions like \omit. It is not the default behavior for \tweak since many input strings in \lyricmode can serve equally as music or as symbols, which causes surprising behavior when tweaking lyrics using the less specific semantics of \propertyTweak.
prop can contain additional elements in which case a nested property (inside of an alist) is tweaked.

\propertyUnset property-path (symbol list or symbol) ⇒ music
Unset the context property specified by property-path.
This music function is mostly intended for use from Scheme as a substitute for the built-in \unset command.

\pushToTag tag (symbol) more (music) music (music) ⇒ music
Add more to the front of music tagged with tag.
A post-event can be added to the articulations of rhythmic events or chords; other expressions may be added to chords, sequential or simultaneous music.

\quoteDuring what (string) main-music (music) ⇒ music
Indicate a section of music to be quoted.
what indicates the name of the quoted voice, as specified in an \addQuote command. main-music is used to indicate the length of music to be quoted; it usually contains spacers or multi-measure rests.

\raiseNote num (integer) music (music) ⇒ music
‘Raise’ the num-th note in each chord of music.
This function moves the affected notes up (usually by an octave) to be higher than the other notes of the chord. The position in a chord is counted upwards from the bottom.
The opposite function is \dropNote.

\reduceChords music (music) ⇒ music
Reduce chords contained in music to single notes.
This is intended mainly for reusing music in a RhythmicStaff context. It does not reduce simultaneous music.

\relative [pitch (pitch)] music (music) ⇒ music
Make music relative to pitch.
If pitch is omitted, the first note in music is given in absolute pitch.

\removeWithTag tags (symbol list or symbol) music (music) ⇒ music
Remove elements of music that are tagged with one of the tags in tags.
tags may be either a single symbol or a list of symbols.

\resetRelativeOctave pitch (pitch) ⇒ music
Set the octave inside a \relative section to pitch.

\responsum music (music) ⇒ music
Prepend character U+211F (response) to the lyrics represented by music.

\retrograde music (music) ⇒ music
Return music in reverse order.

\revertTimeSignatureSettings time-signature (pair) ⇒ music
Revert timeSignatureSettings for time signatures equal to time-signature.

\rightHandFinger finger (index or markup) ⇒ post-event
Apply finger as a right-hand fingering indication.

\scaleDurations fraction (non-negative rational, fraction, or moment) music (music) ⇒ music
Multiply the duration of events in music by fraction.

\sectionLabel text (markup) ⇒ music
Mark the beginning of a named passage, e.g., “Coda”.
This is well suited for use at a section division created with \section, but it does not imply \section and may be used alone.

\segnoMark [num (non-negative, exact integer)] ⇒ music
Create a segno mark (or bar line).
num may be 1 for the first segno, 2 for the second, etc., or it may be \default to use the next number in sequence automatically.
If the segnoStyle context property is ’bar-line, a segno bar line is created instead of a segno mark.

\settingsFrom [ctx (symbol)] music (music) ⇒ any type
Translate layout instructions into a context modification.
This function takes the layout instruction events from music (i.e., \set, \unset, \override, \revert), optionally restricted to those applying to context type ctx, and returns a context modification duplicating their effect.
\shape \textit{offsets} (list) \textit{item} (key list or music) ⇒ music
Offset control points of \textit{item} by \textit{offsets}.
\textit{offsets} is a list of number pairs \((x, y)\) or a list of such lists. Each pair represents an offset to a control point. The ‘\textit{y}’ value of each pair is scaled by staff space.
If \textit{item} is a string, the result is \text\{once\}override for the specified grob type. If \textit{item} is a music expression, the result is the same music expression with an appropriate tweak applied.
\shiftDurations \textit{dur} (integer) \textit{dots} (integer) \textit{arg} (music) ⇒ music
Change duration of \textit{arg}.
This function walks over all durations and dot counts in \textit{arg}, adding \textit{dur} to the durations and \textit{dots} to the dot counts.
\single \textit{overrides} (music) \textit{music} (music) ⇒ music
Convert \textit{overrides} to tweaks and apply them to \textit{music}.
This does not convert \text\{revert\}, \text\{set\} or \text\{unset\}.
\skip \textit{arg} (duration-or-music) ⇒ music
Skip over \textit{arg}, which may be music or a duration.
\slashedGrace \textit{music} (music) ⇒ music
Create slashed graces from \textit{music}.
This produces slashes through stems, but no slur.
\slurDashPattern \textit{dash-fraction} (number) \textit{dash-period} (number) ⇒ music
Set up a custom dash pattern style for slurs.
\textit{dash-fraction} gives the size of one dash relative to \textit{dash-period}; \textit{dash-period} is the length of one dash plus one space. LilyPond adjusts \textit{dash-period} to produce symmetrical output.
More complex patterns can be achieved by directly manipulating the \text\{Slur\}.\text\{dash-definition\} property.
\staffHighlight \textit{color} (color) ⇒ music
Start a highlight with color \textit{color}.
\storePredefinedDiagram \textit{fretboard-table} (hash table) \textit{chord} (music) \textit{tuning} (pair) \textit{diagram-definition} (string or pair) ⇒ void
Add a predefined fret diagram to \textit{fretboard-table}.
It is defined by \textit{diagram-definition} for the chord pitches \textit{chord} and the string tuning \textit{tuning}.
\stringTuning \textit{chord} (music) ⇒ any type
Convert \textit{chord} to a string tuning.
\textit{chord} must be in absolute pitches and should have the highest string number (generally the lowest pitch) first.
\styledNoteHeads \textit{style} (symbol) \textit{heads} (symbol list or symbol) \textit{music} (music) ⇒ music
Set \textit{heads} in \textit{music} to \textit{style}.
\tabChordRepeats [\textit{event-types} (list)] \textit{music} (music) ⇒ music
Extend ‘\textquote{q}’ to also repeat string and fingering information.
This function walks through \textit{music} putting the notes, fingerings and string numbers of the previous chord into repeat chords, as well as an optional list of \textit{event-types} such as #\textquote{(articulation-event)}. 
\textbf{ChordRepetition} \Rightarrow \textbf{void}

Include the string and fingering information in a chord repetition.
This function is deprecated; use \textbf{ChordRepeats} instead.

\tag \textbf{tags} (symbol list or symbol) \textbf{music} \Rightarrow \textbf{music}

Tag \textbf{music} with \textbf{tags}.
This function adds the single symbol or symbol list \textbf{tags} to the \textbf{tags} property of \textbf{music} and returns the result.

\tagGroup \textbf{tags} (symbol list) \Rightarrow \textbf{void}

Define a tag group comprising the symbols in the symbol list \textbf{tags}.
Tag groups must not overlap.

\textbf{temporary} \textbf{music} \Rightarrow \textbf{music}

Make \textbf{override} reversible with \textbf{revert}.
This function makes any \textbf{override} in \textbf{music} replace an existing grob property value only temporarily, restoring the old value when a corresponding \textbf{revert} is executed.
This is achieved by clearing the pop-first property normally set on \textbf{overrides}.
An \textbf{override}/\textbf{revert} sequence created by using \textbf{temporary} and \textbf{undo} on the same \textbf{music} containing overrides will cancel out perfectly or cause a warning.
Non-property-related \textbf{music} is ignored, warnings are generated for any property-changing \textbf{music} that isn’t an \textbf{override}.

\textbf{textEndMark} \textbf{text} (markup) \Rightarrow \textbf{music}

Create a right-aligned text mark using \textbf{text}.

\textbf{textMark} \textbf{text} (markup) \Rightarrow \textbf{music}

Create a (left-aligned) text mark using \textbf{text}.

\tieDashPattern \textbf{dash-fraction} (number) \textbf{dash-period} (number) \Rightarrow \textbf{music}

Set up a custom dash pattern style for ties.
\textbf{dash-fraction} gives the size of one dash relative to \textbf{dash-period}; \textbf{dash-period} is the length of one dash plus one space. LilyPond adjusts \textbf{dash-period} to produce symmetrical output.
More complex patterns can be achieved by directly manipulating the \textbf{Tie.dash-definition} property.

\time [\textbf{beat-structure} (number list)] \textbf{fraction} (fraction, as pair) \Rightarrow \textbf{music}

Set \textbf{fraction} as a time signature.
The optional number list \textbf{beat-structure} additionally sets a beat structure.

\times \textbf{fraction} (fraction, as pair) \textbf{music} \Rightarrow \textbf{music}

Scale \textbf{music} in time by \textbf{fraction}.

\tocItem [\textbf{label} (symbol list or symbol)] \textbf{text} (markup) \Rightarrow \textbf{music}

Add \textbf{text} as an entry to the table of contents.
This uses the \textbf{tocItemMarkup} paper variable markup for formatting and assigns it to \textbf{label} if one is provided.
If a hierarchy of labels is given, make the current item a child of the corresponding objects.

\transpose \textbf{from} (pitch) \textbf{to} (pitch) \textbf{music} \Rightarrow \textbf{music}

Transpose \textbf{music} from pitch \textbf{from} to pitch \textbf{to}.

\transposedCueDuring \textbf{what} (string) \textbf{dir} (direction) \textbf{pitch} (pitch) \textbf{main-music} \Rightarrow \textbf{music}

Create a transposed cue.
This function inserts notes from the part what into a CueVoice context called cue, using the transposition defined by pitch. This happens simultaneously with main-music, which is usually a rest. The argument dir determines whether the cue notes should be notated as a first or second voice.

\transposition pitch (pitch) \Rightarrow music
Set instrument transposition to pitch.

\tuplet ratio (fraction, as pair) \{ \tuplet-span (duration) \} music (music) \Rightarrow music
Scale the given music to tuplets.
\textit{ratio} is a fraction that specifies how many notes are played in place of the nominal value: it will be 3/2 for triplets, namely three notes being played in place of two.
If the optional duration \textit{tuplet-span} is specified, it is used instead of tupletSpannerDuration for grouping the tuplets. For example,

\textbackslash{tuplet} 3/2 4 \{ c8 c c c c c \}
results in two groups of three tuplets, each group lasting for a quarter note.

\tupletSpan \{ \tuplet-span (duration) \} \Rightarrow music
Set tupletSpannerDuration to the duration \textit{tuplet-span}.
This context property is the length into which \textbackslash{tuplet} without an explicit tuplet span argument of its own will group its tuplets. To revert to the default of not subdividing the contents of a \textbackslash{tuplet} command without an explicit tuplet span argument, use

\textbackslash{tupletSpan} \textbackslash{default}

\tweak prop (key list or symbol) value (any type) music (music) \Rightarrow music
Add a tweak to music.
Layout objects created by \textbackslash{music} get their property \textit{prop} set to \textit{value}. If \textit{prop} has the form \texttt{Grob.property}, like with

\textbackslash{tweak Accidental.color #red cis'}

an indirectly created grob (Accidental is caused by NoteHead) can be tweaked; otherwise only directly created grobs are affected.
\textit{prop} can contain additional elements in which case a nested property (inside of an \texttt{alist}) is tweaked.
If \textbackslash{music} is an event-chord, every contained rhythmic-event is tweaked instead.

\undo music (music) \Rightarrow music
Convert \textbackslash{override} and \textbackslash{set} in music to \textbackslash{revert} and \textbackslash{unset}, respectively.
Any reverts and unsets already in music cause a warning. Non-property-related music is ignored.

\unfolded music (music) \Rightarrow music
Mask music until the innermost enclosing repeat is unfolded.

\unfoldRepeats \{ types (symbol list or symbol) \} music (music) \Rightarrow music
Unfold \textbackslash{repeat}.
This forces \textbackslash{repeat volta}, \textbackslash{repeat tremolo} or \textbackslash{repeat percent} commands in music to be interpreted as \textbackslash{repeat unfold}, if specified in the optional symbol-list \textit{types}. The default for \textit{types} is an empty list, which forces any of those commands in music to be interpreted as \textbackslash{repeat unfold}. Possible entries are \texttt{volta}, \texttt{tremolo} or \texttt{percent}. Multiple entries are possible.

\versus music (music) \Rightarrow music
Prepend character U+2123 (VERSICLE) to the lyrics represented by music.
\.voices \ids (list of indices or symbols) \music (music) ⇒ music
Specify voice order in simultaneous music.
This takes the key list \ids of numbers (indicating the use of ‘\voiceOne’...) or
symbols (indicating voice names, typically converted from strings by argument list
processing) and assign the following \\-separated music in \music to contexts according
to that list. Named rather than numbered contexts can be used for continuing
one voice (for the sake of spanners and lyrics), usually requiring a \voiceOne-style
override at the beginning of the passage and a \oneVoice override at its end.
The default
\[
\langle \ldots \ \langle \ldots \ \langle \ldots \rangle \rangle
\]
construct would correspond to
\[\voices 1,2,3 \langle \ldots \ \langle \ldots \ \langle \ldots \rangle \rangle\]
\void \arg (any type) ⇒ void
Accept a Scheme argument \arg and return a void expression.
Use this if you want to have a Scheme expression evaluated because of its side effects
but its return value being ignored.
\volta \volta-numbers (number list) \music (music) ⇒ music
Mark \music as being limited to the volte given in \volta-numbers.
This gets used when the innermost enclosing repeat is unfolded. Volta number
begins at 1 and increases by 1 with each repetition.
\vshape \offsets (list) \item (key list or music) ⇒ music
Like \shape, but additionally show control points for ease of tweaking.
\withMusicProperty \sym (symbol) \val (any type) \music (music) ⇒ music
Set music property \sym to \val in \music.
\xNote \note (music) ⇒ music
Print \note with a cross-shaped note head.
\= \id (index or symbol) \event (post-event) ⇒ post-event
Assign an ID to a spanner.
This sets the spanner-\id property of \event to the given \id, which is a non-negative
integer or a symbol. This can be used to tell LilyPond how to connect overlapping
or parallel slurs or phrasing slurs within a single Voice context.
\[\fixed c' \{ c\#1( d\#2( e\#1) f\#2) \} \]

A.22 Context modification identifiers
The following commands are defined for use as context modifications within a \layout or \with
block.
\EnableGregorianDivisiones
Configure division commands such as \section to create Divisio grobs rather than
BarLine grobs. This does not affect measure bar lines or the properties of the grobs
themselves.
• Sets translator property caesuraTypeTransform to caesura-to-divisio.
• Sets translator property doubleRepeatBarType to ‘().
• Sets translator property endRepeatBarType to '().
• Sets translator property fineBarType to "".
• Sets translator property sectionBarType to "".
• Sets translator property startRepeatBarType to '().
• Sets translator property underlyingRepeatBarType to "".
• Sets translator property doubleRepeatSegnoBarType to "S-||".
• Sets translator property endRepeatSegnoBarType to "S-||".
• Sets translator property fineSegnoBarType to "S-||".
• Sets translator property fineStartRepeatSegnoBarType to "S-||".
• Sets translator property segnoBarType to "S-||".
• Sets translator property startRepeatSegnoBarType to "S-||".

\RemoveAllEmptyStaves
Remove staves which are considered to be empty according to the list of interfaces set by keepAliveInterfaces, including those in the first system.

• Sets grob property remove-empty in Section “VerticalAxisGroup” in Internals Reference to #t.
• Sets grob property remove-first in Section “VerticalAxisGroup” in Internals Reference to #t.

\RemoveEmptyStaves
Remove staves which are considered to be empty according to the list of interfaces set by keepAliveInterfaces.

• Sets grob property remove-empty in Section “VerticalAxisGroup” in Internals Reference to #t.

### A.23 Paper variables

The following paper variables are predefined by LilyPond. Default values that are scaled to paper size are given for the default paper size, A4. The mentioned xxx-default variables are paper variables, too.

Some values like mm or pt are constants and thus essentially read-only; changing them would confuse LilyPond thoroughly.

Most paper variables can be either set in \paper or in \layout, see Section 4.2.1 [The \layout block], page 616.

annotate-spacing (boolean)
If this value is set to #t, dimensions of vertical layout variables that may be altered for page formatting are graphically displayed. Default: #f.

auto-first-page-number (boolean)
The page-breaking algorithm is affected by the first page number being odd or even. If set to #t, the algorithm decides whether to start with an odd or even number. This results in the first page number remaining as is or being increased by one. Default: #f.

binding-offset (number)
This amount gets added to inner-margin so that nothing is hidden by the binding. Has only an effect if two-sided is set to #t. Default: binding-offset-default (5 mm, scaled to paper size).
The penalty for having a blank page after the end of one score and before the next. By default, this is smaller than \texttt{blank-page-penalty} so that LilyPond prefers blank pages after scores to blank pages within a score. Default: 2.

The penalty for ending the score on an odd-numbered page. Default: 0.

The penalty for having a blank page in the middle of a score. Note that this is not used by \texttt{ly:optimal-breaking}, which never considers blank pages in the middle of a score. Default: 5.

This value globally defines the smallest ‘round’ feature LilyPond uses while constructing almost all non-glyph elements like beams or stems. Essentially, it sets up how round the corners and line ends are. It only makes sense to change the value if you use a different music glyph font with crisper corners, say. Default: 0.4 pt.

Internal. This is what LilyPond actually uses for handling \texttt{bookTitleMarkup}.

A list of rhythm location pairs to output fragments of a score.

The above example defines two regions: the first is from the beginning of bar 2 to the beginning of bar 4, the second starts after a half note duration in bar 5 and ends after the third quarter in bar 7.
Appendix A: Notation manual tables 864

Has only an effect if LilyPond’s command-line option \-dclip-systems is active. Default: unset.

cm (positive number)
The centimeter unit, approx. 0.39 in.

debug-beam-scoring (boolean)
If set to \#t, print demerits together with their cause, followed by the number of configurations that have been scored before concluding. Default: \#f.
Example:

\L 18.95 \C 655.12 c19/625 \rightarrow demerits for stem lengths ('L') and collisions ('C'), scored 19 out of 625 initially considered configurations.
Possible demerit causes: collision ('C'), inappropriate stem length ('L'), beam direction different from damping direction ('Sd'), difference between beam slope and musical slope ('Sm'), deviation from ideal slope ('Si'), horizontal inter-quants ('H'), forbidden quants ('Fl'/'Fs').
Demerits are configurable, see Section “beam-interface” in Internals Reference for a list of tunable parameters.

debug-slur-scoring (boolean)
If set to \#t, print demerits together with their cause, followed by the sum of all demerits and the index of the slur configuration finally chosen. Default: \#f.
Example:

slope=2.00, R edge=10.51, variance=0.03 TOTAL=12.54 idx=4 \rightarrow demerits for slope, distance of the right edge to the attachment point, variance of distance between note heads and slur. Total demerits: 12.54, index of the chosen configuration: 4.
Possible demerit causes: distance of the left/right slur edge to the attachment points ('L edge'/R edge'), inappropriate slope ('slope'), distance variations between note heads and slur ('variance'), distances for heads that are between the slur and an imaginary line between the attachment points ('encompass'), too small distance between slur and tie extrema ('extra').
Demerits are configurable, see Section “slur-interface” in Internals Reference for a list of tunable parameters.

debug-tie-scoring (boolean)
If set to \#t, print the basic configuration of ties, followed by demerits and their corresponding causes and the total sum of demerits. Default: unset.
Example:

0 (0.23) u: vdist=1.08 lhdist=1.79 tie/stem dir=8.00 TOTAL=10.87 \rightarrow offset from the center of the staff according tie specification: 0 staff-spaces, vertical distance of the tie’s center in y-direction to the bottom (or top) of the tie: 0.23, direction: up. Demerits for vertical and horizontal distance to note head, same direction of stem and tie. Total demerits: 10.87.
Possible demerit causes: wrong tie direction ('wrong dir'), vertical distance to note heads ('vdist'), horizontal distance to left or right note head ('lhdist'/rhdist'), same direction of stem and tie ('tie/stem dir'), position and direction of tie not matching, e.g., tie is in the upper half of the staff but has direction DOWN ('tie/pos dir'), tie is too short ('minlength'), tip of tie collides with staff line ('tipline'), collision with dot ('dot collision'), center of tie is too close to a staff line ('line center'), y-position (edge or center) of currently considered tie is less than the y-position of the previous tie ('monoton edge'/ 'monoton cent'), edge or center of
tie is too close to the one considered previously ('tietie center'/'tietie edge'),
unsymmetrical horizontal positioning with respect to the note heads ('length symm'),
unsymmetrical vertical positioning with respect to the note heads ('pos symmetry').
Demerits are configurable, see Section “tie-interface” in Internals Reference for a
list of tunable parameters.

dimension-variables (list)
Internal.
evenFooterMarkup (markup)
The footer markup used for even-numbered pages. If not set, oddFooterMarkup is
used instead. The default value is defined in file titling-init.ly.
evenHeaderMarkup (markup)
The header markup used for even-numbered pages. If not set, oddHeaderMarkup is
used instead. The default value is defined in file titling-init.ly.

first-page-number (integer)
The value of the page number on the first page. Default: 1.

footnote-footer-padding (number)
The padding between the footer and the bottom-most footnote. Default: 0.5 mm.

footnote-number-raise (number)
This controls how high the annotation numbers of both footnotes and in-notes are
raised relative to the footnote or in-note text. Default: 0.5 mm.

footnote-numbering-function (procedure)
This variable holds the name of the function that formats both footnote and in-note
numbers (without positioning it). LilyPond provides two predefined functions (in
file output-lib.scm): numbered-footnotes ('1', '2', etc.) and symbol-footnotes
('*', '†', etc.). Default: numbered-footnotes.
The function takes an integer as an argument (starting with value 0) and returns
the appropriate markup. You can create your own function, for example,

footnote-numbering-function =
#(lambda (x)
  #{ \markup \concat { "[" #(number->string (1+ x)) "]" } #})

footnote-padding (number)
The padding between two footnotes. Default: 0.5 mm.

footnote-separator-markup (markup)
Markup to separate the music from the footnotes, usually a horizontal line. The
default value is defined in file paper-defaults-init.ly.

horizontal-shift (number)
If set, the main content block of all pages (but not headers and footers) is shifted
horizontally. Positive values shift to the right (on both even and odd pages). Default:
0 mm.

in (positive number)
The inch unit, equal to 2.54 cm.

in-note-padding (number)
The padding between two in-notes. Default: 0.5 mm.

in-note-system-padding (number)
The padding between an in-note and the associated music system. Default: 0.5 mm.
incipit-width (positive number)
The width of an incipit as created by the \incipit command. Must be smaller than or equal to indent. Default: (indent / 2).

indent (non-negative number)
The indentation of the first system in a score. The space within the line-width available for the first system is reduced by this amount. Default: indent-default (15 mm, scaled to paper size).

inner-margin (non-negative number)
The margin all pages have at the inner side if they are part of a book. Has only an effect if two-sided is set to #t. If unset, inner-margin-default (15 mm, scaled to paper size) is used in computations. Default: unset.

is-last-bookpart (boolean)
To be documented.

label-alist-table (list)
Internal. LilyPond uses this to construct a table of contents.

label-page-table (association list (list of pairs))
Internal. LilyPond uses this to implement the \with-link functionality and to construct a table of contents.

landscape (boolean)
Internal. Use set-default-paper-size or set-paper-size to set the paper orientation.

last-bottom-spacing (association list (list of pairs))
The distance from the last system or top-level markup on a page to the bottom of the printable area (i.e., the top of the bottom margin). The default value is defined in file paper-defaults-init.ly.

left-margin (non-negative number)
The margin between the left edge of the page and the start of the staff lines in unindented systems. If left-margin is not set, and both line-width and right-margin are set, then left-margin is set to (paper-width - line-width - right-margin). If only line-width is set, then both margins are set to ((paper-width - line-width) / 2), and the systems are consequently centered on the page. If unset, left-margin-default (15 mm, scaled to paper size) is used in computations. Default: unset.

If two-sided is set to #t, this value is ignored. Also see check-consistency.

line-thickness (positive number)
This value globally defines the default line thickness LilyPond uses while constructing many non-glyph elements like lines or boxes. The actual line thickness is usually specified as a factor of this base value, either as a default value, or overridden by the user. The default depends on the staff space and is computed as (0.328571 + 0.0342857 * staff-space) (see function calc-line-thickness in file paper.scm), which is synchronized with the Emmentaler font.

line-width (positive number)
The horizontal extent of the staff lines in unindented, non-ragged systems, equal to (paper-width - left-margin - right-margin) if not set. If line-width is set, and both left-margin and right-margin are not set, then the margins are updated to center the systems on the page automatically. Also see check-consistency. Default: unset.
As a feature of LilyPond, if the command-line option `-dcrop` is set, the dimensions of the cropped output file are always rounded up to integer (PostScript) big points; this might cause a little bit of whitespace at the right margin. To avoid that, set `line-width` to an integer big point value like `450bp`.

`make-footer` (procedure)
Internal. This is what LilyPond actually uses for for handling `evenFooterMarkup` and `oddFooterMarkup`.

`make-header` (procedure)
Internal. This is what LilyPond actually uses for for handling `evenHeaderMarkup` and `oddHeaderMarkup`.

`markup-markup-spacing` (association list (list of pairs))
The distance between two (title or top-level) markups. The default value is defined in file `paper-defaults-init.ly`.

`markup-system-spacing` (association list (list of pairs))
The distance between a (title or top-level) markup and the system that follows it. The default value is defined in file `paper-defaults-init.ly`.

`max-systems-per-page` (non-negative, exact integer)
The maximum number of systems that are placed on a page. This is currently supported only by the `ly:optimal-breaking` algorithm. Default: unset.

`min-systems-per-page` (non-negative, exact integer)
The minimum number of systems that are placed on a page. This may cause pages to be overfilled if it is made too large. This is currently supported only by the `ly:optimal-breaking` algorithm. Default: unset.

`mm` (positive number)
The millimeter unit, approx. 0.039 in.

`number-footnote-table` (list)
Internal. LilyPond uses this to manage footnotes and footnote numbers.

`oddFooterMarkup` (markup)
The footer markup used for odd-numbered pages. The default value is defined in file `titling-init.ly`.

`oddHeaderMarkup` (markup)
The header markup used for odd-numbered pages. The default value is defined in file `titling-init.ly`.

`orphan-penalty` (number)
To be documented. See `lily/page-breaking.cc`. Default is 100000.

`outer-margin` (non-negative number)
The margin all pages have at the outer side if they are part of a book. Has only an effect if `two-sided` is set to `#t`. If unset, `outer-margin-default` (15 mm, scaled to paper size) is used in computations. Default: unset.

`output-filename` (string)
If set, use this value as the output file name for LilyPond output. See also `output-suffix`. The default is the input file name (without the file extension).

`output-scale` (positive number)
Internal. This value globally defines the output scale LilyPond uses while creating output. Use `set-global-staff-size` or `layout-set-staff-size` to change the scaling. Default: 1.7573, which corresponds to a 20 pt staff size.
output-suffix (string)
If set, use this value as the output file name suffix for LilyPond output, appended to
the output name with a dash inbetween. See also output-filename. The default is
no output suffix if there is only a single book block (either implicit or explicit), and
a running integer starting with value 1 otherwise.

page-breaking (procedure)
The page-breaking algorithm to use. Choices are ly:minimal-breaking,
ly:page-turn-breaking, ly:one-page-breaking, ly:one-line-breaking,

page-breaking-system-system-spacing (association list (list of pairs))
This tricks the page breaker into thinking that system-system-spacing
is set to something different than it really is. For example, if
page-breaking-system-system-spacing.padding is set to something
substantially larger than system-system-spacing.padding, then the page breaker
puts fewer systems on each page. Default: unset.

page-count (non-negative, exact integer)
The number of pages to be used for a score. Default: unset.

page-number-type (symbol)
The type of numerals used for page numbers. Choices include arabic,

page-post-process (procedure)
If this function is defined (within the \paper block), LilyPond uses it to post-process
pages, for example, to extract the table of contents and writing the information to
an auxiliary file. The call happens after page breaking has been performed.
The syntax is

  #(define (page-post-process layout pages) ... )

page-spacing-weight (number)
When using the ly:optimal-breaking algorithm for page breaking, LilyPond has to
make trade-offs between horizontal and vertical stretching so that the overall spacing
is more acceptable. This parameter controls the relative importance of (vertical)
page spacing and (horizontal) line spacing. High values makes page spacing more
important. Default: 10.

paper-height (positive number)
The height of the page. Note that the automatic scaling of some vertical dimensions
is not affected if you set this value directly. Default: 297 mm (A4 paper height).

paper-width (positive number)
The width of the page. While setting paper-width directly has no effect on the
automatic scaling of some horizontal dimensions, it does influence the line-width
variable. If both paper-width and line-width are set, then left-margin and
right-margin also get updated. Also see check-consistency. Default: 210 mm
(A4 paper width).

papersizename (string)
Internal. Use set-default-paper-size or set-paper-size to set the paper size.

print-all-headers (boolean)
If set to #t, print all headers for each \score in the output. If set to #f, only the
piece and opus header variables are printed. Default: #f.
print-first-page-number (boolean)
If set to #t, a page number is printed on the first page. Default: #f.

print-page-number (boolean)
If set to #f, page numbers are not printed. Default: #t.

property-defaults (association list (list of pairs))
This variable holds some settings that are used for top-level markups and as fallback values if nothing else is specified, for example, the standard fonts or the baseline skip. The default value is defined in file paper-defaults-init.ly.

pt (positive number)
The point unit, equal to approx. 0.351 mm (0.0139 in).

ragged-bottom (boolean)
If set to #t, systems are set at at their natural spacing, neither compressed nor stretched vertically to fit the page. Default: #f.

ragged-last (boolean)
If set to #t, the last system in the score does not fill the line width. Instead, the last system ends at its natural horizontal length. Default: #f.

ragged-last-bottom (boolean)
If set to #f, then the last page, and the last page in each section created with a \bookpart block, is vertically justified in the same way as the earlier pages. Default: #t.

ragged-right (boolean)
If set to #t, systems don’t fill the line width. Instead, systems end at their natural horizontal length. Default: #t for scores with only one system, and #f for scores with two or more systems.

reset-footnotes-on-new-page (boolean)
If set to #t, footnote and in-note numbers are reset on each page break. For footnotes and in-notes numbered consecutively across page breaks, set to #f. Default: #t.

right-margin (non-negative number)
The margin between the right edge of the page and the end of the staff lines in non-ragged systems. If right-margin is not set, and both line-width and left-margin are set, then right-margin is set to (paper-width - line-width - left-margin). If only line-width is set, then both margins are set to ((paper-width - line-width) / 2), and the systems are consequently centered on the page. If unset, right-margin-default (15 mm, scaled to paper size) is used in computations. Default: unset.
If two-sided is set to #t, this value is ignored. Also see check-consistency.

score-markup-spacing (association list (list of pairs))
The distance between the last system of a score and the (title or top-level) markup that follows it. The default value is defined in file paper-defaults-init.ly.

score-system-spacing (association list (list of pairs))
The distance between the last system of a score and the first system of the score that follows it, if no (title or top-level) markup exists between them. The default value is defined in file paper-defaults-init.ly.

score-title (procedure)
Internal. This is what LilyPond actually uses for handling scoreTitleMarkup.

score-title-properties (association list (list of pairs))
Internal.
scoreTitleMarkup (markup)
The titling markup of a score within a \book, using standard fields from the \header block. The default value is defined in file titling-init.ly.

short-indent (non-negative number)
The level of indentation for all systems in a score besides the first system. The space within the line-width available for systems other than the first one is reduced by this amount. Default: short-indent-default (0 mm).

staff-height (positive number)
Internal. Use set-global-staff-size or layout-set-staff-size to set the staff height. Default: 20 pt.

staff-space (positive number)
Internal. One staff height contains four staff spaces. Use set-global-staff-size or layout-set-staff-size to set this value. Default: 5 pt.

system-count (non-negative, exact integer)
The number of systems to be used for a score. Default: unset.

system-separator-markup (markup)
A markup object that is inserted between systems, often used for orchestral scores. The \slashSeparator markup, defined in file titling-init.ly, is provided as a sensible standard value. Default: unset.

system-system-spacing (association list (list of pairs))
The distance between two systems in the same score. The default value is defined in file paper-defaults-init.ly.

systems-per-page (non-negative, exact integer)
The number of systems that should be placed on a page. This is currently supported only by the ly:optimal-breaking algorithm. Default: unset.

tagline (markup)
This markup gets placed at the bottom of the last page (via oddFooterMarkup). The default value is defined in file titling-init.ly.

text-font-size (positive number)
This value globally defines the standard text size for markups. The default depends on the staff height and is computed as \((\text{staff-height} / 20 \times 11)\).

tocFormatMarkup (procedure)
How the top-level entries of the table of contents are formatted (if there are several hierarchical levels). This variable holds a function like make-bold-markup. The default value is defined in file toc-init.ly.

tocIndentMarkup (markup)
How the outline’s hierarchy in the table of contents is made apparent. This markup is printed zero, one, or several times depending on the level of each entry. The default value is defined in file toc-init.ly.

tocItemMarkup (markup)
How an item in the table of contents is formatted. The default value of this markup is defined in file toc-init.ly.

tocTitleMarkup (markup)
How the title of the table of contents is formatted. The default value of this markup is defined in file toc-init.ly.
Appendix A: Notation manual tables

**top-margin** (non-negative number)
The margin between the top of the page and the top of the printable area. Default: top-margin-default (10 mm, scaled to paper size).

**top-markup-spacing** (association list (list of pairs))
The distance from the top of the printable area (i.e., the bottom of the top margin) to the first (title or top-level) markup on a page, when there is no system between the two. The default value is defined in file paper-defaults-init.ly.

**top-system-spacing** (association list (list of pairs))
The distance from the top of the printable area (i.e., the bottom of the top margin) to the first system on a page, when there is no (title or top-level) markup between the two. The default value is defined in file paper-defaults-init.ly.

**two-sided** (boolean)
If set to #t, use inner-margin, outer-margin and binding-offset to determine margins depending on whether the page number is odd or even. left-margin and right-margin are then ignored. Default: #f.

### A.24 Naming conventions

Naming conventions are used so that it is easier to keep the nature of an object in mind.

<table>
<thead>
<tr>
<th><strong>Object/property type</strong></th>
<th><strong>Naming convention</strong></th>
<th><strong>Examples</strong></th>
</tr>
</thead>
<tbody>
<tr>
<td>Keywords</td>
<td>aaaa</td>
<td>\score, \addlyrics</td>
</tr>
<tr>
<td>Music functions and shortcuts</td>
<td>aaaa or aaaaAaaaAaaa</td>
<td>\time, \stemUp</td>
</tr>
<tr>
<td>Markup functions</td>
<td>aaaa or aaaa-aaaa-aaaa-aaaa</td>
<td>\bold, \with-dimensions</td>
</tr>
<tr>
<td>Paper variables</td>
<td>aaaa or aaaa-aaaa-aaaa-aaaa</td>
<td>indent, page-breaking</td>
</tr>
<tr>
<td>Music expressions</td>
<td>Aaaa or AaaaAaaaAaaa</td>
<td>NoteEvent, SequentialMusic</td>
</tr>
<tr>
<td>Music classes</td>
<td>aaaa or aaaa-aaaa-aaaa-aaaa</td>
<td>note-event, rhythmic-event</td>
</tr>
<tr>
<td>Music properties</td>
<td>aaaa or aaaa-aaaa-aaaa-aaaa</td>
<td>force-accidental, iterator-ctor</td>
</tr>
<tr>
<td>Contexts</td>
<td>Aaaa or AaaaAaaaAaaaAaaa</td>
<td>Staff, GrandStaff</td>
</tr>
<tr>
<td>Context properties</td>
<td>aaaa or aaaaAaaaAaaaAaaa</td>
<td>stanza, instrumentName</td>
</tr>
<tr>
<td>Engravers</td>
<td>Aaaa_engraver or Aaaa_aaaa_aaaa_ engraver</td>
<td>Clef_engraver, Note_heads_engraver</td>
</tr>
<tr>
<td>Layout Objects</td>
<td>Aaaa or AaaaAaaaAaaaAaaa</td>
<td>Slur, NoteHead</td>
</tr>
<tr>
<td>Layout Object Properties</td>
<td>aaaa or aaaa-aaaa-aaaa-aaaaa</td>
<td>direction, beam-thickness</td>
</tr>
<tr>
<td>Interfaces</td>
<td>aaaa-aaa-interface</td>
<td>grob-interface, break-aligned-interface</td>
</tr>
<tr>
<td>Scheme functions defined in Guile</td>
<td>aaaa or aaaa-aaaa-aaaa</td>
<td>map, for-each</td>
</tr>
<tr>
<td>Scheme functions defined in LilyPond</td>
<td>ly:aaaa or ly:aaaa-aaaa-aaaa or aaaa or aaaa-aaaa-aaaa</td>
<td>ly:round-filled-box, music-map</td>
</tr>
</tbody>
</table>

### A.25 Predefined type predicates

Predicates return #t when their argument is of the named type and #f if it isn’t.

---

3 For historical reasons, some but not all of the functions defined by LilyPond start with the ly: prefix.
R5RS primary predicates

Primary predicates can be applied to any expression. They can be used on their own as predicates for LilyPond functions. The predicates here are part of the Scheme standard R5RS.

<table>
<thead>
<tr>
<th>Type predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>boolean?</td>
<td>boolean</td>
</tr>
<tr>
<td>char?</td>
<td>character</td>
</tr>
<tr>
<td>complex?</td>
<td>complex number</td>
</tr>
<tr>
<td>eof-object?</td>
<td>end-of-file object</td>
</tr>
<tr>
<td>input-port?</td>
<td>input port</td>
</tr>
<tr>
<td>integer?</td>
<td>integer</td>
</tr>
<tr>
<td>list?</td>
<td>list (use cheap-list? for faster processing)</td>
</tr>
<tr>
<td>null?</td>
<td>null</td>
</tr>
<tr>
<td>number?</td>
<td>number</td>
</tr>
<tr>
<td>output-port?</td>
<td>output port</td>
</tr>
<tr>
<td>pair?</td>
<td>pair</td>
</tr>
<tr>
<td>port?</td>
<td>port</td>
</tr>
<tr>
<td>procedure?</td>
<td>procedure</td>
</tr>
<tr>
<td>rational?</td>
<td>rational number</td>
</tr>
<tr>
<td>real?</td>
<td>real number</td>
</tr>
<tr>
<td>string?</td>
<td>string</td>
</tr>
<tr>
<td>symbol?</td>
<td>symbol</td>
</tr>
<tr>
<td>vector?</td>
<td>vector</td>
</tr>
</tbody>
</table>

R5RS secondary predicates

Secondary predicates are only applicable to specific expressions (for example, to numbers). They will throw a type error when applied to expressions they are not intended for. The predicates here are part of the Scheme standard R5RS.

<table>
<thead>
<tr>
<th>Type predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>char-alphabetic?</td>
<td>alphabetic character</td>
</tr>
<tr>
<td>char-lower-case?</td>
<td>lower-case character</td>
</tr>
<tr>
<td>char-numeric?</td>
<td>numeric character</td>
</tr>
<tr>
<td>char-upper-case?</td>
<td>upper-case character</td>
</tr>
<tr>
<td>char-whitespace?</td>
<td>whitespace character</td>
</tr>
<tr>
<td>even?</td>
<td>even number</td>
</tr>
<tr>
<td>exact?</td>
<td>exact number</td>
</tr>
<tr>
<td>inexact?</td>
<td>inexact number</td>
</tr>
<tr>
<td>negative?</td>
<td>negative number</td>
</tr>
<tr>
<td>odd?</td>
<td>odd number</td>
</tr>
<tr>
<td>positive?</td>
<td>positive number</td>
</tr>
<tr>
<td>zero?</td>
<td>zero</td>
</tr>
</tbody>
</table>

Guile predicates

These predicates are defined by Guile but are not part of a Scheme standard.

<table>
<thead>
<tr>
<th>Type predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>hash-table?</td>
<td>hash table</td>
</tr>
</tbody>
</table>

LilyPond scheme predicates

These predicates are only available within LilyPond and defined in Scheme.

<table>
<thead>
<tr>
<th>Type predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alist?</td>
<td>association list (list of pairs)</td>
</tr>
</tbody>
</table>
boolean-or-symbol? | boolean or symbol  
cheap-list? | list (use this instead of list? for faster processing)  
color? | color  
exact-rational? | an exact rational number  
fraction? | fraction, as pair  
grob-list? | list of grobs  
index? | non-negative, exact integer  
index-or-markup? | index or markup  
key? | index or symbol  
key-list? | list of indices or symbols  
key-list-or-music? | key list or music  
key-list-or-symbol? | key list or symbol  
ly:skyline-pair? | pair of skylines  
markup? | markup  
markup-command-list? | markup command list  
markup-list? | markup list  
moment-pair? | pair of moment objects  
musical-length? | non-negative moment with no grace part  
non-negative-number? | non-negative number  
number-list? | number list  
number-or-grob? | number or grob  
number-or-pair? | number or pair  
number-or-string? | number or string  
number-pair? | pair of numbers  
number-pair-list? | list of number pairs  
positive-fraction? | positive, finite fraction, as pair  
positive-musical-length? | positive moment with no grace part  
positive-number? | positive number  
rational-or-procedure? | an exact rational or procedure  
rhythmic-location? | rhythmic location  
scale? | non-negative rational, fraction, or moment  
scheme? | any type  
string-or-music? | string or music  
string-or-pair? | string or pair  
string-or-symbol? | string or symbol  
symbol-key-alist? | alist, with symbols as keys  
symbol-list? | symbol list  
symbol-list-or-music? | symbol list or music  
symbol-list-or-symbol? | symbol list or symbol  
void? | void

### LilyPond exported predicates

These predicates are only available within LilyPond and usually defined in C++.

<table>
<thead>
<tr>
<th>Type predicate</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ly:context?</td>
<td>context</td>
</tr>
<tr>
<td>ly:context-def?</td>
<td>context definition</td>
</tr>
<tr>
<td>ly:context-mod?</td>
<td>context modification</td>
</tr>
<tr>
<td>ly:dimension?</td>
<td>dimension, in staff space</td>
</tr>
<tr>
<td>ly:dir?</td>
<td>direction</td>
</tr>
<tr>
<td>ly:dispatcher?</td>
<td>dispatcher</td>
</tr>
</tbody>
</table>
Appendix A: Notation manual tables

<table>
<thead>
<tr>
<th>Command</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ly:duration?</td>
<td>duration</td>
</tr>
<tr>
<td>ly:event?</td>
<td>post-event</td>
</tr>
<tr>
<td>ly:font-metric?</td>
<td>font metric</td>
</tr>
<tr>
<td>ly:grob?</td>
<td>graphical (layout) object</td>
</tr>
<tr>
<td>ly:grob-array?</td>
<td>array of grobs</td>
</tr>
<tr>
<td>ly:grob-properties?</td>
<td>grob properties</td>
</tr>
<tr>
<td>ly:input-location?</td>
<td>input location</td>
</tr>
<tr>
<td>ly:item?</td>
<td>item</td>
</tr>
<tr>
<td>ly:iterator?</td>
<td>iterator</td>
</tr>
<tr>
<td>ly:lily-lexer?</td>
<td>lily-lexer</td>
</tr>
<tr>
<td>ly:lily-parser?</td>
<td>lily-parser</td>
</tr>
<tr>
<td>ly:listener?</td>
<td>listener</td>
</tr>
<tr>
<td>ly:moment?</td>
<td>moment</td>
</tr>
<tr>
<td>ly:music?</td>
<td>music</td>
</tr>
<tr>
<td>ly:music-function?</td>
<td>music function</td>
</tr>
<tr>
<td>ly:music-list?</td>
<td>list of music objects</td>
</tr>
<tr>
<td>ly:music-output?</td>
<td>music output</td>
</tr>
<tr>
<td>ly:note-scale?</td>
<td>note scale</td>
</tr>
<tr>
<td>ly:otf-font?</td>
<td>OpenType font</td>
</tr>
<tr>
<td>ly:output-def?</td>
<td>output definition</td>
</tr>
<tr>
<td>ly:page-marker?</td>
<td>page marker</td>
</tr>
<tr>
<td>ly:pango-font?</td>
<td>Pango font</td>
</tr>
<tr>
<td>ly:paper-system?</td>
<td>paper-system Prob</td>
</tr>
<tr>
<td>ly:pitch?</td>
<td>pitch</td>
</tr>
<tr>
<td>ly:prob?</td>
<td>property object</td>
</tr>
<tr>
<td>ly:score?</td>
<td>score</td>
</tr>
<tr>
<td>ly:skyline?</td>
<td>skyline</td>
</tr>
<tr>
<td>ly:source-file?</td>
<td>source file</td>
</tr>
<tr>
<td>ly:spanner?</td>
<td>spanner</td>
</tr>
<tr>
<td>ly:spring?</td>
<td>spring</td>
</tr>
<tr>
<td>ly:stencil?</td>
<td>stencil</td>
</tr>
<tr>
<td>ly:stream-event?</td>
<td>stream event</td>
</tr>
<tr>
<td>ly:transform?</td>
<td>coordinate transform</td>
</tr>
<tr>
<td>ly:translator?</td>
<td>translator</td>
</tr>
<tr>
<td>ly:translator-group?</td>
<td>translator group</td>
</tr>
<tr>
<td>ly:unpure-pure-container?</td>
<td>unpure/pure container</td>
</tr>
</tbody>
</table>
## Appendix B Cheat sheet

<table>
<thead>
<tr>
<th>Syntax</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 2 8 16</td>
<td>durations</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>c4. c4..</td>
<td>augmentation dots</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>c d e f g a b</td>
<td>scale</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>fis bes</td>
<td>alteration</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>\clef treble \clef bass</td>
<td>clefs</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>\time 3/4 \time 4/4</td>
<td>time signature</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>r4 r8</td>
<td>rest</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>d ~ d</td>
<td>tie</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>\key es \major</td>
<td>key signature</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>note'</td>
<td>raise octave</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
<tr>
<td>note,</td>
<td>lower octave</td>
<td><img src="https://example.com" alt="Example" /></td>
</tr>
</tbody>
</table>
Appendix B: Cheat sheet

\begin{align*}
&\text{\(c(\text{d e})\)} & \text{slur} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{slur.png}
\end{figure}
\end{array}
\\
&\text{c\( (c\text{ (d e)})\)} & \text{phrasing slur} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{phrasing_slur.png}
\end{figure}
\end{array}
\\
&\text{a8[ b]} & \text{beam} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{beam.png}
\end{figure}
\end{array}
\\
&\text{<< \texttt{\textbackslash new \textbackslash Staff . . . >>}} & \text{more staves} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{more_staves.png}
\end{figure}
\end{array}
\\
&\text{c\( \rightarrow \text{c\textendash}.\)} & \text{articulations} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{articulations.png}
\end{figure}
\end{array}
\\
&\text{c2\textbackslash mf c\textbackslash sfz} & \text{dynamics} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{dynamics.png}
\end{figure}
\end{array}
\\
&\text{a\textless a a\textgreater !} & \text{crescendo} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{crescendo.png}
\end{figure}
\end{array}
\\
&\text{a\textgreater a a\textless !} & \text{decrescendo} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{decrescendo.png}
\end{figure}
\end{array}
\\
&\text{<>} & \text{chord} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{chord.png}
\end{figure}
\end{array}
\\
&\text{\textbackslash partial 8} & \text{pick up / upbeat} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{pickup_upbeat.png}
\end{figure}
\end{array}
\\
&\text{\textbackslash tuplet 3/2 \{f g a\}} & \text{triplets} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{triplets.png}
\end{figure}
\end{array}
\\
&\text{\textbackslash grace} & \text{grace notes} & \begin{array}{c}
\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{grace_notes.png}
\end{figure}
\end{array}
\end{align*}
\lyricmode{twinkle} \quad \text{entering lyrics} \quad \text{twinkle}

\new Lyrics \quad \text{printing lyrics} \quad \text{twinkle}

twin -- kle \quad \text{lyric hyphen} \quad \text{twin - kle}

\chordmode{c:dim,f:maj7} \quad \text{chords}

\new ChordNames \quad \text{printing chord names} \quad C^\circ \ F^\natural

{"e f} \ \{c d}\} \quad \text{polyphony}

s4 s8 s16 \quad \text{spacer rests}
Appendix C  GNU Free Documentation License

Version 1.3, 3 November 2008

https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document free in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The “Document”, below, refers to any such manual or work. You accept the license if you copy, modify or distribute the work in a way requiring permission under copyright law.
A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.
The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.
A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both
covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties—for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice.
Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See https://www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently authorizes you to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server that publishes copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as future copyleft versions of that license published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were first published under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.
ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
"with...Texts." line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.
Appendix D LilyPond command index

This index lists all the LilyPond commands and keywords with links to those sections of the manual that describe or discuss their use.

! .............................................. 6
\! ............................................. 143

''
" " ........................................... 126

% 539, 544
%{ ... %} .................................. 539, 544
,
,' ............................................. 1

( 153
\( ........................................ 157
)
) ............................................. 153
\) ........................................... 157

, ............................................. 1

\_ 140, 493, 698
\_! ........................................... 833
\_+ .......................................... 834
\_- ........................................... 833
\_\_ ......................................... 833
\_\_> ......................................... 833
\_< ........................................... 833
\_< ........................................... 833

\.

/ 473
// ........................................ 473
/* ....................................... 473
:

< 195
\< ........................................ 143
\< ........................................ 195
\< .......................................... 196, 381

== 10
\= ........................................... 154, 861

> 195
\> ........................................... 143

? 6

[ 103
\[ ........................................ 497
]
] ............................................. 103
\] ........................................... 497

^ 472, 698

_ 322, 698

\_ ........................................... 126
\_ ........................................... 58
Appendix D: LilyPond command index

C
\cadenzaOff ........................................ 82
\cadenzaOn ........................................ 82
\caesura ...................................... 70, 71, 117, 376, 509, 518, 848
\caps ............................................ 764
\cavum .......................................... 511, 515
\center-align .................................... 300, 775
\center-column ................................ 302, 775
\change .......................................... 611
\char ............................................ 821
\check-visibility ................................ 611, 863
\choral ........................................... 32
\choral-cautionary ................................ 32
\chordChanges .................................. 436, 476
\ChordGrid ....................................... 482
\chordmode ...................................... 6, 14, 430, 537
\chordNameExceptions ............................ 477
\chordNameLowercaseMinor ....................... 477
\ChordNames ..................................... 430
\chordNameSeparator .............................. 478, 481
\chordNoteName ................................ 478
\chordPrefixName ................................ 479
\chordRepeats .................................. 399, 848
\chordRootName ................................ 478
\chords .......................................... 475, 537
\circle .......................................... 304, 792
\circulus ....................................... 509, 835
\clef ........................................... 17, 848
\clip-regions .................................. 586, 863
\cm ............................................... 699, 864
\coda ............................................ 140, 801, 834
\codaMark ...................................... 117, 181, 188, 848
\color .......................................... 264
\column ......................................... 302, 776
\column-lines ................................... 829
\combine .......................................... 306, 776
\common-shortest-duration ...................... 645
\Completion_heads_ engraver ..................... 88
\Completion_rest_ engraver ....................... 88
\composer ....................................... 547
\compound-meter ................................ 802
\compoundMeter ................................ 87, 848
\compressEmptyMeasures ......................... 252
\compressMMRests ................................ 66, 68, 252, 849
\concat .......................................... 776
\consists ....................................... 671, 677, 678
\context ......................................... 665, 672
\context-spec- music ............................. 209
\controllipitch ................................ 10
\copyright ....................................... 547
\countPercentRepeats ............................ 191
\cr ............................................. 143
\cresc .......................................... 146
\crescendo-event ................................ 246
\crescendoSpanner ................................ 150
\crescendoText ................................ 150
\crescHairpin ................................... 146
\crescTextCresc ................................ 146
\cross .......................................... 41
\crossStaff ...................................... 386, 849
\cueClef ......................................... 247, 849
\cueClefUnset ................................... 247, 849
\cueDuring ...................................... 247, 849
\cueDuringWithClef ............................... 247, 849
\CueVoice ....................................... 247
\currentBarNumber ................................ 119, 139
\customTabClef .................................. 802

D
\dashBang ........................................ 141
\dashDot ......................................... 141
\dashDash ........................................ 141
\dashHat .......................................... 141
\dashLarger ...................................... 141
\dashPlus ........................................ 141
\dashUnderscore ................................ 141
\deadNote ....................................... 41, 849
\deadNotesOff ................................... 41
\deadNotesOn .................................... 41
\debug-beam-scoring .............................. 616, 864
\debug-slur-scoring .............................. 616, 864
\debug-tie-scoring ............................... 616, 864
\decr ............................................ 143
\decrec .......................................... 146
\decrecendoSpanner ............................... 150
\decrecendoText ................................ 150
\dedication ...................................... 547
\default .......................................... 29, 30
\default .......................................... 127, 558
\default-staff-staff-spacing .................... 629
\defaultChild .................................... 681
\defaultTimeSignature ......................... 73
\defineBarLine ................................... 112, 849
\deminutum ...................................... 511, 515
\denies ........................................... 677, 679, 680
\descendens ..................................... 511, 515
\dim ............................................. 470
\dim ............................................. 146
\dim ............................................. 146
\dimension-variables ................................ 865
\dimHairpin ..................................... 146
\dimTextDecr .................................... 146
\dimTextDim ..................................... 146
\dir-column ..................................... 776
\discount ......................................... 815
\displayLilyMusic ................................ 603, 849
\displayMusic ..................................... 849
\displayScheme .................................... 849
\divisioMaior ................................... 509
\divisioMaxima .................................. 509
\divisioMinima ................................... 509
\dodecaphonic .................................. 34
\dodecaphonic-first .............................. 34
\dodecaphonic-no-repeat ......................... 34
\dorian .......................................... 22
\dotsDown ........................................ 50
Appendix D: LilyPond command index 888

\dotsNeutral ............................................. 50
\dotsup ................................................. 50
\doubleflat ............................................. 802
\doubleslash ............................................ 803
\down ...................................................... 140, 392, 834
\downmordent ........................................... 140, 833
\downright .............................................. 140, 833
\draw-circle ........................................... 306, 792
\draw-dashed-line ..................................... 792
\draw-dotted-line ..................................... 793
\draw-line ............................................. 793
\draw-squiggly-line ................................... 306, 794
\dropNote ................................................ 306, 794
\enslash ................................................ 474, 849
\drummode ............................................... 220, 448, 537
drumPitchNames ........................................ 453
drumPitchTable ......................................... 454
\drums .................................................... 448, 537
\DrumStaff .............................................. 220
drumStyleTable ......................................... 453
\dnw ...................................................... 527
\dynamic ............................................... 151, 764
dynamic-event ......................................... 246
\dynamicBefore ......................................... 146
\dynamicLineSpanner ................................... 146, 149
\dynamicNeutral ........................................ 146
\dynamicUp .............................................. 146

E
\easyHeadsOff .......................................... 42
\easyHeadsOn .......................................... 42
\ellipse ................................................. 795
\EnableGregorianDivisiones ............................ 861
\enablePolymer ......................................... 850
\endcr .................................................... 143
\enddec ................................................... 143
\endSpanners ........................................... 708, 850
\Engraver_group ....................................... 678
\episemFinis ........................................... 509
\epsfile .................................................. 306, 795
\espressivo .......................................... 140, 145, 834
\etc ....................................................... 296, 580
evenFooterMarkups ..................................... 865
evenHeaderMarkups ..................................... 865
\eventChords .......................................... 850
\expandEmptyMeasures .................................. 252
\explicitClefVisibility ................................ 712
\explicitKeySignatureVisibility ....................... 712
\extra-offset .......................................... 629
\extra-spacing-height .................................. 650
\extra-spacing-width ................................... 650
\eyes ..................................................... 821
\Ez_numbers_engraver .................................. 42

F
\f .......................................................... 143
\featherDurations ....................................... 143
\fermata ............................................... 71, 140, 803, 834
\fff ..................................................... 143
\ffff .................................................... 143
\fff ..................................................... 143
\figured-bass ......................................... 765
\figuredBassAlterationDirection ....................... 488
\figuredBassPlusDirection ................................ 488
\figuredBassPlusStrokedList .......................... 489
\figuremode ............................................. 486, 537
\figures ............................................... 486, 537
\fill-line ............................................... 509
\fill-with-pattern ...................................... 570, 778
\filled-box ............................................. 306, 795
\finalis .................................................. 509
\fine .................................................... 117, 132, 176, 178, 518
\finger .................................................. 258, 765, 850
\fingerOrientations ..................................... 259
\first-page-number ..................................... 614, 865
\first-visible .......................................... 821
\fixed ..................................................... 2, 850
\flageolet .............................................. 140, 834
\flat ..................................................... 803
\flexa .................................................... 516
\followVoice ............................................ 385
\font-interface ......................................... 258
\font-size .............................................. 254, 258
\fontCaps ................................................ 765
\fonts ................................................... 312
\fontSize ............................................... 254
\fontsize ................................................. 297, 765
\footnote ............................................... 557, 821, 850
\footnote-footer-paddings ................................ 865
\footnote-number-raise .................................. 865
\footnote-numbering-function .......................... 865
\footnote-paddings ....................................... 865
\footnote-separator-markup ............................. 616, 865
\ forb_line_break_engraver ................................ 56
\forget ................................................... 35
\four-string-banjo ..................................... 447
\fp ....................................................... 143
\fraction ................................................ 822
\freeBass .............................................. 816
\frenchChords .......................................... 477
\fret-diagram .......................................... 419, 810
\fret-diagram-interactive ................................ 426
\fret-diagram-terse .................................... 422, 811
\fret-diagram-verbose .................................. 423, 812
\FretBoards ........................................... 428
\fromproperty .......................................... 822
\funkHeads ............................................. 44
\funkHeadsMinor ....................................... 44
Appendix D: LilyPond command index

G
\general-align 301, 778
\germanChords 477
glide 260
\glissando 160
\glissandoMap 161
\grace 133, 850
GregorianTranscriptionStaff 220
Grid_line_span_engraver 275
Grid_point_engraver 275
grobidirectional 844
\grobdirection 106
\glissandoMap 889

H
\halfopen 140, 453, 834
\halfline 300, 779
\harmonic 41, 393, 401
\harmonicByFret 401, 850
\harmonicByRatio 401, 851
\harmonicNote 851
\harmonicsOff 393
\harmonicsOn 393, 851
\harp-pedal 813
\haydnturn 140, 833
\hBracket 304, 795
\hcenter-in 780
\header 542
\henzelongfermata 140, 834
\henshorthermata 140, 834
\hide 709, 851
\hideKeySignature 459
\hideNotes 263
\hideSplitTiedTabNotes 400
\hideStaffSwitch 385
horizontal-shift 612, 865
Horizontal_bracket_engraver 277
HorizontalBracketText 278
\hspace 300, 780
\huge 254, 299, 766
\in 699, 865
\in-context 47, 90
\improvisationOff 47, 90
\improvisationOn 47, 90
in 699, 865
in-note-direction 566
in-note-padding 566, 865
in-note-system-padding 566, 865
\incipit 519, 851
incipit-width 866
\incipit-width 511, 851
\incline 544, 570
\include 241, 612, 653, 866
\inherit-acceptability 678, 851
\initialContextFrom 851
inner-margin 612, 866
\inStaffSegno 117, 118, 188, 851
instrument 547
\instrumentSwitch 851
\inversion 14, 851
invertChords 474, 851
\ionian 22
is-last-bookpart 866
\italianChords 477
\italic 297, 766
\jump 189, 852
\justified-lines 293, 829
\justify 303, 781
\justify-field 781
\justify-line 782
\justify-string 782
\keepAliveInterfaces 236
\keepWithTag 573, 852
\key 21, 44, 852
\kievanOff 517
\kievanOn 517
\kievanStaff 516
\kievanVoice 516
\killCues 251, 852

K
\label 568, 852
label-align 866
label-align-table 866
\laissezVibrer 59
landscape 866
language 852
\languageRestore 852
\languageSaveAndChange 852
large 254, 299, 766
\larger 297, 299, 766
last-bottom-spacing 610, 866
\layout 542, 616, 663, 672
layout-set-staff-size 618
\left-align 300, 783
\left-brace 822
\left-column 783
left-margin 611, 866
\lheel 140, 834
\ligature 852
\line 784
\line 866
line-thickness 303, 611, 653, 866
\linea 511, 515
\lineprall 140, 833
\locr 22
\longa 49, 62
\longfermata 140, 834
\lup 823
lower 301, 784
\ltoe 140, 834
Appendix D: LilyPond command index

M

m ........................................... 470
magnification->font-size .................. 254, 618
\magnify ................................ 297, 766
\magnifyMusic .......................... 254, 852
\magnifyStaff .......................... 618, 852
magstep .................................. 254, 618, 699
\major ...................................... 470
\major ...................................... 22
majorSevenSymbol ......................... 478, 480
make-dynamic-script ...................... 478, 152
make-footer ................................ 867
make-header ................................ 867
make-relative ............................. 582
\makeClusters ........................... 200, 852
\makeDefaultStringTuning ............... 852
\marcato .................................. 140, 833
\mark ...................................... 127, 287, 852
Mark-engraver ........................... 128
\markalphabet ........................... 823
\markLengthOff .......................... 79, 289
\markLengthOn .......................... 79, 289
\markletter ............................. 823
\markup .................................. 281, 287, 291, 292, 293, 538
markup-markup-spacing .................. 610, 867
markup-system-spacing .................. 610, 867
\markuplist ................................ 292, 295
\markupspace ................................ 853
max-systems-per-page .................... 613, 867
\maxima ................................... 49, 62
Measure_grouping_engraver ............... 100
measureBarType .......................... 116
measureLength .......................... 95, 139
measurePosition ......................... 81, 139
\melisma .................................. 322
\melismaEnd ................................ 322
MensuralStaff ............................ 220, 499
MensuralVoice ................................ 499
\mergeDifferentlyDottedOn ............... 206
\mergeDifferentlyDottedOff ............ 206
\mergeDifferentlyHeadedOn ............. 206
\mergeDifferentlyHeadedOff ............ 206
meter ...................................... 547
\mf ........................................ 143
\midi ...................................... 542, 663
midiBalance ................................ 600
midiChannelMapping ...................... 597
midiChorusLevel .......................... 600
midiDrumPitches .......................... 454
midiExpression .......................... 600
midiPanPosition .......................... 600
midiReverbLevel .......................... 600

min-systems-per-page .................... 613, 867
minimum-Y-extent ......................... 629
minimumFret ............................. 398, 441
minimumPageTurnLength .................. 627
minimumRepeatLengthForPageTurn ....... 628
\minor ..................................... 22
minorChordModifier ...................... 479
mixed ...................................... 388
\mixolydian ................................ 22
\mm ........................................ 699, 867
\modalInversion ......................... 16, 853
\modalTranspose ......................... 15, 853
modern .................................... 31
modern-cautionary ....................... 31
modern-voice ................................ 31
modern-voice-cautionary .................. 33
mordent ................................... 140, 833
\mp ........................................ 143
\multi-measure-rest-by-number .......... 803
MultiMeasureRestScript .................. 67
MultiMeasureRestText .................... 67
\musicglyph ................................ 804
\musicLength ............................. 853
\musicMap .................................. 853
musicQuotes ............................. 845

N

\n .......................................... 143
\name ....................................... 677
\natural .................................... 804
neo-modern ................................ 33
\neo-modern ................................ 33
\neo-modern-cautionary ................... 33
\neo-modern-voice ........................ 33
\neo-modern-voice-cautionary .......... 33
\new ........................................ 665
\newSpacingSection ....................... 646
no-reset ................................... 34
\noBeam .................................... 104
\noBreak ................................... 621
noChordSymbol ........................... 476
\nonstaff-nonstaff-spacing .............. 629
\nonstaff-relatedstaff-spacing ......... 629
no.staff-relatedstaff-spacing .......... 629
\nonstaff-unrelatedstaff-spacing ...... 629
\noPageBreak ............................. 625, 853
\noPageTurn ............................... 628, 853
\normal-size-sub ......................... 767
\normal-size-super ....................... 298, 767
\normal-text ................................ 767
\normal-weight ........................... 768
\normalsize ................................ 254, 299, 768
\note ....................................... 804
\note-by-number .......................... 805
note-event ............................... 246
Note_heads_engraver ........................ 88
Note_name_engraver ....................... 272
\notemode .................................. 538
\noteNameFunction ........................ 272
\NoteNames ................................ 272
\noteNameSeparator ....................... 272
\null ....................................... 301, 823
\nullVoice .................................. 346
\number ..................................... 768
\number-footnote-table ................... 867
### Appendix D: LilyPond command index

<table>
<thead>
<tr>
<th>Command</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>\octaveCheck</code></td>
<td>10, 853</td>
</tr>
<tr>
<td><code>\oddFooterMarkup</code></td>
<td>867</td>
</tr>
<tr>
<td><code>\oddHeaderMarkup</code></td>
<td>867</td>
</tr>
<tr>
<td><code>\offset</code></td>
<td>691, 853</td>
</tr>
<tr>
<td><code>\omit</code></td>
<td>708, 853</td>
</tr>
<tr>
<td><code>\on-the-fly</code></td>
<td>682, 693, 701, 853</td>
</tr>
<tr>
<td><code>\OneStaff</code></td>
<td>223</td>
</tr>
<tr>
<td><code>\oneVoice</code></td>
<td>201</td>
</tr>
<tr>
<td><code>\opn</code></td>
<td>140, 392, 457, 834</td>
</tr>
<tr>
<td><code>\opns</code></td>
<td>547</td>
</tr>
<tr>
<td><code>\orsicus</code></td>
<td>511, 515</td>
</tr>
<tr>
<td><code>\orphan-penalty</code></td>
<td>867</td>
</tr>
<tr>
<td><code>\ottavation-number</code></td>
<td>24, 854</td>
</tr>
<tr>
<td><code>\ottavation-numbers</code></td>
<td>24</td>
</tr>
<tr>
<td><code>\ottavation-ordinals</code></td>
<td>24</td>
</tr>
<tr>
<td><code>\ottavation-simple-ordinals</code></td>
<td>24</td>
</tr>
<tr>
<td><code>\ottavationMarkups</code></td>
<td>24</td>
</tr>
<tr>
<td><code>\outer-margin</code></td>
<td>612, 867</td>
</tr>
<tr>
<td><code>\output-count</code></td>
<td>845</td>
</tr>
<tr>
<td><code>\output-def</code></td>
<td>844</td>
</tr>
<tr>
<td><code>\output-file-name</code></td>
<td>541, 867</td>
</tr>
<tr>
<td><code>\output-scale</code></td>
<td>867</td>
</tr>
<tr>
<td><code>\output-suffix</code></td>
<td>541, 845, 868</td>
</tr>
<tr>
<td><code>\outside-staff-horizontal-padding</code></td>
<td>643</td>
</tr>
<tr>
<td><code>\outside-staff-padding</code></td>
<td>643</td>
</tr>
<tr>
<td><code>\outside-staff-priority</code></td>
<td>643</td>
</tr>
<tr>
<td><code>\oval</code></td>
<td>796</td>
</tr>
<tr>
<td><code>\overlay</code></td>
<td>784</td>
</tr>
<tr>
<td><code>\override</code></td>
<td>686, 688, 824</td>
</tr>
<tr>
<td><code>\override-lines</code></td>
<td>829</td>
</tr>
<tr>
<td><code>\overrideProperty</code></td>
<td>689, 854</td>
</tr>
<tr>
<td><code>\overrideTimeSignatureSettings</code></td>
<td>73, 854</td>
</tr>
<tr>
<td><code>\overtie</code></td>
<td>769</td>
</tr>
<tr>
<td><code>\parallelMusic</code></td>
<td>217, 854</td>
</tr>
<tr>
<td><code>\parenthesize</code></td>
<td>269, 796, 854</td>
</tr>
<tr>
<td><code>\partCombine</code></td>
<td>212, 346, 855</td>
</tr>
<tr>
<td><code>\partCombineApart</code></td>
<td>214</td>
</tr>
<tr>
<td><code>\partCombineAutomatic</code></td>
<td>214</td>
</tr>
<tr>
<td><code>\partCombineChords</code></td>
<td>214</td>
</tr>
<tr>
<td><code>\partCombineDown</code></td>
<td>855</td>
</tr>
<tr>
<td><code>\partCombineForce</code></td>
<td>855</td>
</tr>
<tr>
<td><code>\partCombineListener</code></td>
<td>845</td>
</tr>
<tr>
<td><code>\partCombineSolo</code></td>
<td>214</td>
</tr>
<tr>
<td><code>\partCombineSoloII</code></td>
<td>214</td>
</tr>
<tr>
<td><code>\partCombineUnisono</code></td>
<td>214</td>
</tr>
<tr>
<td><code>\partCombineUp</code></td>
<td>855</td>
</tr>
<tr>
<td><code>\partial</code></td>
<td>81, 172, 855</td>
</tr>
<tr>
<td><code>\path</code></td>
<td>797</td>
</tr>
<tr>
<td><code>\pattern</code></td>
<td>824</td>
</tr>
<tr>
<td><code>\pedalSustainStyle</code></td>
<td>388</td>
</tr>
<tr>
<td><code>\percent</code></td>
<td>190</td>
</tr>
<tr>
<td><code>\performer_group</code></td>
<td>679</td>
</tr>
<tr>
<td><code>\pes</code></td>
<td>516</td>
</tr>
<tr>
<td><code>\phrasingSlurDashed</code></td>
<td>157</td>
</tr>
<tr>
<td><code>\phrasingSlurDashPattern</code></td>
<td>158, 855</td>
</tr>
<tr>
<td><code>\phrasingSlurDotted</code></td>
<td>157</td>
</tr>
<tr>
<td><code>\phrasingSlurDown</code></td>
<td>157</td>
</tr>
<tr>
<td><code>\phrasingSlurHalfDashed</code></td>
<td>158</td>
</tr>
<tr>
<td><code>\phrasingSlurHalfDotted</code></td>
<td>158</td>
</tr>
<tr>
<td><code>\phrasingSlurNeutral</code></td>
<td>157</td>
</tr>
<tr>
<td><code>\phrasingSlurSolid</code></td>
<td>157</td>
</tr>
<tr>
<td><code>\phrasingSlurUp</code></td>
<td>157</td>
</tr>
<tr>
<td><code>\phrygian</code></td>
<td>22</td>
</tr>
<tr>
<td><code>\piano</code></td>
<td>32</td>
</tr>
<tr>
<td><code>\piano-cautionary</code></td>
<td>32</td>
</tr>
<tr>
<td><code>\PianoStaff</code></td>
<td>380, 838</td>
</tr>
<tr>
<td><code>\piece</code></td>
<td>547</td>
</tr>
<tr>
<td><code>\pitch_squash_enraver</code></td>
<td>90</td>
</tr>
<tr>
<td><code>\pitchedTrill</code></td>
<td>169, 855</td>
</tr>
<tr>
<td><code>\pitchnames</code></td>
<td>845</td>
</tr>
<tr>
<td><code>\poet</code></td>
<td>547</td>
</tr>
<tr>
<td><code>\pp</code></td>
<td>143</td>
</tr>
<tr>
<td><code>\ppp</code></td>
<td>143</td>
</tr>
<tr>
<td><code>\pppp</code></td>
<td>143</td>
</tr>
<tr>
<td><code>\ppppp</code></td>
<td>143</td>
</tr>
<tr>
<td><code>\prall</code></td>
<td>140, 833</td>
</tr>
<tr>
<td><code>\pralldown</code></td>
<td>140, 833</td>
</tr>
<tr>
<td><code>\pralmordent</code></td>
<td>140, 833</td>
</tr>
<tr>
<td><code>\prallprall</code></td>
<td>140, 833</td>
</tr>
<tr>
<td><code>\prallup</code></td>
<td>140, 833</td>
</tr>
<tr>
<td><code>\preBend</code></td>
<td>403, 856</td>
</tr>
<tr>
<td><code>\preBendHold</code></td>
<td>403, 856</td>
</tr>
<tr>
<td><code>\predefinedDiagramTable</code></td>
<td>437</td>
</tr>
<tr>
<td><code>\predefinedFretboardsOff</code></td>
<td>439</td>
</tr>
<tr>
<td><code>\predefinedFretboardsOn</code></td>
<td>439</td>
</tr>
<tr>
<td><code>\print-all-headers</code></td>
<td>615, 868</td>
</tr>
<tr>
<td><code>\print-first-page-number</code></td>
<td>614, 869</td>
</tr>
<tr>
<td><code>\print-page-number</code></td>
<td>614, 869</td>
</tr>
<tr>
<td><code>\printAccidentalNames</code></td>
<td>272</td>
</tr>
<tr>
<td><code>\printNotesLanguage</code></td>
<td>272</td>
</tr>
<tr>
<td><code>\printOctaveNames</code></td>
<td>272</td>
</tr>
<tr>
<td><code>\property-defaults</code></td>
<td>820</td>
</tr>
<tr>
<td><code>\property-recursive</code></td>
<td>825</td>
</tr>
<tr>
<td>Command</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>x11-color</td>
<td>264, 266, 740</td>
</tr>
<tr>
<td>X-Offset</td>
<td></td>
</tr>
<tr>
<td>\xNote</td>
<td></td>
</tr>
<tr>
<td>\xNotesOff</td>
<td></td>
</tr>
<tr>
<td>\xNotesOn</td>
<td></td>
</tr>
</tbody>
</table>
Appendix E  LilyPond index

In addition to all the LilyPond commands and keywords, this index lists musical terms and words that relate to each of them, with links to those sections of the manual that describe or discuss that topic.

! .......................... 6
\! ................................ 143

" ................................ 126

% .......................... 539, 544
% ... % .......................... 539, 544
,
,' ................................ 1

( ................................ 153
\( ................................ 157
)
) ................................ 153
\) ................................ 157
,
' ................................ 1

< .......................... 195
\< ................................ 143
<...> ................................ 195
\<> ................................ 196, 381

= ................................ 10
\= ................................ 154, 861

> ................................ 195
\> ................................ 143

? .......................... 6
\? ................................ 103
\[ ................................ 497
\] ................................ 103
\] ................................ 497
\^ ................................ 472, 698

\_ ................................ 472, 698
\~ ................................ 322, 698
\| ................................ 126
\| ................................ 58

1
\15ma ...................... 15ma
\15mb ...................... 15mb

8
\8va ...................... 8va
\8vb ...................... 8vb


<table>
<thead>
<tr>
<th>\book, and variables</th>
<th>540</th>
</tr>
</thead>
<tbody>
<tr>
<td>book-title</td>
<td>863</td>
</tr>
<tr>
<td>book-title-properties</td>
<td>863</td>
</tr>
<tr>
<td>bookmarks</td>
<td>567, 568</td>
</tr>
<tr>
<td>\bookOutputName</td>
<td>848</td>
</tr>
<tr>
<td>\bookOutputSuffix</td>
<td>848</td>
</tr>
<tr>
<td>\bookpart</td>
<td>540, 542, 625</td>
</tr>
<tr>
<td>\bookpart, and \layout</td>
<td>541</td>
</tr>
<tr>
<td>\bookpart, and variables</td>
<td>540</td>
</tr>
<tr>
<td>bookpart-level-page-numbering</td>
<td>614, 863</td>
</tr>
<tr>
<td>bottom-margin</td>
<td>608, 863</td>
</tr>
<tr>
<td>bounding box</td>
<td>700</td>
</tr>
<tr>
<td>bounding box, of glyph</td>
<td>828</td>
</tr>
<tr>
<td>bowing indication</td>
<td>392</td>
</tr>
<tr>
<td>bowing, down</td>
<td>140, 834</td>
</tr>
<tr>
<td>bowing, up</td>
<td>140, 834</td>
</tr>
<tr>
<td>\box</td>
<td>304, 763</td>
</tr>
<tr>
<td>\bp</td>
<td>699, 863</td>
</tr>
<tr>
<td>brace, at start of single staff</td>
<td>224</td>
</tr>
<tr>
<td>brace, in markup</td>
<td>822</td>
</tr>
<tr>
<td>brace, nesting of</td>
<td>226</td>
</tr>
<tr>
<td>brace, vertical</td>
<td>221</td>
</tr>
<tr>
<td>bracket</td>
<td>269, 277</td>
</tr>
<tr>
<td>\bracket</td>
<td>151, 304, 791</td>
</tr>
<tr>
<td>bracket, angle</td>
<td>195</td>
</tr>
<tr>
<td>bracket, at start of single staff</td>
<td>224</td>
</tr>
<tr>
<td>bracket, cross-staff</td>
<td>387</td>
</tr>
<tr>
<td>bracket, horizontal</td>
<td>277</td>
</tr>
<tr>
<td>bracket, nesting of</td>
<td>226</td>
</tr>
<tr>
<td>bracket, phrasing</td>
<td>277</td>
</tr>
<tr>
<td>bracket, phrasing, with label</td>
<td>278</td>
</tr>
<tr>
<td>bracket, square, at start of staff group</td>
<td>224</td>
</tr>
<tr>
<td>bracket, vertical</td>
<td>221</td>
</tr>
<tr>
<td>bracket, vertical, marking divided voices</td>
<td>358</td>
</tr>
<tr>
<td>bracket, volta</td>
<td>186</td>
</tr>
<tr>
<td>\break</td>
<td>621</td>
</tr>
<tr>
<td>break align symbol</td>
<td>649</td>
</tr>
<tr>
<td>break, in unmetered music</td>
<td>83</td>
</tr>
<tr>
<td>break-align-symbols</td>
<td>718</td>
</tr>
<tr>
<td>break-visibility</td>
<td>710</td>
</tr>
<tr>
<td>breakable</td>
<td>93</td>
</tr>
<tr>
<td>breakable glissando</td>
<td>163</td>
</tr>
<tr>
<td>breakbefore</td>
<td>550</td>
</tr>
<tr>
<td>\breakDynamicSpan</td>
<td>150</td>
</tr>
<tr>
<td>breaking lines</td>
<td>621</td>
</tr>
<tr>
<td>breaking pages</td>
<td>653</td>
</tr>
<tr>
<td>breath mark</td>
<td>159</td>
</tr>
<tr>
<td>breath mark symbol, changing</td>
<td>159</td>
</tr>
<tr>
<td>breath mark symbol, list of</td>
<td>835</td>
</tr>
<tr>
<td>\breathe</td>
<td>159, 848</td>
</tr>
<tr>
<td>\breve</td>
<td>49, 62</td>
</tr>
<tr>
<td>breve note, alternative style</td>
<td>50</td>
</tr>
<tr>
<td>breve rest</td>
<td>62</td>
</tr>
<tr>
<td>broken chord</td>
<td>165</td>
</tr>
<tr>
<td>broken spanner, modifying</td>
<td>700</td>
</tr>
</tbody>
</table>

C

C clef .................................................. 17, 759
Cabra .................................................. 385
cadenza ............................................... 82, 138
cadenza, accidentals .................................. 82
cadenza, aligning to .................................. 82
cadenza, bar lines ................................... 82
cadenza, bar numbers ................................ 82
cadenza, beams ....................................... 82
cadenza, line breaks ................................ 83
cadenza, page breaks ................................ 83
caeura .................................................. 70
\caensura .............................................. 70, 71, 117, 376, 509, 518, 848
caeura bar line ....................................... 117
caeura bar line, in hymns ................................ 376
caeura bar line, in Kievan chant ........................ 518
callback .................................................. 843
canticle .................................................. 367, 372
capo ...................................................... 764
cap ......................................................... 6
cavenous .................................................. 511, 515
\center-align .......................................... 300, 775
\center-column ......................................... 302, 775
centered dynamics in piano music .......................... 380
centering column of text ................................ 775
centering text on page .................................. 303
centimeter (cm) .......................................... 699
\change ................................................... 381
c change number of augmentation dots ....................... 50
c change tempo without metronome mark .................... 80
c change tuplet number .................................. 53
c changing breath mark symbol ................................ 159
c changing chord separator ................................ 481
c changing direction of text column ....................... 776
c changing font .......................................... 297
cchanging instrument name ................................ 242
c changing properties ................................... 685, 690
c changing staff automatically ........................... 383
c changing staff manually ................................ 381
cchant ...................................................... 367, 372
\char .................................................... 821
character name ......................................... 360
chart, fingering ........................................ 457
check mark ............................................... 159
check-consistency ....................................... 611, 863
Chinese cymbal .......................................... 835
choir staff ............................................. 221
choral .................................................... 32
choral accidental style .................................. 32
choral tenor clef ...................................... 17
choral-cautinary ........................................ 32
choral-cautionary accidental style ......................... 32
chor ...................................................... 195, 469, 474
chor diagram ............................................. 418, 428
chor diagram, automatic ................................ 439
chor grid .................................................. 482
chor inversion ........................................... 474
chor mode .................................................. 469
chor name .................................................. 469, 474
chor name, with fret diagrams ................................ 430
chor names, exceptions .................................. 479
<table>
<thead>
<tr>
<th>Command</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>\compoundMeter</td>
<td>87, 848</td>
</tr>
<tr>
<td>\compressEmptyMeasures</td>
<td>252</td>
</tr>
<tr>
<td>compressing music</td>
<td>57</td>
</tr>
<tr>
<td>\compressMMRests</td>
<td>66, 68, 252, 849</td>
</tr>
<tr>
<td>\concat</td>
<td>776</td>
</tr>
<tr>
<td>concatenating text</td>
<td>776</td>
</tr>
<tr>
<td>condensing rests</td>
<td>70</td>
</tr>
<tr>
<td>conducting signs</td>
<td>100</td>
</tr>
<tr>
<td>conga</td>
<td>835</td>
</tr>
<tr>
<td>\consists</td>
<td>671, 677, 678</td>
</tr>
<tr>
<td>constant hairpin</td>
<td>149</td>
</tr>
<tr>
<td>contemporary glissando</td>
<td>161</td>
</tr>
<tr>
<td>\context</td>
<td>665, 672</td>
</tr>
<tr>
<td>context definitions with MIDI</td>
<td>595</td>
</tr>
<tr>
<td>\context in layout block</td>
<td>672</td>
</tr>
<tr>
<td>context property, changing default</td>
<td>672</td>
</tr>
<tr>
<td>context, adding alias</td>
<td>678</td>
</tr>
<tr>
<td>context, creating and referencing</td>
<td>665</td>
</tr>
<tr>
<td>context, defining in MIDI</td>
<td>679</td>
</tr>
<tr>
<td>context, defining new</td>
<td>677</td>
</tr>
<tr>
<td>context, implicit</td>
<td>681</td>
</tr>
<tr>
<td>context, keeping alive</td>
<td>668</td>
</tr>
<tr>
<td>context, layout order</td>
<td>680</td>
</tr>
<tr>
<td>context, lifetime</td>
<td>668</td>
</tr>
<tr>
<td>context, properties</td>
<td>685</td>
</tr>
<tr>
<td>context, Score-level</td>
<td>680</td>
</tr>
<tr>
<td>context-spec-music</td>
<td>209</td>
</tr>
<tr>
<td>contexts, overlaying</td>
<td>223</td>
</tr>
<tr>
<td>continuation, of notes</td>
<td>493</td>
</tr>
<tr>
<td>control pitch</td>
<td>10</td>
</tr>
<tr>
<td>control point, Bézier curve</td>
<td>721</td>
</tr>
<tr>
<td>control point, tweaking</td>
<td>691</td>
</tr>
<tr>
<td>controlling general text alignment</td>
<td>778</td>
</tr>
<tr>
<td>controlpitch</td>
<td>10</td>
</tr>
<tr>
<td>copyright</td>
<td>547</td>
</tr>
<tr>
<td>copyright sign</td>
<td>585</td>
</tr>
<tr>
<td>count visibility of percent repeats</td>
<td>191</td>
</tr>
<tr>
<td>counter, percent repeat</td>
<td>191</td>
</tr>
<tr>
<td>countPercentRepeats</td>
<td>191</td>
</tr>
<tr>
<td>cowbell</td>
<td>835</td>
</tr>
<tr>
<td>\cr</td>
<td>143</td>
</tr>
<tr>
<td>crash cymbal</td>
<td>835</td>
</tr>
<tr>
<td>creating a table</td>
<td>830</td>
</tr>
<tr>
<td>creating empty text object</td>
<td>823</td>
</tr>
<tr>
<td>creating horizontal, in text</td>
<td>780</td>
</tr>
<tr>
<td>creating text fraction</td>
<td>822</td>
</tr>
<tr>
<td>creating vertical space, in text</td>
<td>788, 826</td>
</tr>
<tr>
<td>\cresc</td>
<td>146</td>
</tr>
<tr>
<td>crescendo</td>
<td>143</td>
</tr>
<tr>
<td>crescendo-event</td>
<td>246</td>
</tr>
<tr>
<td>crescendoSpanner</td>
<td>150</td>
</tr>
<tr>
<td>crescentoText</td>
<td>146</td>
</tr>
<tr>
<td>\crescTextCresc</td>
<td>146</td>
</tr>
<tr>
<td>cross</td>
<td>41</td>
</tr>
<tr>
<td>cross note head</td>
<td>41</td>
</tr>
<tr>
<td>cross-staff arpeggio</td>
<td>166</td>
</tr>
<tr>
<td>cross-staff arpeggio bracket</td>
<td>387</td>
</tr>
<tr>
<td>cross-staff beam</td>
<td>381</td>
</tr>
<tr>
<td>cross-staff chord</td>
<td>386</td>
</tr>
<tr>
<td>cross-staff collision</td>
<td>382</td>
</tr>
<tr>
<td>cross-staff line</td>
<td>385</td>
</tr>
<tr>
<td>cross-staff note</td>
<td>381, 386</td>
</tr>
<tr>
<td>cross-staff parenthesis-style arpeggio</td>
<td>168</td>
</tr>
<tr>
<td>crosstaff tremolo</td>
<td>194</td>
</tr>
<tr>
<td>cross-voice arpeggio</td>
<td>167</td>
</tr>
<tr>
<td>\crossStaff</td>
<td>386, 849</td>
</tr>
<tr>
<td>CSS color codes</td>
<td>264</td>
</tr>
<tr>
<td>cue clef</td>
<td>17</td>
</tr>
<tr>
<td>cue note</td>
<td>243, 247</td>
</tr>
<tr>
<td>cue note, formatting</td>
<td>247</td>
</tr>
<tr>
<td>cue note, removing</td>
<td>251</td>
</tr>
<tr>
<td>cue, in vocal score</td>
<td>364</td>
</tr>
<tr>
<td>cue, musical</td>
<td>362</td>
</tr>
<tr>
<td>\cueClef</td>
<td>247, 849</td>
</tr>
<tr>
<td>\cueClefUnset</td>
<td>247, 849</td>
</tr>
<tr>
<td>\cueDuring</td>
<td>247, 849</td>
</tr>
<tr>
<td>\cueDuringWithClef</td>
<td>247, 849</td>
</tr>
<tr>
<td>CueVoice</td>
<td>247</td>
</tr>
<tr>
<td>cueda</td>
<td>35</td>
</tr>
<tr>
<td>currentBarNumber</td>
<td>119, 139</td>
</tr>
<tr>
<td>custodes</td>
<td>498</td>
</tr>
<tr>
<td>custom fret diagram</td>
<td>418, 427</td>
</tr>
<tr>
<td>custom fret diagram, adding</td>
<td>431</td>
</tr>
<tr>
<td>custom fretboard fret diagram</td>
<td>433</td>
</tr>
<tr>
<td>custom metronome mark markup</td>
<td>80</td>
</tr>
<tr>
<td>custom rehearsal mark</td>
<td>128</td>
</tr>
<tr>
<td>custom string tuning</td>
<td>415</td>
</tr>
<tr>
<td>customized fret diagram</td>
<td>426</td>
</tr>
<tr>
<td>customizing chord name</td>
<td>477</td>
</tr>
<tr>
<td>\customTabClef</td>
<td>802</td>
</tr>
<tr>
<td>custos</td>
<td>498</td>
</tr>
<tr>
<td>cymbal, various</td>
<td>835</td>
</tr>
</tbody>
</table>

**D**

D.C. ............................................. 179
D.C., manual .................................. 189
D.S. ........................................... 179
D.S., forced at start ................. 181
D.S., manual ................................. 189
da capo ....................................... 179
da capo, manual ...................... 189
dal segno .................................. 179
dal segno, forced at start ......... 189
dal segno, manual .................. 189
damped note, on fretted instrument | 444

dash patterns, slur .................. 155, 156
\dashBang .................................. 141
\dashDash .................................. 141
\dashDot .................................. 141
dashed phrasing slur ............. 157
dashed slur ......................... 154
dashed tie ................................ 59
\dashHat .................................. 141
\dashLarger ................................ 141
\dashPlus .................................. 141
\dashUnderscore ....................... 141
dead note, percussion .......... 455
\deadNote .................................. 41, 849
\deadNotesOff ......................... 41
\deadNotesOn ......................... 41
debug-beam-scoring .................. 616, 864
debug-slur-scoring .................. 616, 864
debug-tie-scoring .................. 616, 864
debugging, vertical spacing .... 659
decorating text .................... 304
\decr .................................. 143
<table>
<thead>
<tr>
<th>Appendix E: LilyPond index</th>
<th>903</th>
</tr>
</thead>
<tbody>
<tr>
<td>\defaultNoteName</td>
<td>146</td>
</tr>
<tr>
<td>decrescendo</td>
<td>143</td>
</tr>
<tr>
<td>decrescendoSpanner</td>
<td>150</td>
</tr>
<tr>
<td>decrescendoText</td>
<td>150</td>
</tr>
<tr>
<td>dedication</td>
<td>547</td>
</tr>
<tr>
<td>default</td>
<td>29, 30</td>
</tr>
<tr>
<td>defaultAccidentalStyle</td>
<td>29, 30</td>
</tr>
<tr>
<td>defaultBarLine</td>
<td>117</td>
</tr>
<tr>
<td>defaultBarLine, changing</td>
<td>116</td>
</tr>
<tr>
<td>defaultContextProperty, changing</td>
<td>672</td>
</tr>
<tr>
<td>defaultNoteDuration</td>
<td>49</td>
</tr>
<tr>
<td>defaultNoteName</td>
<td>6</td>
</tr>
<tr>
<td>defaultPitch</td>
<td>49</td>
</tr>
<tr>
<td>defaultVerticalDirection (--)</td>
<td>698</td>
</tr>
<tr>
<td>default, offsetting</td>
<td>691</td>
</tr>
<tr>
<td>default-staff-staff-spacing</td>
<td>629</td>
</tr>
<tr>
<td>\defaultChild</td>
<td>681</td>
</tr>
<tr>
<td>\defaultTimeSignature</td>
<td>73</td>
</tr>
<tr>
<td>definePrefixedFretboard</td>
<td>434</td>
</tr>
<tr>
<td>defineBarLine</td>
<td>112, 849</td>
</tr>
<tr>
<td>definingBarLine</td>
<td>112</td>
</tr>
<tr>
<td>delayedTurnOrnamentation</td>
<td>142</td>
</tr>
<tr>
<td>\dimEnsemble</td>
<td>511, 515</td>
</tr>
<tr>
<td>\dimEnsemble</td>
<td>677, 679, 680</td>
</tr>
<tr>
<td>\dimEnsemble, Transposing</td>
<td>430</td>
</tr>
<tr>
<td>diamondNoteHead</td>
<td>41</td>
</tr>
<tr>
<td>diamond-shapedNoteHead</td>
<td>393</td>
</tr>
<tr>
<td>dichromatism, suitable colors</td>
<td>743</td>
</tr>
<tr>
<td>diagram, chord for fretted instruments</td>
<td>418</td>
</tr>
<tr>
<td>diagram, fret</td>
<td>418</td>
</tr>
<tr>
<td>diagram, fret, customized</td>
<td>426</td>
</tr>
<tr>
<td>diagram, fret, transposing</td>
<td>430</td>
</tr>
<tr>
<td>diamondNoteHead</td>
<td>41</td>
</tr>
<tr>
<td>diamond-shapedNoteHead</td>
<td>393</td>
</tr>
<tr>
<td>dichromatism, suitable colors</td>
<td>743</td>
</tr>
<tr>
<td>\dimHairpin</td>
<td>146</td>
</tr>
<tr>
<td>diminuendo</td>
<td>143</td>
</tr>
<tr>
<td>\dimTextDecresc</td>
<td>146</td>
</tr>
<tr>
<td>\dimTextDecresc</td>
<td>146</td>
</tr>
<tr>
<td>\dimTextDim</td>
<td>146</td>
</tr>
<tr>
<td>\dir-column</td>
<td>776</td>
</tr>
<tr>
<td>direction, automatic, of stem, on center line</td>
<td>271</td>
</tr>
<tr>
<td>direction, default (--)</td>
<td>698</td>
</tr>
<tr>
<td>direction, default, of stem, on center line</td>
<td>271</td>
</tr>
<tr>
<td>direction, down (--)</td>
<td>698</td>
</tr>
<tr>
<td>direction, up (')</td>
<td>698</td>
</tr>
<tr>
<td>\discantSymbol, Accordion</td>
<td>389</td>
</tr>
<tr>
<td>displayVerticalLayout</td>
<td>659</td>
</tr>
<tr>
<td>\displayLilyMusic</td>
<td>603, 849</td>
</tr>
<tr>
<td>\displayMusic</td>
<td>849</td>
</tr>
<tr>
<td>\displayMusic</td>
<td>849</td>
</tr>
<tr>
<td>\displayScheme</td>
<td>849</td>
</tr>
<tr>
<td>distance, absolute</td>
<td>699</td>
</tr>
<tr>
<td>distance, between staves</td>
<td>628</td>
</tr>
<tr>
<td>distance, scaled</td>
<td>699</td>
</tr>
<tr>
<td>dividedLyrics</td>
<td>344</td>
</tr>
<tr>
<td>dividedVoices</td>
<td>358</td>
</tr>
<tr>
<td>divisiStaves</td>
<td>238</td>
</tr>
<tr>
<td>divisio</td>
<td>509</td>
</tr>
<tr>
<td>divisioMaior</td>
<td>509</td>
</tr>
<tr>
<td>\divisioMaxima</td>
<td>509</td>
</tr>
<tr>
<td>\divisioMinima</td>
<td>509</td>
</tr>
<tr>
<td>divisiones</td>
<td>509</td>
</tr>
<tr>
<td>dodecaphonic</td>
<td>34</td>
</tr>
<tr>
<td>dodecaphonicAccidentalStyle</td>
<td>34</td>
</tr>
<tr>
<td>dodecaphonic-first</td>
<td>34</td>
</tr>
<tr>
<td>dodecaphonic-firstAccidentalStyle</td>
<td>34</td>
</tr>
<tr>
<td>dodecaphonic-no-repeat</td>
<td>34</td>
</tr>
<tr>
<td>dodecaphonic-no-repeatAccidentalStyle</td>
<td>34</td>
</tr>
<tr>
<td>doIt</td>
<td>159</td>
</tr>
<tr>
<td>Dorian</td>
<td>22</td>
</tr>
<tr>
<td>\dorian</td>
<td>22</td>
</tr>
<tr>
<td>dotsDown</td>
<td>50</td>
</tr>
<tr>
<td>dotsNeutral</td>
<td>50</td>
</tr>
<tr>
<td>dotsUp</td>
<td>50</td>
</tr>
<tr>
<td>dottedNote</td>
<td>50</td>
</tr>
<tr>
<td>dottedNote, ChangeNumberOfDots</td>
<td>50</td>
</tr>
<tr>
<td>dottedNote, MovingHorizontally</td>
<td>210</td>
</tr>
<tr>
<td>dottedPhrasingSlur</td>
<td>157</td>
</tr>
<tr>
<td>dottedSlur</td>
<td>154</td>
</tr>
<tr>
<td>dottedTie</td>
<td>59</td>
</tr>
<tr>
<td>doubleBarLine</td>
<td>107, 117, 132</td>
</tr>
<tr>
<td>doubleFlat</td>
<td>6</td>
</tr>
<tr>
<td>doubleSharp</td>
<td>6</td>
</tr>
<tr>
<td>doubleSlurs, ForLegatoChords</td>
<td>156</td>
</tr>
<tr>
<td>double-dottedNote</td>
<td>702</td>
</tr>
<tr>
<td>double-timeSignature</td>
<td>84</td>
</tr>
<tr>
<td>\doublenote</td>
<td>802</td>
</tr>
<tr>
<td>\doubleslash</td>
<td>803</td>
</tr>
<tr>
<td>\downSlur</td>
<td>156</td>
</tr>
<tr>
<td>\downShift</td>
<td>698</td>
</tr>
<tr>
<td>‘down Pralltriller’ Ornament</td>
<td>140, 833</td>
</tr>
<tr>
<td>‘down-bow’ BowingIndication</td>
<td>140, 834</td>
</tr>
<tr>
<td>\downbow</td>
<td>392</td>
</tr>
<tr>
<td>\downBow</td>
<td>140, 392, 834</td>
</tr>
<tr>
<td>\downmordent</td>
<td>140, 833</td>
</tr>
<tr>
<td>\downprall</td>
<td>140, 833</td>
</tr>
<tr>
<td>\drawCircle</td>
<td>306, 792</td>
</tr>
<tr>
<td>\drawDashedLine</td>
<td>792</td>
</tr>
<tr>
<td>\drawDottedLine</td>
<td>793</td>
</tr>
<tr>
<td>\drawHLine</td>
<td>793</td>
</tr>
<tr>
<td>\drawLine</td>
<td>306, 794</td>
</tr>
<tr>
<td>\draw-squiggle-line</td>
<td>794</td>
</tr>
<tr>
<td>drawingBeam, WithinText</td>
<td>791</td>
</tr>
<tr>
<td>drawingBox, WithRoundedCorners</td>
<td>795</td>
</tr>
<tr>
<td>drawingBox, WithRoundedCorners, AroundText</td>
<td>799</td>
</tr>
<tr>
<td>drawingCircle, WithinText</td>
<td>792</td>
</tr>
<tr>
<td>drawingDashedLine, WithinText</td>
<td>792</td>
</tr>
<tr>
<td>drawingDottedLine, WithinText</td>
<td>793</td>
</tr>
<tr>
<td>drawingEllipse, AroundText</td>
<td>795</td>
</tr>
<tr>
<td>drawingGraphicObject</td>
<td>304</td>
</tr>
<tr>
<td>drawingLine, AcrossAPage</td>
<td>793</td>
</tr>
<tr>
<td>drawingLine, WithinText</td>
<td>794</td>
</tr>
<tr>
<td>drawingOval, AroundText</td>
<td>796</td>
</tr>
<tr>
<td>drawingPath</td>
<td>797</td>
</tr>
<tr>
<td>drawingPolygon</td>
<td>798</td>
</tr>
<tr>
<td>drawingSolidBox, WithinText</td>
<td>795</td>
</tr>
<tr>
<td>drawingSquiggedLine, WithinText</td>
<td>794</td>
</tr>
<tr>
<td>drawingTriangle, WithinText</td>
<td>800</td>
</tr>
<tr>
<td>\dropNote</td>
<td>474, 849</td>
</tr>
<tr>
<td>drum</td>
<td>448, 450</td>
</tr>
<tr>
<td>drumStaff</td>
<td>220</td>
</tr>
<tr>
<td>drum, Various</td>
<td>835</td>
</tr>
<tr>
<td>\drummode</td>
<td>220, 448, 557</td>
</tr>
<tr>
<td>drumPitchNames</td>
<td>453</td>
</tr>
</tbody>
</table>
Appendix E: LilyPond index

\drumPitchTable ........................................ 454
\Drums ........................................ 448, 537
DrumStaff ........................................ 220
drumStyleTable ........................................ 453
duration line ........................................ 493
duration, default ........................................ 49
duration, isolated ........................................ 49
duration, of note ........................................ 49
duration, scaling ........................................ 57\enddecr ........................................ 527\
dynamic ........................................ 151, 764
dynamic mark, multiple on one note .............. 144
dynamic mark, new ........................................ 151
dynamic-event ........................................ 246\endSpanners ........................................ 850\enddecr ........................................ 527\
dynamics ........................................ 143
dynamics in MIDI ........................................ 592
dynamics in MIDI, custom ........................................ 592
dynamics, absolute ........................................ 143
dynamics, breaking vertical alignment ............ 150
dynamics, centered in keyboard music ............ 380
dynamics, editorial ........................................ 151
dynamics, extender line, hiding .................... 150
dynamics, parenthesis ........................................ 151
dynamics, text spanner, customize ............... 285
dynamics, text, style ........................................ 150
dynAlignVerticalAlignment ........................................ 146
dynamics, vertical alignment ....................... 146
dynamics, vertical positioning ..................... 146\dynamicUp ........................................ 146

E
eeasy notation ........................................ 42
easy notation, using numbers .............. 42\easyHeadsOff ........................................ 42\easyHeadsOn ........................................ 42
editorial dynamics ........................................ 151
effects in MIDI ........................................ 600
electric snare ........................................ 835\ellipse ........................................ 795
embedded graphics ........................................ 306
embedding files, in PDF ......................... 588
embedding graphic object .................... 304
Ennulemater font ........................................ 743
empty chord ........................................ 135, 145, 581
empty staff ........................................ 235\EnableGregorianDivisiones ...................... 861
\enablePolymer ........................................ 850
encapsulated postscript output .............. 587
enclosing text in box, with rounded corners .... 799
enclosing text within a box .................... 763\endcr ........................................ 143
\enddecr ........................................ 143\endSpanners ........................................ 708, 850
engraver, including in context ............. 677
Engraver_group ........................................ 678
ensemble music ........................................ 360
entering lyrics ........................................ 315
entering multiple tuplets ....................... 53\episemFinis 'Gregorian articulation ............ 509
\episemFinis ......................... 509\episemInitium 'Gregorian articulation ............ 509\epsfile ........................................ 306, 795
equalization, instrument, replacing MIDI default .... 594\expressivo ........................................ 140, 145, 833
'expressivo' articulation ................... 140, 145, 833\etc ........................................ 296, 580
evenFooterMarkup ........................................ 865
evenHeaderMarkup ........................................ 865\eventChords ........................................ 850
exception, chord names ......................... 479\expandEmptyMeasures ......................... 252
expanding music ........................................ 57
explicitClefVisibility ......................... 712
explicitKeySignatureVisibility ..................... 712
expression in MIDI ........................................ 600
expression, markup ........................................ 293
extended chord ........................................ 471
extender ........................................ 326
extender line, dynamics, hiding ............ 150
extent, of actual inking ....................... 828
extent, of bounding box ....................... 828
extra natural sign, preventing ............... 7
extra voice for handling breaks ............ 624
extra-offset ...................................... 629
extra-spacing-height .......................... 665
extra-spacing-width ...................................... 650\eyeglasses ...................................... 821
Ez_numbers_ engraver .................................. 42

F
\f ........................................ 143
F clef ........................................ 17, 759
fall ........................................ 159
false note, percussion ...................................... 455\featherDurations ........................................ 106, 850
feathered beam ........................................ 106
feature, OpenType font ......................... 311, 768
fermata ........................................ 140, 834
\fermata ........................................ 71, 140, 803, 834
fermata, Henze ........................................ 140, 834
fermata, long ........................................ 140, 834
fermata, on bar line ...................................... 71
fermata, on multi-measure rest ............ 67
fermata, short ........................................ 140, 834
figure, Haydn ........................................ 149
figured bass ........................................ 485
figured bass, alignment ....................... 491
figured bass, alteration, glyphs ............ 489
figured bass, alteration, position ............ 488
figured bass, extender lines ............... 488
figured bass, vertical distance of elements .... 491\figured-bass ...................................... 765
figuredBassAlterationDirection ..................... 488
figuredBassPlusDirection ...................... 488
Appendix E: LilyPond index

FretBoards .................................................. 428
fretted instrument, chord shape .......................... 432
fretted instrument, dampened note ....................... 444
fretted instrument, harmonics ............................ 444
fretted instrument, indicating position and barging 443
fretted instrument, predefined string tunings ............. 415
fretted instrument, right-hand fingering ................. 442
\fromproperty ................................................. 822
full score .................................................. 359, 360
full-measure rest ............................................. 66
\funkshapeNoteHead ......................................... 44
\funkshapeHeadMinor ........................................ 44

G
G clef ........................................................ 17
\general-align ............................................. 301, 778
\germanChords .............................................. 477
ghost note .................................................. 269
ghost note, percussion ....................................... 455
\glide ....................................................... 260
\glidingfingering ........................................... 260
glissando ..................................................... 160
\glissando .................................................... 160
glissando, across repeats .................................. 163
glissando, and repeats ...................................... 186
glissando, breakable ......................................... 163
glissando, chords in tablatures ............................. 412
glissando, contemporary .................................... 161
glissando, timing marks ..................................... 162
\glissandoMap ................................................ 161
global replacement, automatic, of strings ............... 585
global variable ............................................. 845
glyph ......................................................... 843
glyph set, accidental ....................................... 758
glyph, alternate accidentals ................................ 36
glyph, bounding box ........................................ 828
glyph, for figured bass alteration ......................... 489
\grace ....................................................... 133, 850
grace note .................................................... 133, 459
grace note, and lyrics ....................................... 350
grace note, and strict spacing ............................... 136
grace note, changing layout settings ........................ 134, 135
grace note, following ....................................... 133
grace note, synchronization .................................. 137
grace note, tweaking ......................................... 134, 135
grammar, for LilyPond ...................................... 844
grand staff .................................................... 221
graphic notation ............................................. 306
graphic object, drawing .................................... 304
graphic object, embedding .................................. 304
graphical object ............................................. 844
graphical object interface .................................. 844
graphics, embedding ......................................... 304, 306
Gregorian accidental ....................................... 508
Gregorian articulation ...................................... 509
Gregorian articulation, accentus ......................... 509, 835
Gregorian articulation, circulus ......................... 509, 835
Gregorian articulation, episem finis ..................... 509
Gregorian articulation, episem initium ................... 509
Gregorian articulation, ictus ................................ 509, 835
Gregorian articulation, semicirculus ..................... 509, 835
Gregorian key signature .................................... 508

Gregorian music, modern transcription ................... 372
Gregorian square neumes ligature ......................... 510
Gregorian transcription staff ............................. 220
GregorianTranscriptionStaff ................................ 220
grid line ...................................................... 275
grid lines, changing appearance ............................ 276
Grid_line_span_engraver .................................. 275
gridInterval .................................................. 275
grob ............................................................ 683, 844
grob, and whiteout ........................................... 60, 709
grob, overwriting ............................................. 60, 709
grob, property ................................................ 686
grob, vertical position ....................................... 698
grob, visibility of ............................................. 708
\grob-interface .............................................. 844
agrobdescriptions ............................................ 850
grouping beats ................................................ 100
grow-direction ................................................ 106

guiro .......................................................... 835
guitar note head .............................................. 41
guitar tablature .............................................. 395
guitar, chord chart .......................................... 90
guitar, strumming rhythm, showing ........................ 90, 91
gutter ............................................................ 612

H
hairpin .......................................................... 143
hairpin, al niente ............................................. 148
hairpin, aligning ends to NoteColumn directions ........ 147
hairpin, angled ................................................. 714
hairpin, constante ............................................. 149
hairpin, Ferneyhough ......................................... 149
hairpin, flared ............................................... 149
hairpin, minimum length ..................................... 147
hairpin, moving ends of ..................................... 148
hairpin, stopping at bar lines ................................ 147
‘half open’ articulation ...................................... 140, 834
half open high hat ............................................ 835
half-open high hat ............................................ 140, 453
\halfopen ..................................................... 140, 453, 834
\halign ......................................................... 300, 779
hammer on ...................................................... 413
hand clap ....................................................... 835
Harmonia Sacra note head ................................... 44
\harmonic ....................................................... 41, 393, 401
harmonic indication, in tablature notation .................. 401
harmonic note head .......................................... 41
harmonic, in tablatures ..................................... 408
\harmonicsByFret ............................................. 401, 850
\harmonicsByRatio ........................................... 401, 851
\harmonicsNote ............................................... 851
harmonics, artificial ......................................... 393
harmonics, flageolet ......................................... 140, 834
harmonics, natural ........................................... 393
harmonics, on fretted instrument ................................ 444
\harmonicsOff ................................................ 393
\harmonicsOn ................................................ 393, 851
harp ............................................................. 390
harp pedal ....................................................... 391
harp pedal diagram ........................................... 391
\harp-pedal .................................................... 813
‘Haydn turn’ ornament ....................................... 140, 833
Appendix E: LilyPond index

item, musical ........................................ 649
item, non-musical .................................... 649

J
jazz chord ............................................. 477
\jump ................................................. 189, 852
justified text ........................................ 303
\justified-lines .................................... 295, 829
\justify .............................................. 303, 781
\justify-field ....................................... 781
\justify-line ......................................... 782
\justify-string ....................................... 782
justifying lines of text ................................ 829
justifying text ....................................... 781

K
keep tagged music .................................... 573
\keepAliveInterfaces ................................. 236
\keepWithTag ......................................... 573, 852
\key .................................................. 21, 44, 852
key signature ......................................... 6, 21
key signature, Gregorian ............................. 508
key signature, mensural .............................. 503
key signature, non-traditional ...................... 23
key signature, preventing natural signs .......... 23
key signature, visibility following explicit change ........................................ 712
keyboard instrument staff .......................... 380
keyboard music, centering dynamics ............... 380
keyed instrument staff ................................ 380
Kievan accidental .................................... 518
Kievan clef ........................................... 499, 759
Kievan ligature ........................................ 518
\kievanOff ........................................... 517
\kievanOn ............................................ 517
KievanStaff ........................................... 516
KievanVoice .......................................... 516
\kicllCues ........................................... 251, 852
Kirchenpause .......................................... 253
knee gap, with beams .................................. 93
knee gap, with beams, changing .................... 93
koron .................................................... 534

L
\label .................................................. 568, 852
label-alist-table ...................................... 866
label-page-table ..................................... 866
\laissezVibrer ........................................ 59
landscape ............................................ 866
\language ............................................. 852
language, note names in other ....................... 8
language, pitch names in other ..................... 8
\languageRestore ..................................... 852
\languageSaveAndChange ............................ 852
\large .................................................. 254, 299, 766
\larger ................................................ 297, 299, 766
last-bottom-spacing .................................. 610, 866
layer .................................................... 709
\layout ............................................... 542, 616, 663, 672
layout interface ...................................... 683
layout object ......................................... 844
\layout, and \book .................................... 541
\layout, and \bookpart ............................... 541
layout, file .......................................... 618
layout, major 7 chord ................................ 480
layout, vertical, debugging ......................... 659
layout-set-staff-size ................................ 618
lead sheet ............................................ 476
ledger line ............................................ 228
ledger line, internal .................................. 228
ledger line, modifying ............................... 228
\left-align .......................................... 300, 783
left-aligning text ..................................... 783
\left-brace ........................................... 822
\left-column ......................................... 783
left-handed fret diagram ............................ 421
left-margin ........................................... 611, 866
length of multi-measure rest ......................... 68
length of note ........................................ 49
lexer ................................................... 844
\heel .................................................. 140, 834
ligature ............................................... 497
\ligature ............................................. 852
ligature, in text ...................................... 776
ligature, Kievan ...................................... 518
ligature, mensural .................................... 504
ligature, square neumes .............................. 510
\LilyPondGrammar .................................... 844
\line .................................................. 784
line break ............................................ 107
line break, beams ..................................... 93
line break, cadenzas .................................. 83
line break, managing with extra voice .............. 624
line break, unmetered music ......................... 83
line comment .......................................... 539, 544
line, barré ............................................ 443
line, cross-staff ...................................... 385
line, grid ............................................. 275
line, staff-change .................................... 385
line, staff-change follower .......................... 853
line, to indicate duration ............................ 493
line-thickness ........................................ 866
line-width ............................................ 303, 611, 653, 866
\lines .................................................. 511, 515
\lineprall ............................................ 140, 833
lines, vertical, between staves ....................... 275
list of colors ......................................... 738
list of keys in woodwind diagrams ................... 468
list of markups ........................................ 294
list of woodwind diagrams ........................... 464
Locrian ................................................. 22
\locrian .............................................. 22
long fermata ......................................... 140, 834
\longa .................................................. 49, 62
longa rest ............................................. 62
\longfermata .......................................... 140, 834
\lookup ................................................ 823
low bongo ............................................. 835
low conga ............................................. 835
low timbale ........................................... 835
low tom tom ........................................... 835
\lower ................................................. 301, 784
‘lower mordent’ ornament ......................... 140, 833
lowering text ........................................... 784
\ltoe .................................................. 140, 834
lute tablature ......................................... 447
\maxima ............................................. 49, 62
maxima rest ......................................... 62
measure check ....................................... 126
measure counter .................................... 129
measure grouping .................................. 100
measure line ....................................... 107, 117
measure line, invisible ............................ 107
measure line, manual ................................ 107
measure number ..................................... 119, 139
measure number check .............................. 126
measure number, and repeats ....................... 186
measure number, style ............................. 122
measure repeat ...................................... 190
measure subgrouping ................................ 100
measure, partial .................................... 81
measure, partial, in hymn ................................ 377
measure, pickup ..................................... 81
Measure_grouping_ engraver ....................... 100
measureBarType .................................... 116
measureLength ...................................... 95, 139
measurePosition .................................... 81, 139
measuring units ..................................... 699
Medicaea, Editio .................................... 495, 496
medium interval ..................................... 526
melisma .............................................. 322, 326
\melisma .............................................. 622
melisma, with beams ................................ 93
\melismaEnd .......................................... 322
melismata ............................................. 322
melody rhythm, showing ............................ 89
mensural ............................................. 495, 496
mensural clef ........................................ 499, 759
mensural flag ........................................ 502
mensural ligature ................................... 504
mensural music, transcription of ................. 225
mensural notation, signum congruentiae ... 835
MensuralStaff ......................................... 220, 499
MensuralVoice ........................................ 499
mensuration sign .................................... 68
Mensurische ......................................... 520
Mensurische layout ................................. 225
\mergeDifferentlyDottedOff ....................... 206
\mergeDifferentlyDottedOn ......................... 206
\mergeDifferentlyHeadedOff ..................... 206
\mergeDifferentlyHeadedOn ....................... 206
merging notes ........................................ 206
merging rests ......................................... 211
merging text ......................................... 776, 784
meter .................................................. 72
meter .................................................. 547
meter style .......................................... 73
meter, polyrhythmic ................................ 84
metronomeMark ....................................... 77
metronomeMark, below staff ....................... 79
metronomeMark, custom markupp ................. 80
mezzo-soprano clef .................................. 17, 759
\mf .................................................... 143
microtone ............................................. 9
microtone, tab ....................................... 417
mid tom tom ......................................... 835
\midi .................................................. 542, 663
MIDI .................................................... 27, 590
MIDI, balance ....................................... 600
MIDI, block .......................................... 591
MIDI, channels ...................................... 507
MIDI, chorus level ................................... 600
MIDI, context definitions ......................... 595
MIDI, custom dynamics ............................ 592
MIDI, dynamics ...................................... 592
MIDI, effects ........................................ 600
MIDI, equalization .................................. 592
MIDI, expression .................................... 600
MIDI, instrument .................................... 601
MIDI, metadata ...................................... 557
MIDI, one channel per voice ....................... 599
MIDI, pan position .................................. 600
MIDI, replacing default instrument equalization 594
MIDI, reverb .......................................... 600
MIDI, stereo balance ................................ 600
MIDI, supported notation ......................... 590
MIDI, tracks ......................................... 597
MIDI, transposition ................................ 27
MIDI, unsupported notation ....................... 591
MIDI, using repeats ................................ 597
MIDI, volume ........................................ 592
midiBalance ......................................... 600
midiChannelMapping ................................ 597
midiChorusLevel .................................... 600
midiDrumPitches ..................................... 454
midiExpression ....................................... 600
midiPanPosition ..................................... 600
midiReverbLevel ..................................... 600
millimeter (mm) ...................................... 699
min-systems-per-page ............................... 613, 867
minimum length, hairpin ......................... 147
minimum-Y-extent ................................... 629
minimumFret ......................................... 398, 441
minimumPageTurnLength ......................... 627
minimumRepeatLengthForPageTurn ............... 628
minor ................................................... 22
\minor .................................................. 22
minorChordModifier ................................ 479
mirroring markup .................................... 800
mixed .................................................. 36
Mixolydian ............................................ 22
\mixolydian .......................................... 22
modal inversion ....................................... 16
modal transformation ................................ 15
modal transposition .................................. 15
modalInversion ....................................... 16, 853
\modalTranspose ...................................... 15, 853
mode ................................................... 22
modern ................................................. 31
modern accidental ..................................... 31
modern accidental style ....................... ... 30, 31
modern style accidental ............................ 31
modern transcription of Gregorian music ........ 372
modern-cautionary .................................. 31
modern-cautionary accidental style ............. 30, 31
modern-voice ........................................ 31
modern-voice-cautionary ......................... 32
modern-voice-cautionary accidental style .... 32
moderntablature clef ................................. 417
modifier, in chord ................................... 470
modifying contexts .................................. 685
modifying properties ............................... 685
\mordent ............................................. 140, 833
'mordent' ornament ................................ 140, 833
'mordent, lower' ornament ......................... 140, 833
Appendix E: LilyPond index

N
\n ........................................... 143
N.C. symbol .................................. 475
N.C. symbol, customizing .................. 476
name ......................................... 477
name, character ............................ 360
natural ....................................... 804
natural harmonics ......................... 393
natural pitch ................................ 6
natural sign ................................ 6
natural sign, extra, preventing .......... 7
natural sign, preventing in key signatures 23
neo-modern ................................ 33
neo-modern accidental style ............. 33
neo-modern-cautionary ..................... 33
neo-modern-cautionary accidental style 33
neo-modern-voice ......................... 33
neo-modern-voice accidental style ...... 33
neo-modern-voice-cautionary .......... 33
neo-modern-voice-cautionary accidental style 33
neomensural ................................ 496
nested repeat ................................ 186
nested staff bracket ....................... 226
nesting of staves ........................... 226
\new ........................................ 665
new context ................................ 665
new dynamic mark ........................... 151
new spacing section ....................... 646
new staff ................................... 220
\newSpacingSection ....................... 646
niente, al, hairpin ......................... 148
no-chord symbol ........................... 475
no-chord symbol, customizing .......... 476
no-reset ..................................... 34
no-reset accidental style ................ 34
\noBeam ..................................... 104
\noBreak .................................... 621
\noChordSymbol ............................. 476
non-ASCII character ....................... 583
non-default tuplet numbers ............... 53
non-empty text ............................. 283
non-musical item ........................... 649
non-musical symbol ....................... 306
nonstaff-nonstaff-spacing .......... 629, 853
nonstaff-relatedstaff-spacing ......... 629
nonstaff-unrelatedstaff-spacing ...... 629
\noPageBreak ............................... 629, 853
\noPageTurn ................................. 628, 853
\normal-size-sub ......................... 767
\normal-size-sup ......................... 298, 767
\normal-text ................................ 298, 767
\normal-weight ............................. 768
\normalsize ................................ 254, 299, 768
notation, explaining ..................... 274
notation, font size ....................... 254
notation, graphic ......................... 306
notation, inside markup ................. 307
\note ......................................... 804
note cluster .............................. 200
note collision ............................ 206
note continuation ......................... 493
note duration ............................. 49
note duration, default ................. 49

\mordent, upper’ ornament .............. 140, 833
movements, multiple ...................... 539
\mp ......................................... 143
multi-line comment ....................... 539, 544
multi-line markup ....................... 302
multi-line text ............................. 302
multi-measure notes, contracting ....... 252
multi-measure notes, expanding ...... 252
multi-measure rest ......................... 66
multi-measure rest, and fingerings ...... 70
multi-measure rest, attaching fermata . 67
multi-measure rest, attaching text .... 67
multi-measure rest, length .............. 68
multi-measure rests, contracting ...... 252
multi-measure rests, expanding ....... 252
\multi-measure-rest-by-number ........ 803
multi-note acciacatura .................... 137
multi-page markup ....................... 295
multi-voice accidental .................... 31
MultiMeasureRestScript ................. 67
MultiMeasureRestText .................... 67
multiple dynamic marks, on one note .... 144
multiple phrasing slurs .................. 157
multiple slur ................................ 154
multiple voices ............................ 206
music expression, copying .............. 581
music expression, sharing .............. 581
music fragment ............................ 586
music, beginners’ ........................ 42
music, inside markup ................. 307
music, unmetered ......................... 139
musica facta ................................ 594
musical cue ................................ 362
musical item ................................ 649
musical theater ......................... 359
\musicglyph .............................. 804
\musicLength ............................. 853
\musicMap ................................ 853
musicological analysis ................. 277
musicQuotes ............................... 845
mutable object ............................ 844
mutable property .......................... 844
mute bongo ................................ 835
mute conga ................................ 835
mute timbale ................................ 835
muted note, percussion ................. 455
Appendix E: LilyPond index

ornament, mordent, lower ........................................ 140, 833
ornament, mordent, upper ........................................ 140, 833
ornament, pralltriller .............................................. 140, 833
ornament, pralltriller, down ..................................... 140, 833
ornament, pralltriller, long ....................................... 140, 833
ornament, pralltriller, up .......................................... 140, 833
ornament, reverse turn ............................................. 140, 833
ornament, signum congruentiae .................................. 140
ornament, slash turn .................................................. 140, 833
ornament, trill .......................................................... 140, 833
ornament, turn .......................................................... 140, 833
ornament, up pralltriller .......................................... 140, 833
ornament, upper mordent ......................................... 140, 833
ornamentation, turn, delayed ................................... 142
orphan-penalty ......................................................... 867
ossa ........................................................................ 232, 239
ossa, positioning ....................................................... 234
ottava ........................................................................ 24
\ottava ..................................................................... 24, 854
ottava spanner, modify slope ...................................... 26
ottava text ................................................................. 25
ottava, for single voice ............................................... 25
ottavation ................................................................. 25
ottavation-numbers ................................................... 24
ottavation-ordinals ..................................................... 24
ottavation-simple-ordinals ......................................... 24
ottavationMarkups ...................................................... 24
Ottoman music ........................................................... 532
Ottoman, classical music .............................................. 526
output definition .......................................................... 663
output-count ................................................................ 845
output-def ................................................................... 844
output-filename ........................................................... 541, 867
output-scale ................................................................ 867
output-suffix ................................................................ 541, 845, 868
outside-staff-horizontal-padding .................................. 643
outside-staff-padding .................................................... 643
outside-staff-priority .................................................... 643
\oval ........................................................................... 796
\overlay ..................................................................... 784
overlaying contexts ..................................................... 223
\override ................................................................. 686, 688, 824
override, reverting ...................................................... 687
override-lines ............................................................. 829
overrideProperty ........................................................... 689, 854
\overrideTimeSignatureSettings .................................... 73, 854
overriding property within text markup ....................... 824
\overtie ............................................................... 769
overtie-ing text ............................................................ 769
overwriting grob ............................................................. 60
overwriting object .......................................................... 709

\p ............................................................................. 143
\pad-around ................................................................. 305, 785
\pad-markup ................................................................. 305, 785
\pad-to-box ................................................................. 305, 785
\pad-x ........................................................................ 305, 786
padding ..................................................................... 684
padding around text .................................................... 305
padding in markup, horizontal ................................... 306
padding in markup, vertical ......................................... 302

padd text ..................................................................... 785
padding text horizontally .......................................... 786
page break ................................................................... 653
page break, cadenzas ................................................. 83
page break, managing with extra voice ....................... 624
page break, unmetered music ....................................... 83
page break, manual ...................................................... 625
page breaks, within markup .......................................... 295
page footer .................................................................. 551
page header .................................................................. 551
page layout ................................................................... 653
page number, auto-numbering ..................................... 614
page number, in roman numerals ............................... 614
page number, specify first .......................................... 614
page number, suppress ............................................... 614
page numbers, independent for introduction ............... 614
page numbers, per book part ....................................... 614
page numbers, referencing ......................................... 567
page size ....................................................................... 606
page, orientation .......................................................... 607
page-breaking ............................................................. 613, 868
page-breaking-system-system-spacing ....................... 613, 868
page-count ................................................................. 613, 868
\page ................................................................. 845, 868
\page-break ............................................................... 623, 868
\pageLink ................................................................. 824
\page-number ............................................................. 612, 868
\page-number-type ..................................................... 614, 868
\page-post-process ....................................................... 868
\page-ref .................................................................... 568, 824
\page-spacing-weight .................................................... 613, 868
\pageBreak ............................................................. 623, 854
\palmMute ................................................................. 854
\palmMuteOn ............................................................... 854
pan position in MIDI .................................................... 600
Pango ........................................................................ 309
\paper ..................................................................... 542, 606
paper column .............................................................. 649
paper size ...................................................................... 606
paper size, landscape .................................................. 607
paper size, orientation ............................................... 607
paper variable, predefined .......................................... 606
paper-height ................................................................. 608, 868
paper-width ................................................................. 610, 868
papersizename ............................................................ 868
parallel music .............................................................. 217
\parallelMusic ............................................................ 217, 854
parenthesis ................................................................. 269
\parentesis ................................................................ 269, 796, 854
parenthesized accidental .............................................. 6
parlato ......................................................................... 366
parlato note head ......................................................... 41
Parmesan font ............................................................. 743
parser ......................................................................... 844
parser variable ............................................................. 845
part combiner .............................................................. 212
part combiner, changing text ....................................... 216
part song ...................................................................... 356
\partCombine .............................................................. 212, 346, 855
\partCombineAndLyrics ................................................. 215, 346
\partCombineApart ...................................................... 214
\partCombineAutomatic ............................................... 214
\partCombineChords ..................................................... 214
\partCombineDown ....................................................... 855
\partCombineForce ....................................................... 855
\partCombineListener ................................................... 845
\partCombineSoloI ......................................................... 214
Appendix E: LilyPond index

\repeat ........................................ 171, 172, 173
\repeat ........................................ 107
\repeat ........................................ 118
\repeat ........................................ 117
\repeat ........................................ 186
\repeat ........................................ 190
\repeat ........................................ 117, 118, 178
\repeat ........................................ 193
\repeat ........................................ 171
\repeat ........................................ 117, 118, 172, 173
\repeat ........................................ 186
\repeat ........................................ 178
\repeat ........................................ 178
\repeat ........................................ 184
\repeat ........................................ 186
\repeat ........................................ 163, 186
\repeat ........................................ 336
\repeat ........................................ 186
\repeat ........................................ 186
\repeat ........................................ 172
\repeat ........................................ 184
\repeat ........................................ 190
\repeat ........................................ 179
\repeat ........................................ 189
\repeat ........................................ 179
\repeat ........................................ 184
\repeat ........................................ 184
\repeat ........................................ 179
\repeat ........................................ 189
\repeat ........................................ 179
\repeat ........................................ 189
\repeat ........................................ 179
\repeat ........................................ 181
\repeat ........................................ 189
\repeat ........................................ 118
\repeat ........................................ 178
\repeat ........................................ 186
\repeat ........................................ 186
\repeat ........................................ 190
\repeat ........................................ 186
\repeat ........................................ 191
\repeat ........................................ 192
\repeat ........................................ 190
\repeat ........................................ 172
\repeat ........................................ 190
\repeat ........................................ 186
\repeat ........................................ 186
\repeat ........................................ 193
\repeat ........................................ 171
\repeat ........................................ 173
\repeat ........................................ 172
\repeat ........................................ 172
\repeat ........................................ 181
\repeat ........................................ 59
\repeat ........................................ 172
\repeat ........................................ 171
\repeat ........................................ 186
\repeat ........................................ 191
\repeat ........................................ 436, 476
\repeat ........................................ 340
\repeat ........................................ 59
\repeat ........................................ 599
\repeat ........................................ 59, 942
\repeat ........................................ 197, 399
\replace ........................................ 770
replacing strings, automatically ........ 585
reserved character, printing ............... 293
reset-footnotes-on-new-page ............... 615, 869
\resetRelativeOctave ......................... 5, 857
resizing of staves ......................... 232
\responsum .................................. 512, 857
\rest ........................................ 62
\rest ........................................ 62, 805
\rest ........................................ 503
\rest ........................................ 253
\rest ........................................ 70
\rest ........................................ 70
\rest ........................................ 62
\rest ........................................ 66
\rest ........................................ 62
\rest ........................................ 66
\rest ........................................ 62
\rest ........................................ 805
\rest ........................................ 806
\rest ........................................ 246
\rest ........................................ 74
\restrainOpenStrings ....................... 398
\retrograde ................................ 14, 857
\retrogradeTransformation .................. 14
\revert ....................................... 600
\reverb ...................................... 140, 833
\revertTurnOrnament ......................... 140, 833
\revert ....................................... 687
\revert ....................................... 687
\revert ....................................... 74, 857
\rfz .......................................... 143
\rgb .......................................... 265
\rgb .......................................... 265
\rheal ........................................ 140, 834
\rhythm ...................................... 806
\rhythm ...................................... 806
\rhythm ...................................... 89
\rhythmic .................................... 220
\rhythmicStaff ................................ 220
\ride .......................................... 835
\ride .......................................... 835
\rightAlign .................................. 300, 786
\rightAligningText ......................... 786
\rightBrace .................................. 825
\rightColumn ................................ 787
\rightHandFingering ......................... 442
\rightHandFingering, for fretted instruments 442
\rightHandFingering, placement ............. 442
\rightMargin ................................ 611, 869
\rightHandFinger ......................... 442, 857
\romanStringNumbers ....................... 392, 396
\root ......................................... 470
\rotate ....................................... 787
\rotating ..................................... 714
\rotating ..................................... 787
\roundedBox ................................ 304, 799
\rtoc ........................................ 140, 834
Appendix E: LilyPond index 917

'segno' sign, bar line ........................................... 109, 181
'segno' sign, manual ........................................... 188
'segno' sign, with repeats ..................................... 178, 181
'segno', forced at rest ........................................ 181, 189
'segnoMark' ....................................................... 117, 118, 181, 188, 857

selecting font size (notation) .................................. 254
'self-alignment-X' .................................................. 629
'semi form' ......................................................... 530
'semi-flat' .......................................................... 6, 9
'semi-flat symbol, appearance' ................................ 557
'semi-flat symbol, Persian (koron)' ............................ 534
'semi-sharp' .......................................................... 6, 9
'semi-sharp symbol, Persian (sori)' ............................ 534
'semi-transparent colors' ....................................... 264
'semicircular' ....................................................... 509, 835
'semicircular' Gregorian articulation ......................... 509, 835
'semiflat' ............................................................ 808
'semitGermanChords' ............................................. 477
'semisharp' .......................................................... 808
'separate text' ...................................................... 291
'serif' .............................................................. 770
'sesqui-flat' ......................................................... 9
'sesqui-sharp' ....................................................... 9
\sesquiflat .......................................................... 808
\sesquisharp ......................................................... 809
\set ............................................................... 95, 685, 688
set-global-staff-size ........................................... 618
setting extent of text object .................................. 828
setting horizontal text alignment ............................. 779
setting subscript, in standard font size ..................... 767
setting superscript, in standard font size .................. 767
\settingsFrom ..................................................... 857
seventh chord ...................................................... 470
'sf' ................................................................. 143
'sfz' ................................................................. 143
'shape' .............................................................. 722, 858
'shape note' ......................................................... 44
shape note, merging ............................................... 46
shaping slurs and ties ........................................... 722
shared property .................................................... 844
'sharpen' ............................................................ 6
'sharpen, double' ................................................... 6
'shift note' .......................................................... 206
'shift rest, automatic' ............................................ 206
'shift symbol, accordion' ........................................ 889
\shiftDurations .................................................... 858
'shifting voice' .................................................... 206
\shiftOff .......................................................... 206
\shiftOn ........................................................... 206
\shiftOnn .......................................................... 206
'short bar line' .................................................... 108
'short bar line, in Gregorian chant' ......................... 509
'short fermata' .................................................... 140, 834
'short-indent' ..................................................... 241, 612, 870
'shorten volta brackets' ......................................... 183
'shortfermata' ..................................................... 140, 834
'show vertical layout' ............................................ 183
\showFirstLength .................................................. 586, 845
\showKeySignature ................................................ 459
\showLastLength ................................................... 586, 845
\showStaffSwitch ................................................. 385
'sidestick' .......................................................... 835
'sign, coda' ......................................................... 140, 834
'sign, coda, manual' ............................................. 188
'sign, coda, variant' ............................................. 140, 183, 834
'sign, coda, with repeats' ...................................... 178
'sign, conducting' ............................................... 100
'sign, segno' ....................................................... 140, 834
'sign, segno, bar line' .......................................... 109, 181
'sign, segno, manual' .......................................... 188
'sign, segno, with repeats' ..................................... 178, 181
'sign, snappizzicato' ............................................. 140, 834
'sign, variant coda' .............................................. 140, 183, 834
'signature, polymetric' ......................................... 84
'signum congruentiae' mensural notation .................... 835
'signum congruentiae' ornament ................................ 140
\signumcongruentiae .............................................. 140, 835
'silenced note, percussion' .................................... 455
\simple ............................................................ 771
'simple repeat' ..................................................... 172
'simple text string, with tie characters' ..................... 809
'simultaneous notes and accidentals' ......................... 155
'simultaneous phrasing slurs' ................................ 157
\sustainOn
SVG output
swing
swing script
swing ly
switching font
syllable duration, automatic
symbol, breath mark, changing
symbol, major seven
symbol, non-musical
syntax, markup
system
system separator mark
system start delimiter
system-count
system-separator-markup
system-system-spacing
systems-per-page

T

tab clef .................................. 417, 759
tab microtones .................................. 417
tab quarter tones .................................. 417
\tabChordRepeats .......................... 399, 858
\tabChordRepetition ......................... 859
\tabFullNotation ............................ 398
tablature .................................. 220, 395
tablature, and beams .......................... 407
tablature, and harmonic indications .......... 401
tablature, and harmonics ...................... 408
tablature, and polyphony ....................... 407
tablature, and slides .......................... 412
tablature, and stem, nested .................... 226
tablature, and string bending .................. 403
tablature, banjo .............................. 395, 415, 446
tablature, basic ................................ 397
tablature, bass ............................... 415
tablature, bass guitar ........................ 415
tablature, cello ................................ 415
tablature, chord glissando ...................... 412
tablature, custom ................................ 415
tablature, custom string tunings .............. 415
tablature, default ................................ 397
tablature, double bass .......................... 415
tablature, guitar ................................ 395, 415
tablature, hammer on .......................... 413
tablature, lute .................................. 447
tablature, mandolin .......................... 415
tablature, predefined string tunings .......... 415
tablature, pull off ................................ 413
tablature, ukulele ............................ 415
tablature, viola ................................ 415
tablature, violin ................................ 415
\table .................................. 830

table of contents .......................... 568

table of contents, customized functions ....... 570
\table-of-contents ......................... 570, 831
\TagStaff .................................. 220, 397
\TabVoice .................................. 397
tag ........................................ 573
\tag ........................................ 573, 859
tag groups .................................. 576

\tagGroup .................................. 576, 859
tagline .................................... 547, 870
tam tam ..................................... 835
tambourine .................................. 835
\taor .................................... 459
taqsim ..................................... 530
teaching ..................................... 34

\teeny .................................... 254, 299, 772
template, Arabic music ......................... 531
tempo ....................................... 77
\tempo .................................... 77
tempo, change, without metronome mark ....... 80
tempo, with rhythm .................................. 806
\temporary .................................. 693, 701, 859
tenor clef ................................... 17, 759
tenor clef, choral .................................. 17
tenor G clef ................................... 759
tenor varC clef ................................... 759
tenuto ....................................... 141
\tenuto .................................... 140, 833

’tenuto’ articulation .......................... 140, 833

text ........................................ 388
text alignment command ......................... 304
text column, left-aligned ....................... 783
text column, right-aligned ...................... 787
text dynamics, style .................................. 150
text item, non-empty .......................... 283
text mark .................................... 287
text mark, alignment .......................... 290
text mark, below staff .......................... 289
text mark, on every staff ......................... 290
text mark, vertical stacking ..................... 289
text markup .................................. 293
text markup, inside stacking ..................... 156
text object .................................. 281
text script .................................. 283
text script, breaking vertical alignment ....... 150
text script, vertical alignment .................. 149
text size .................................... 297
text spanner .................................. 284
text spanner, dynamics, customize .............. 285
text spanner, formatting .......................... 285
text, aligning .................................. 300
text, at beginning of line ......................... 287
text, at end of score .......................... 287
text, between notes .......................... 287
text, centering on page .......................... 303
text, decorating .................................. 304
text, framing .................................. 304
text, horizontal alignment ....................... 300
text, in columns .................................. 292, 302
text, in volta bracket .......................... 188
text, justified .................................. 303
text, keeping inside margin ...................... 284
text, line width .................................. 303
text, multi-line .................................. 302
text, on bar line .................................. 287
text, on multi-measure rest ....................... 67
text, other languages .......................... 281
text, ottavation .................................. 25
text, outside margin .......................... 284
text, padding .................................. 305
text, separate .................................. 291
text, spread over multiple pages ................. 295
Appendix E: LilyPond index

921
text, stand-alone ........................................... 291
text, top-level ................................................. 291
text, vertical alignment ..................................... 301

text, word-wrapped ......................................... 303

text-font-size ................................................. 297, 870

\textEndMark .............................................. 287, 859
\textLengthOff .............................................. 68, 69, 284
\textLengthOn ............................................. 68, 69, 149, 284
\textMark ..................................................... 287, 859

\textSpannerDown ........................................... 285
\textSpannerNeutral .......................................... 285
\textSpannerUp ................................................ 285

thorough bass ................................................ 485

\thumb ...................................................... 140, 259
‘thumb’ fingering ............................................ 140, 259, 834
tick bar line .................................................. 108
tick bar line, in Gregorian chant ............................ 509
tick mark ....................................................... 159
\tie .......................................................... 772
tie ............................................................... 772

\tieDash .................................................... 785, 859
\tieDashPattern ............................................... 785
\tieDotted ..................................................... 785
\tieDown ........................................................ 785
\tieHalfDashed ................................................. 785
\tieHalfSolid .................................................. 785
\tieNeutral .................................................... 785
\tieSolid ........................................................ 785
\tieMedium .................................................... 60

tied note, accidental ......................................... 809
\tie-lyric ....................................................... 809

\time .......................................................... 72, 95, 859
time administration ........................................ 139
time signature ................................................ 72

time signature, style ......................................... 73, 500

time signature, and volta repeats .......................... 77

time signature, compound ................................... 87

time signature, default settings ................................ 73
time signature, double ........................................ 84

time signature, mensural ..................................... 500
time signature, mid-measure .................................. 81
time signature, polyphonic ................................... 84
time signature, printing only numerator ....................... 75

time signature, properties, restoring default values .......... 74

time signature, visibility .................................... 72
\times .......................................................... 859
timeSignatureFraction ......................................... 84
Timing ......................................................... 139

timing information and repeats ............................... 186
timing mark, for glissando .................................... 162
timing, within score ........................................ 139

\tiny .......................................................... 254, 299, 772
title ............................................................. 544
title ............................................................. 547
tom tom ......................................................... 835
top-level text .................................................. 291
top-margin ...................................................... 608, 871
top-markup-spacing .......................................... 610, 871
top-system-spacing .......................................... 610, 871
toplevel-bookparts .......................................... 845
toplevel-scores ............................................... 845

transcription of mensural music ................................ 225

transcription, mensural to modern ............................. 224
transcription, modern of Gregorian music ..................... 372

transformation, modal ......................................... 15
transformation, retrograde .................................... 14
\translate ...................................................... 301, 787
\translate-scaled .............................................. 301, 788

translating text ............................................... 787, 788

transparency, semi ........................................... 264
\transparent .................................................. 826
transparent note ............................................... 263
transparent, making objects .................................. 709

transpose ..................................................... 11
\transpose .................................................... 11
\transpose {6, 11, 14, 59} ........................................ 11
\transpose {6, 11, 14, 59} ........................................ 11
transposed clef, visibility of ................................ 714

transposedCueDuring ......................................... 250, 859
transposing ................................................... 12
transposing clef ............................................... 17
transposing, fret diagram ..................................... 430
transposing instrument ....................................... 11, 27

transposition .................................................. 12

tre corde ...................................................... 388
treb col ......................................................... 17, 759

tre corde ...................................................... 388
tremolo ......................................................... 193
tremolo ......................................................... 193
tremolo beam .................................................. 193
tremolo mark ................................................... 193
tremolo, cross-staff .......................................... 194

triad ........................................................... 470
triangular ...................................................... 835

\triangle ....................................................... 306, 800
trill .......................................................... 168
\trill .................................................. 140, 168, 833
'trill' ornament .................................. 140, 833
trill, pitched .................................. 169
trill, with accidental ............................. 169
triplet ............................................... 51
triplet, formatting .................................. 53
\tripletFeel ........................................ 601
tuning, banjo ........................................ 447
tuning, lute ........................................ 48

Appendix E: LilyPond index .................................. 922

trill .......................................................... 168
\trill .................................................. 140, 168, 833
'trill' ornament .................................. 140, 833


\undo .................................................. 693, 860
unfold ................................................. 171
unfold repeat ......................................... 171
\unfolded ........................................... 175, 860
\unfoldRepeats ...................................... 175, 597, 860
\unHideNotes .......................................... 263
Unicode ................................................. 584
units, of measuring .................................. 699
universal-color ...................................... 265, 743
\unless .................................................. 555, 810

unmetered music ........................................... 82, 139
unmetered music, accidentals .................. 82
unmetered music, bar lines ......................... 82
unmetered music, bar numbers .................. 82
unmetered music, beams .................................. 82
unmetered music, line breaks .................. 83
unmetered music, page breaks .................. 83
\unset .................................................. 685
up direction (') ........................................ 698
'up prall' 'trill' ornament ....................... 140, 833
'up-bow' bowing indication .................. 140, 834
up-bow indication ......................................... 392
upbeat .................................................. 81
upbeat, in a repeat .................................. 172
\upbow ................................................ 140, 392, 834
\upmordent ......................................... 140, 833
\upper mordent' ornament ....................... 140, 833
\upprall ............................................. 140, 833
\upright .................................................. 774
URL link, as QR code .................................. 825
UTF-8 ...................................................... 583

V

varbaritone clef ........................................... 17
\varClef ............................................ 759
\varCoda ........................................... 140, 809, 834
variable, and \book .................................. 540
variable, and \bookpart .......................... 540
variables .................................................. 543
variables, use of ...................................... 572
variant 'coda' sign ................................. 140, 183, 834
Vaticana, Edition .................................... 495, 496
VaticanaLyrics ......................................... 507
VaticanaScore .......................................... 507
VaticanaStaff .......................................... 220, 507
VaticanaVoice .......................................... 507
\vcenter .................................................. 788
\verbatim-file ......................................... 826
\version .................................................. 544
\versus .................................................. 512, 860

vertical alignment, dynamics ......................... 149
vertical alignment, dynamics, breaking .......... 150
vertical alignment, text .................................. 301
vertical alignment, text scripts .................. 149
vertical direction, default, of grobs ........... 698
vertical direction, forced, of grobs ............ 698
vertical distance, figured bass elements .... 491
vertical lines between staves .............. 275
vertical ordering, of scripts ..................... 142
vertical padding in markup ..................... 302
vertical positioning of dynamics ............. 146
vertical spacing ..................................... 628, 653
vertical spacing, debugging ..................... 659
VerticalAxisGroup ....................................... 629

U

U.C. ........................................................ 388
ukulele .................................................. 419
ultima volta ........................................... 173
una corda .............................................. 388
\unaCorda ........................................... 388
\underline .............................................. 297, 773
underlining text ........................................ 773
underlying repeat bar line ..................... 117
\undertie ............................................. 773
underlining text ........................................ 773
vertically centering text ........................................ 788
\verylongfermata ........................................ 140, 844
\veryshortfermata ........................................ 140, 844
vibraslip .................................................. 835
violin clef .................................................. 17, 759
\virga ....................................................... 511, 515
\virl .......................................................... 509
visibility of object .......................................... 708
visibility of transposed clef .................................. 714
visibility of tuplet brackets .................................. 54
visibility of tuplets ........................................... 52
vocal score .................................................. 359
vocal score, adding cues ...................................... 364
voice .......................................................... 201
\Voice ........................................................ 201
\\voice ....................................................... 29, 30
voice, accidental style ....................................... 30
voice, ambitus ............................................... 38
voice, divided ............................................... 358
voice, extra, for handling breaks .............................. 624
voice, following ............................................. 385
voice, multiple .............................................. 206
voice, \partCombine with \autoBeamOff .................. 93
voice, quoting ............................................... 243, 247
voice, shifting .............................................. 206
voice, with ottavation ....................................... 25
\voiceFour .................................................. 201
\voiceFourStyle .............................................. 205
\voiceNeutralStyle .......................................... 205
\voiceOne ................................................... 201
\voiceOneStyle .............................................. 205
\voices ...................................................... 204, 861
\voiceThree ................................................. 201
\voiceThreeStyle ............................................ 205
\voiceTwo ................................................... 201
\voiceTwoStyle .............................................. 205
\void .......................................................... 603, 247
volta .......................................................... 172, 173
volta .......................................................... 172, 173, 175, 861
volta bracket ............................................... 186
volta bracket, and tie ....................................... 59
volta bracket, in additional staves ......................... 183
volta bracket, shortened .................................... 183
volta bracket, with text .................................... 188
volta repeat, and time signatures ........................... 77
volta repeat, bar line at start of piece .................... 172
volta repeat, below chords .................................. 480
volta, double repeat style ................................... 118
volta, prima .................................................. 173
volta, seconda ............................................... 173
volta, ultima .................................................. 173
\volta-number ............................................... 774
\Volta ......................................................... 183
vowel transition ............................................. 326
\vspace ....................................................... 861
\vspace ....................................................... 302, 788
W
Walker shape note head ...................................... 44
\walkerHeads ................................................ 44
\walkerHeadsMinor .......................................... 44
whistle ......................................................... 835
white mensural ligature ..................................... 504
\whiteout ..................................................... 60, 709
\whiteout ..................................................... 827
whitespace .................................................... 544
\\whiteTriangleMarkup ....................................... 478
whole rest, for a full measure ................................ 66
wind instrument ............................................. 456
wind instruments, fingering symbols ......................... 457
\with .......................................................... 671, 675
\with-color ................................................... 264, 827
\with-dimension ............................................. 828
\with-dimension-from ...................................... 828
\with-dimensions .......................................... 828
\with-dimensions-from ..................................... 828
\with-link .................................................... 828
\with-outline ............................................... 828
\with-string-transformer .................................... 774
\with-true-dimension ....................................... 828
\with-true-dimensions ...................................... 829
\with-url .................................................. 801
\withMusicProperty ......................................... 861
woodblock .................................................... 835
woodwind diagram, key lists ................................ 468
woodwind diagram, list ...................................... 464
woodwind diagrams, modifying ................................ 466
\\woodwind-diagram ........................................... 814
\word-wrapped text .......................................... 303
\wordwrap .................................................... 303
\wordwrap .................................................... 789
\wordwrap-field ............................................. 303
\wordwrap .................................................... 789
\wordwrap-fields ............................................ 295, 831
\wordwrap .................................................... 790
writing music in parallel .................................... 217
written-out repeat ......................................... 171
X
x11 color .................................................... 264, 266
x11-color ..................................................... 264, 266, 740
X-offset ....................................................... 629
\xNote ......................................................... 41, 861
\xNotesOff ................................................... 41
\xNotesOn ..................................................... 41