
Separating input language and formatter

in GNU Lilypond

Erik Sandberg <ersa9195@student.uu.se>

Master’s Thesis / Examensarbete NV3, 20 credits

Supervisor: Han-Wen Nienhuys <hanwen@xs4all.nl>
Reviewer: Arne Andersson
Examiner: Anders Jansson

Uppsala University
Department of Information Technology

30th March 2006





Abstract

In this thesis, the music typesetting program LilyPond is restructured. The
program is separated into two distinct modules: One that parses the input
file, and one that handles music formatting. A new music representation format
music stream is introduced, as an intermediate format between the two modules.
A music stream is semantically equivalent to the original input file, but the new
format is easier for a computer program to interpret. Music streams can be
used to make communication between LilyPond and other software easier; in
particular, the format can eliminate incompatibilities between different versions
of LilyPond.



2



Contents

1 Sammanfattning (Summary in Swedish) 7

2 Introduction 11

2.1 Music typesetting . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Strengths of GNU LilyPond . . . . . . . . . . . . . . . . . . . . . 11

2.3 A LilyPond input file . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Advanced LY constructs . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 Achievements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Overview of this report . . . . . . . . . . . . . . . . . . . . . . . 15

3 Problem statement 17

3.1 The main goal of this thesis . . . . . . . . . . . . . . . . . . . . . 17

3.2 Cue notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 The contents of a music stream . . . . . . . . . . . . . . . . . . . 19

3.4 Motivations for implementing music streams . . . . . . . . . . . . 19

4 Data structures 21

4.1 Overview of LilyPond’s program architecture . . . . . . . . . . . 21

4.1.1 Overview of music expressions . . . . . . . . . . . . . . . 21

4.1.2 Overview of contexts . . . . . . . . . . . . . . . . . . . . . 22

4.2 Scheme and property lists . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Music expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.4 Contexts and context definitions . . . . . . . . . . . . . . . . . . 25

4.5 Music iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.6 Translators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5 Some commands in the LY language 31

5.1 The \change command . . . . . . . . . . . . . . . . . . . . . . . 31

5.2 The \autochange command . . . . . . . . . . . . . . . . . . . . . 32

5.3 The \partcombine command . . . . . . . . . . . . . . . . . . . . 33

5.4 The \addquote command . . . . . . . . . . . . . . . . . . . . . . 34

5.5 The \lyricsto command . . . . . . . . . . . . . . . . . . . . . . 35

5.6 The \times command . . . . . . . . . . . . . . . . . . . . . . . . 36

5.7 The \set command . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Implementation of music streams 39

6.1 A music stream . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.1.1 The example score . . . . . . . . . . . . . . . . . . . . . . 39

6.1.2 Representation as a music stream . . . . . . . . . . . . . . 40

6.2 Implementation of music streams . . . . . . . . . . . . . . . . . . 42

6.2.1 The use of dispatchers in LilyPond . . . . . . . . . . . . . 42

6.2.2 Dispatchers as event handlers . . . . . . . . . . . . . . . . 44

6.2.3 The dispatcher data type . . . . . . . . . . . . . . . . . . 44

3



7 Implementation notes 47

7.1 Obstacles encountered while separating iterator from formatter . 47

7.1.1 Problems with the \lyricsto command . . . . . . . . . . 47

7.1.2 Problems with the \times command . . . . . . . . . . . . 47

7.1.3 Warning messages for unprocessed events . . . . . . . . . 48

7.2 Efficiency considerations . . . . . . . . . . . . . . . . . . . . . . . 48

7.3 Implemented applications of music streams . . . . . . . . . . . . 49

8 Conclusions 51

9 Suggestions for future work 53

9.1 Using music streams for analysing and manipulating music . . . 53

9.2 Formalise the music stream . . . . . . . . . . . . . . . . . . . . . 53

9.3 Music stream as a music representation format . . . . . . . . . . 53

9.4 Unify the event class and music class concepts . . . . . . . . . . . 53

9.5 Using dispatchers for optimising context tree walks . . . . . . . . 54

10 Acknowledgments 55

A General music terminology 57

A.1 Music . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.2 Staves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3.1 Duration . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.3.2 Pitch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.3.3 Rests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.4 Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

A.5 Simultaneous music . . . . . . . . . . . . . . . . . . . . . . . . . . 59

A.5.1 More than one staff . . . . . . . . . . . . . . . . . . . . . 59

A.5.2 Many voices in one staff . . . . . . . . . . . . . . . . . . . 59

A.6 Lyrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

B A subset of LilyPond’s language 61

B.1 Token types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.2 LY file layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.3 Music expression . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

B.4 An example LY file . . . . . . . . . . . . . . . . . . . . . . . . . . 63

C Music streams for the impatient 65

C.1 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.2 An introduction to LilyPond’s program architecture . . . . . . . 65

C.2.1 Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.2.2 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

C.2.3 Iteration . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

C.3 A music stream representing a simple music fragment . . . . . . 66

D Demonstration 69

4



E Benchmarks 79
E.1 System information . . . . . . . . . . . . . . . . . . . . . . . . . . 79
E.2 Compared programs . . . . . . . . . . . . . . . . . . . . . . . . . 79
E.3 Input test files . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
E.4 Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
E.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

F Documentation of LilyPond’s program architecture 83

5



6



1 Sammanfattning (Summary in Swedish)

GNU LilyPond är ett notskrivningsprogram. Programmet är ett s.k. terminal-

program; detta betyder att programmet inte har n̊agot grafiskt gränssnitt. För
att använda LilyPond, skriver man en textfil, som man skickar till program-
met. Filen inneh̊aller en formell beskrivning av ett musikstycke. Utifr̊an denna
beskrivning, skapar programmet en PDF-fil, som användaren sedan kan skriva
ut.

Det finns användare som föredrar att använda grafiska gränssnitt för att
redigera noter. Detta examensarbete eliminerar ett av de tekniska hinder som
tidigare gjort det sv̊art att utveckla ett grafiskt gränssnitt till LilyPond.

LilyPond använder sig av ett helt eget filformat för att representera musik;
detta format kallas LY. Formatet är utformat för att det ska vara s̊a smidigt
som möjligt för en människa att skriva och redigera LY-filer. För enkla stycken
är formatet relativt lätt att först̊a; till exempel kan början av Blinka lilla stjärna

representeras s̊ahär:

{

c’4 c’4 g’4 g’4 a’4 a’4 g’2

f’4 f’4 e’4 e’4 d’4 d’4 c’2

}

Om en fil med denna text skickas till LilyPond, producerar programmet en
PDF-fil med följande notbild:

LY-formatet har även möjligheter att representera mer komplexa notbilder:

<<

\new Staff { c’4 c’4 g’4 g’4 }

\new Staff { e’8 f’8 e’4 c’4 c’4 }

>>

Här används kommandot \new Staff för att ange att noterna ska tillhöra
separata notsystem. De tv̊a notsystemen skrivs mellan << och >>, detta betyder
att de tv̊a notsystemen spelas parallellt.

Notera att väldigt lite information ges till LilyPond: Endast själva musiken
matas in, och ingen information om hur musiken ska typsättas anges. LilyPond
använder standardvärden för klav och taktart, och programmet tar automatiskt
hand om att t.ex. välja lagom stora avst̊and mellan noterna. Även notskaftens
längder bestäms automatiskt; detta är faktiskt en förv̊anansvärt komplex upp-
gift: Tittar vi noga, kan vi se att skaften p̊a åttondelsnoterna i exemplet ovan är

7



lite olika l̊anga. Detta är ett medvetet val som LilyPond gjort för att f̊a balken
att täcka den andra notlinjen, vilket betraktas som typografiskt korrekt.

Det som särskiljer LilyPond fr̊an de flesta andra notskrivningsprogram, är
programmets syn p̊a hur man bäst hjälper en användare att skapa noter som
ser bra ut. Många populära program, t.ex. Sibelius och Finale, har grafiska
gränssnitt, där det är relativt smidigt att manuellt justera notbildens utseende.
LilyPond har istället som m̊al att programmets utdata ska vara av s̊a hög kvali-
tet, att användaren bara ska behöva skriva in själva musiken (till skillnad fr̊an en
grafisk representationen av musiken), och kunna överl̊ata åt LilyPond alla beslut
rörande notbildens utseende. S̊aledes är programmets m̊algrupp främst de som
finner utseendet hos noter viktigt, men som samtidigt inte har tillräckligt med
tid eller typsättningskunskaper för att åstadkomma gott typsättningsresultat
genom manuella justeringar.

De som utvecklat LilyPond har försökt f̊a programmet att imitera den tyska
nottypsättningstraditionen fr̊an 1900-talets mitt. Detta har gjorts genom att
vackert typsatta noter fr̊an denna tid valts ut; utifr̊an studier av dessa noter har
formella regler för typsättning kunnat utformas. Det finns åtskilliga verk där
kvaliteten hos noter typsatta av LilyPond är fullt jämförbara med motsvarande
tryckta noter fr̊an mitten av 1900-talet.

LilyPond klarar av att typsätta godtyckligt komplexa notbilder, och har för
dessa ändam̊al en uppsjö av kommandon utöver de som redan presenterats.
Bland annat kan musik stoppas in i variabler, vilket gör att en LY-fil kan ges
en logisk struktur efter användarens behag. Det finns även kommandon som
är specifika för vissa typer av musik; t.ex. finns ett kommando som gör det
smidigt att sätta text till s̊anger, och det finns kommandon för att transponera
musik. För den riktigt avancerade användaren, erbjuder LilyPond till och med
ett inbyggt programmeringsspr̊ak, som gör det möjligt att definiera helt nya
kommandon i en LY-fil.

LY-formatet har även mekanismer för att göra det smidigare att mata in
musik: Tittar vi t.ex. p̊a exemplen ovan, ser vi att ’ och 4 upprepas m̊anga
g̊anger, vilket kan kännas obekvämt. Därför har LilyPond stöd för att ”komma
ih̊ag” lite information fr̊an föreg̊aende not; detta gör att fragmentet av Blinka

lilla stjärna ovan kan skrivas p̊a ett alternativt, betydligt kortare, vis:

\relative {

c4 c g’ g a a g2 f4 f e e d d c2

}

Här behöver oktaven indikeras bara d̊a hoppet fr̊an förra tonen är stort, och
notvärdet behöver bara skrivas ut d̊a det skiljer sig fr̊an närmast föreg̊aende
ton.

De m̊anga specialkommandon som LilyPond erbjuder utgör även en svaghet:
Även om det g̊ar smidigt för en människa att redigera en LY-fil, är det desto
sv̊arare att förm̊a en dator att göra detsamma. Vi illustrerar problemet med ett
fiktivt exempel: Antag att vi matat in Blinka lilla stjärna p̊a den korta formen
med \relative, och i efterhand vill byta ut en av fjärdedelsnoterna mot tv̊a
åttondelsnoter:

8



För att åstadkomma detta, letar vi upp tonen a i LY-filen, och byter ut den
mot a8 a8. Vi m̊aste dessutom komma ih̊ag att explicit ange notvärdet hos den
därp̊a följande fjärdedelsnoten; annars skulle notvärdet ”̈arvas” fr̊an de nyinsatta
åttondelsnoterna. Den modifierade LY-filen ser s̊aledes ut s̊ahär:

\relative {

c4 c g’ g a8 a8 a4 g2 f4 f e e d d c2

}

Denna redigering visar p̊a ett problem som förhindrar utvecklingen av ett
grafiskt användargränssnitt till LilyPond: I ett grafiskt användargränssnitt skul-
le användaren börja med att ladda in den ursprungliga LY-filen, varp̊a notbilden
skulle visas p̊a skärmen. Det borde d̊a g̊a att klicka bort fjärdedelsnoten, och
dra dit tv̊a åttondelsnoter i dess ställe, och sedan spara tillbaks det redigerade
stycket till LY-filen. Det problematiska i detta, är att programmet skulle behöva
först̊a att fyran efter det andra a:t behöver skrivas in; det är mycket sv̊art att
förm̊a ett program att först̊a detta. Det finns en mängd liknande problem som
gör att det i princip är omöjligt att skapa ett grafiskt användargränssnitt för
att redigera LY-filer.

I detta examensarbete introduceras ett nytt filformat för att representera
musik. Formatet, som kallas music stream, är enklare till strukturen än LY-
formatet, och det är därmed lättare för en dator att redigera music-stream-filer.
Det nya formatet läggs till som ett mellanformat, vilket innebär att LilyPond
istället för att skapa en PDF-fil direkt fr̊an en LY-fil, först översätter LY-filen
till en music stream, som sedan i sin tur används för att skapa PDF-filen.

En music stream är en textfil där varje rad beskriver en händelse. Den vanli-
gaste sortens händelse är att en not spelas. Händelserna är ordnade kronologiskt,
dvs den händelse som st̊ar först i filen, händer först.

Examensarbetets titel hänvisar till att LilyPond delas upp i tv̊a oberoende
delar i och med införandet av music streams: Den första delen översätter LY-filer
till music streams, och den andra delen översätter music streams till PDF-filer.

9



10



2 Introduction

2.1 Music typesetting

This thesis is related to GNU LilyPond, which is a program that typesets music.
The report assumes knowledge about music notation; see Appendix A for an
introduction to the topic. LilyPond is a non-interactive program, which reads
an abstract textual representation of a score as input. This input is typically
processed to yield a PDF file as output. The aim of the input language is to
represent the music itself, and to avoid specific formatting instructions. As an
example, consider this short score:

In LilyPond’s input language, which will be referred to as LY, the score can
be represented with the expression { c’4 e’8 f’8 }. The clef and time signa-
ture are set to sensible defaults, while spacing and stem lengths are calculated
automatically. Even in simple examples, these calculations can be complex: If
we look carefully, we can notice that the stem of the e’8 note is slightly longer
than the stem of the f’8 note. LilyPond has made this formatting decision in
order to make the beam completely cover the second staff line; this is considered
typographically correct.

We can see that LilyPond is similar to LATEX [Hef06] and dot [AT&06], in the
sense that the program reads an abstract representation of some information,
and transforms this into a graphical representation of the same information.

One purpose of a music typesetting program is to aid its user in generating
scores that look good. Many popular music typesetting programs, such as Finale
[Mak06] and Sibelius [Sib06], achieve this through graphical user interfaces that
make it easy for the user to adjust the layout of a score. LilyPond uses a
different approach: The program’s goal is to eliminate the need to manually
adjust the layout; the program should automatically deliver graphical output of
publication quality. This goal has been achieved for some scores.

The developers of LilyPond have approached the problem of generating
nicely typeset music by imitating the German music typesetting tradition from
the middle 20th century: Typesetting rules have been formalised by studying
professionally typeset scores from this period.

2.2 Strengths of GNU LilyPond

The characteristics of LilyPond make the program attractive for certain appli-
cations:

• The LY music representation language is powerful and compact. This
makes it efficient for an experienced user to input music to LilyPond, or
to arrange existing music that is written in the LY language.

• LilyPond produces high-quality output automatically, i.e., without requir-
ing the user to describe any layout details. This makes the program useful
for users who want to produce good-looking output, but who don’t have
the skill or time to manually adjust the layout of their music.

11



• Since the program is non-interactive, it can be used to automatically type-
set large databases of music.

• LilyPond’s source code is publicly available for experimenting1. This
makes it possible for users of the program to customise or extend it for
any individual needs.

2.3 A LilyPond input file

GNU LilyPond is a non-interactive program. Just like a compiler, it reads a
plain text file as its input. The file contains a description of a piece of music,
which the program processes into a graphical score.

The input file uses a format specific to LilyPond, which will be referred to
as LY. The following is a simple example of what a LY file can look like:

<<

\new Staff \new Voice { c’4 d’8 e’8 f’2 }

\new Staff

<<

\new Voice { \voiceOne g’2 f’2 }

\new Voice { \voiceTwo e’2 a2 }

>>

>>

When LilyPond is invoked on this input, the following output is produced:

A brief explanation:

• Notes are represented compactly; e.g., c’4 represents a quarter (1/4) note
of pitch c′.

• Notes can be grouped between braces ({ and }); this means that the notes
are played in sequence, i.e., spread out horizontally in the output.

• Notes can also be grouped between double angle brackets (<< and >>);
this means that the notes are played in parallel, i.e., spread out vertically
in the output.

• Braces and double angle brackets can also be used to group more complex
objects than notes. E.g., the two voices in the lower staff are played
simultaneously.

1LilyPond is distributed under the terms of the GNU General Public License [Fou91], and
can thus be described as “Open Source” or “Free” software.

12



• The keyword \new inserts notes into their context in the score. Each note
needs to belong to a voice, which typically is a line of melody. Each voice,
in turn, needs to belong to a staff. In our example, two voices belong to
the lower staff.

• The keywords \voiceOne and \voiceTwo are used to set the stem direc-
tions of notes, when there is more than one voice in a single staff.

2.4 Advanced LY constructs

LilyPond’s input language contains a number of constructs that make it possible
to write complex scores in a structured way. For example, the above example
can be written in an alternative form, using variables:

upperAccompaniment = { g’2 f’2 }

lowerAccompaniment = { e’2 a2 }

melody = { c’4 d’8 e’8 f’2 }

<<

\new Staff \new Voice \melody

\new Staff

<<

\new Voice { \voiceOne \upperAccompaniment }

\new Voice { \voiceTwo \lowerAccompaniment }

>>

>>

In the first three lines, all melodies are stored in variables. In the following
code, which represents the actual score, these variables are dereferenced, i.e.,
the stored melodies are inserted into the score. Thus, the musical content is
separated from the vertical structure of the score.

One application of music variables is within orchestral music. The conductor
of an orchestra needs to see the music of all instruments at once, while each
instrumentalist only needs to see his own part. Thus, several versions of the
score must be created: One orchestral score for the conductor, where the music
of all instruments is visible at the same time, and one instrumental part for each
instrument, where only the music of that instrument is visible.

If an orchestral score has been created by storing music into variables, then
the variables can be recycled to produce instrumental parts:

\new Staff \new Voice \melody

The use of variables makes error correction convenient: If the melody line
needs to be corrected, it is sufficient to correct the LY code in one spot, namely
the definition of the melody variable. This updates both the full score and the
instrumental part, since they both dereference the same variable.

13



2.5 Achievements

The previously presented LY language is a complex language, which is designed
to make it convenient for a human to enter music. The complexity of the
language makes it unsuitable for some applications. For example, it is difficult
to write a computer program that reads and understands the musical content
of a LY file.

In this thesis, an alternative input format to LilyPond is introduced. The
format, which is called music stream, is designed primarily to be read and writ-
ten by computer software, rather than by humans. It is easy for a computer to
analyse or manipulate music that is represented in the new format.

One problem with the LY language is that one score can be represented in
many different ways in the language. Depending on the author of a LY file, the
notes can be entered in different sequences, much like procedure definitions can
be entered in any order in a typical programming language. Figure 1 demon-
strates this.

Section 2.3 Section 2.4

8

6

432

7

5

1

4

2

876

3

1

5

Figure 1: These scores demonstrate the order in which notes were entered in
the LY code of the examples in sections 2.3 and 2.4.

In a music stream, each note is represented as an individual object, and all
such objects are combined into one long stream. The music is always sorted:
The note that is played first, comes first in the stream, as illustrated by Figure 2.
In this sense, the introduced format is similar to the MIDI [SFH97] format.

Music stream

8

7

654

3

2

1

Figure 2: In a music stream, notes are always ordered by time.

While the difference between the LY examples in Figure 1 can be easily
eliminated by moving a variable definition in Section 2.4, there are more complex

14



examples where this is much more difficult. Consider, for example, the following
score:

The score can be represented by two different expressions, in which notes are
ordered in fundamentally different ways:

• One chord at a time: { << c’4 e’4 >> << d’4 f’4 >> }

• One part at a time: << { c’4 d’4 } { e’4 f’4 } >>

In this thesis, the LilyPond program has also been divided into two fairly
independent parts: One part that converts the input LY file into a music stream,
and one part that converts this music stream into graphical output. In other
words, the music stream format is introduced as an intermediate representation

of music.

2.6 Overview of this report

The report contains the following parts:

• Section 3 presents the main problems this thesis deals with, and presents
some reasons for why music streams are needed.

• The theoretical background to this report is given by two sections, sec-
tion 4 and 5, which describe LilyPond’s existing program architecture.
These sections are needed to fully understand the implementation of music
streams and the related problems. Section 4 presents the most important
data structures in LilyPond, while Section 5 presents a number of com-
plex commands in the LY language, and explains how these commands
currently are implemented.

• Section 6 describes the music streams data type, and describes the API
that has been introduced to import and export music streams.

• Section 7 explains, on a more technical level, how different problems have
been encountered and solved in the implementation of music streams.

• Sections 8 and 9 present some conclusions, and suggest what can be done
in the future.

The report has six appendices:

• Appendix A is a crash course in music notation for a non-musician. Most
of the music terminology used in this report is explained in this appendix.

• Appendix B contains a quasi-formal definition of the parts of LY’s input
language that are needed for understanding this report.

• Appendix C gives a quick introduction to the music stream format, in-
cluding a simple example. The appendix is meant for readers who know
about LilyPond and are interested in the music stream format, but who
do not need to know about implementation details.

15



• Appendix D demonstrates a music stream that represents one full page of
a score.

• Appendix E presents some benchmarks on how the speed of LilyPond has
been affected by the introduction of music streams.

• Appendix F informs where further information on LilyPond’s program
architecture can be found.

16



3 Problem statement

The main goal of this thesis is to introduce a new music representation format,
the music stream, which can be read and written by LilyPond.

This section first presents the problems this thesis deals with. This is fol-
lowed by a presentation of a command in the LY language that handles cue

notes; this is a concrete case where the music stream is useful.
After this, a music stream that represents a short music fragment is presented

in pseudo-code. The section ends with a number of suggestions for applications
where music streams can be useful. These suggestions are merely motivations for
implementing music streams; not all suggested improvements are implemented
within this thesis.

3.1 The main goal of this thesis

The goal of this thesis is to introduce a new, simple, music representation format,
called music stream. This should be a chronological music representation format;
i.e., the note that is to be played first, comes first in the music stream.

The thesis investigates whether it is possible to introduce the new format by
separating LilyPond into two modules: The iterator, which parses and analyses
a LY file, and the formatter, which uses the results of the iterator to produce a
PDF file. The idea is that the modules should be separated so that information
only flows from the iterator to the formatter, and never in the opposite direction.
Once the modules are separated, a new music representation format can be
created by collecting all information that the iterator sends to the formatter.

LilyPond’s existing program architecture provides a natural starting point
for this thesis: The program is already separated roughly into two parts, an
iterator and a formatter. The formatter part converts musical information into
graphics, and does this strictly chronologically: All notes that are to be played
simultaneously are converted to graphics before any subsequent notes are han-
dled. The iterator part rearranges the information in a LY file to suit the
formatter, by sending all notes to the formatter in a chronological order.

This thesis mainly deals with the following tasks:

• To draw a distinct line between the two LilyPond modules.

• To define an API to be used for communication between the modules, and
to use this for export and import of music streams.

• To refactor the implementations of some existing advanced LY commands,
which currently prohibit a clean separation of the program into two mod-
ules. Ideally, LilyPond should be fully backward compatible after the
modularisation.

All work and experiments mentioned in the thesis is based on a fork of version
2.6.0 of GNU LilyPond.

3.2 Cue notes

One of the motivations for introducing music streams is that they can be used
to implement a system for handling cue notes automatically. LilyPond does
already contain a mechanism that automates the handling of cue notes; however,

17



a system based on music streams will have some advantages over the existing
system.

In orchestral music, it can be difficult for a musician to know when to resume
playing after a long rest. For this reason, cue notes are often written in instru-
mental parts, to indicate what music a different instrument is playing near the
end of the rest.

Cue notes look like ordinary notes, but they are smaller, and should not be
played.

The following music fragment demonstrates the use of cue notes:

4
2

SoloViola d'amore solo

Lute 4
2

36

Only the last three notes are played by the lute; all the preceding small
notes are cue notes. The sole purpose of the cue notes is to help the lutenist,
by indicating what the viola d’amore is playing right before the lute’s solo.

LilyPond contains a special command, \cueDuring, which is designed to
make the handling of cue notes convenient. The command assumes that all
instrumental parts have been entered into variables, as discussed in Section 2.4,
and it extracts a short fragment of music from one such variable.

With this command, the above example can be represented by input similar
to the following, assuming that the notes of the entire viola d’amore part are
previously saved in the amoreNotes variable:

\new Staff \new Voice {

R2*36

\cueDuring \amoreNotes { R2 r4 }

r16 f’’16 g’’16 a’’16

}

The first line generates 36 bars of rests in the lute part. This is followed by
the \cueDuring command, which uses the amoreNotes variable to generate cue
notes, which are typeset in parallel with the rests { R2 r4 }. Finally, the lute’s
actual music starts.

The \cueDuring command needs to perform the following tasks:

1. Calculate the length of the { R2 r4 } expression, to figure out which time
interval in amoreNotes should be extracted.

2. Read the amoreNotes variable, and extract all music from the time interval
that was calculated in (1).

3. Combine the extracted music with the rests { R2 r4 }, and format this
nicely.

While (1) and (3) are relatively easy to implement with LilyPond’s existing ma-
chinery, (2) is more problematic: If the amoreNotes variable contains a complex
expression, it can be difficult to calculate where the quote should start and end.

Music streams offer an elegant solution to this problem: The \cueDuring

command can convert the music from the amoreNotes variable into a music

18



stream. Since the notes are chronologically ordered in a music stream, it is easy
to extract the desired music fragment.

A number of other complex commands can be implemented with the help of
music streams, using similar techniques.

3.3 The contents of a music stream

This section presents, in pseudo-code, the music stream that represents a short
music fragment.

Recall the short music fragment from the introduction:

The fragment can be represented chronologically as a series of events, one for
each note, where each event happens at a given moment and in a given voice;
this is essentially the music stream representation of the fragment:

1. (time 0: note c’4, upper staff)

2. (time 0: note g’2, lower staff, upper voice)

3. (time 0: note e’2, lower staff, lower voice)

4. (time 1/4: note d’8, upper staff)

5. (time 3/8: note e’8, upper staff)

6. (time 1/2: note f’2, upper staff)

7. (time 1/2: note f’2, lower staff, upper voice)

8. (time 1/2: note a2, lower staff, lower voice)

An actual music stream needs to contain some more information than this
listing; for example, the music stream needs to describe more precisely how
different staves and voices relate to each other. One objective of this thesis is to
design a format for music streams, which is sufficiently expressive for LilyPond’s
needs.

3.4 Motivations for implementing music streams

There is a number of areas where music streams can be useful:

• Some advanced commands in the LY language, such as the system for cue
notes described above, can be implemented in an elegant way using music
streams. These commands are further described in Section 5.

19



• A music stream has a very simple chronological structure, so it is easy
for a third-party program to communicate with LilyPond using the new
format. This is difficult to accomplish using the LY format, because it is
difficult to parse and to manipulate a LY file.

For example, a music typesetting GUI can be written, which operates on
music streams; such a GUI can use an internal, fast, rendering engine in
most cases, and switch to LilyPond’s typesetting engine only to produce
the final output. LilyPond’s typesetting engine is currently too slow to
update scores in real-time in an interactive GUI.

• One of the problems with the LY format is that the format is often revised.
If a LY file is written for one version of LilyPond, it might not be possible
to compile the file with the next major version of the program. This is
problematic, because a user may want to revise a score a long time after
the score first was entered.

There is a tool that can upgrade the syntax of a LY files automatically;
the tool is however based entirely on regular expressions [Wik06], which
makes the tool too weak to handle all changes automatically.

Changes to the music stream format are likely to be less frequent than
changes to the LY format, and it can be expected that such changes will
be easier to handle automatically with high accuracy than changes to the
LY format. Therefore, the music stream format might be more suited for
music archival than the LY format.

• Music can be exported to external formats such as MusicXML or MIDI
directly from a music stream. LilyPond can export MIDI files, and a
similar feature can be implemented for MusicXML without using music
streams. However, it is likely that these exporters can be written more
compactly if they use music streams directly as input.

• When compiling a LY file, music streams make it possible to finish the
entire iteration process before starting the translation process. This way,
the consumption of memory may be reduced, since the data structures
of the iterator front-end and the translator back-end do not need to be
stored in virtual memory at the same time.

20



4 Data structures

This section describes, in detail, LilyPond’s original program architecture, i.e.,
the program architecture which was used before the implementation of music
streams. In particular, the data structures that are used to represent music
are explained, and it is described how these data structures interact with each
other.

The section starts with a brief overview of LilyPond’s typesetting process.
The purpose of this overview is to give a rough understanding of the data struc-
tures that will be presented, and of how they are related to each other.

Appendix C.2 contains an alternative, shorter, overview of LilyPond’s pro-
gram architecture, which is focused on understanding the contents of a music
stream.

The overview is followed by in-depth descriptions of a number of data struc-
tures that are relevant to this thesis. Knowledge of these data structures are
required to fully understand the following sections 5, 6, and 7. This section ends
with a short summary of the introduced data structures.

4.1 Overview of LilyPond’s program architecture

LilyPond transforms its input in several steps before converting it to graphical
output. We will first focus on a simplified model of the program execution,
illustrated by Figure 3.

Music
expression

Context
tree

Iteration Graphical
output

TranslationLY
file

Parser

Figure 3: A simplified model of LilyPond’s program architecture. Nodes rep-
resent data structures, and edges represent processes that transfer information
between these.

4.1.1 Overview of music expressions

Consider the following simple LY file:

<<

\new Staff { e’4 f’4 }

\new Staff { c’4 d’4 }

>>

The file represents the following piece:

21



The first step in the processing of this file is that the parser generates a music

expression from the input file. The music expression is LilyPond’s equivalent of
an abstract syntax tree; it is a tree which closely resembles the original input.

Figure 4 shows, in principle, what the music expression for our example looks
like. While the leaves of the tree represent actual notes, the internal nodes only

Simultaneous

Context [upper] Context [lower]

Sequential Sequential

e’4 f’4 c’4 d’4

Figure 4: A music expression

represent how the notes relate to each other.
The next step in music processing is to organise the notes, and to figure

out in which time slot and in which staff each note occurs. This step is called
iteration.

To represent time slots, LilyPond uses moments, which is the program’s way
of measuring time. In this report, it is sufficient to view a moment as a rational
number, where 1 represents the duration of a whole note, 1/4 represents the
duration of a quarter note, and so on. The beginning of a score is considered to
occur at time 0; after this the time increases in the natural way.

During music iteration, LilyPond processes one moment at a time, and as-
signs each note from this moment to the right staff. In our example, the current
moment is first set to 0, and the e’4 and c’4 notes are assigned to the upper
and lower staves, respectively. Then, the current moment is incremented to 1/4,
and the notes f’4 and d’4 are assigned to the respective staves.

4.1.2 Overview of contexts

The relation between the staves is represented by a tree of contexts. A context
usually represents an instrument or a group of instruments; it can be, e.g., a
single voice, a staff, a connected group of staves, or the entire score. The context

22



tree represents how the score is organised during a given moment ; the tree can
sometimes change, as illustrated by Figure 5.

Figure 5: Illustration of contexts. The filled regions illustrate the scopes of
different contexts, and the diagrams below the score are snapshots of the context
tree; these diagrams illustrate that the shape of the context tree may change
over time.

The context tree defines how different contexts are related to each other, and
is mainly used as a skeleton that other data structures relate to. For example,
the iteration process associates each note with a voice context. This association
will eventually decide which staff each note will belong to, since each voice
context belongs to a staff context.

When a note has been assigned to a context, the context sends it to the
translation process. The note is decomposed into objects of more graphical
nature, which represent the note and the stem. These objects are connected to
each other, and to other previously created objects.

For technical reasons, the graphical objects in a score need to be created
from left to right; this is the reason why the music iteration process is needed.

The graphical objects are of little interest to this thesis; however, a rough
understanding of the topic may help in understanding the iteration process.

4.2 Scheme and property lists

LilyPond is mainly written in C++, but uses the Lisp dialect Scheme as a plug-
in language. Scheme is a minimalistic, dynamically typed and garbage collecting
functional programming language. Most of LilyPond’s internal data structures
are C++ classes, which in addition can be accessed from within Scheme.

Some classes contain an associative array [Wik05] of dynamically typed
Scheme objects. This list is called a property list. Many of the data structures
that are relevant for this thesis, use property lists extensively.

23



4.3 Music expressions

The input to LilyPond is a plain text file, written in the LY language. LilyPond’s
parser reads this file, and uses it to generate a music expression.

A music expression is a tree that represents music, and can be seen as the
equivalent of the abstract syntax tree generated by a compiler’s parser. Each
music expression has a type, a list of children, and a generic property list. The
type defines how many children the expression can have, and how the expression
is to be interpreted; the property list defines some additional parameters, e.g.,
the pitch of a note.

Let’s recall the music expression presented in Section 4.1, and use it as an
example:

<<

\new Staff { e’4 f’4 }

\new Staff { c’4 d’4 }

>>

The expression can be viewed as a tree, as illustrated by Figure 6, and the
subexpressions have the following different types:

• NoteEvent: The expression represents a note, and has no child event.
Details about pitch, duration, etc., are stored in the property list.

• SimultaneousMusic: The expression represents the music between << >>.
I.e., child expressions are interpreted in parallel.

• SequentialMusic: The expression represents the music entered between
{ }. I.e., child expressions are interpreted in sequence.

• ContextSpeccedMusic: The expression represents a \new or \context

command. The expression has exactly one child, which will be interpreted
in a specific context.

As we can see, the arity of a music expression depends on its type:

• NoteEvent expressions are atomic and can never have child expressions.
Such expressions are called music events. In fact, most music expression
types are events.

• Some expression types, e.g., ContextSpeccedMusic expressions, always
have exactly one child expression. Such expressions are called music wrap-

pers.

• Some expression types, for example SequentialMusic expressions, have a
variable number of children.

24



<< >>

\new Staff

\new Staff

{ }

{ }

e’2

f’2

c’2

d’2

Figure 6: Music expression viewed as a tree

4.4 Contexts and context definitions

The first step in the further processing of a music expression into graphical out-
put, is called iteration. In this step, LilyPond traverses the expression chrono-
logically, i.e., the node in the expression that occurs first in the actual music, is
visited first.

The main goal of the iteration of a music expression, is to deliver each music
event to a context. This context is then responsible for all further processing of
the music event.

Intuitively, a context represents a vertical interval of the score. A context
can e.g. be a staff, a voice, a line of lyrics, or a connected group of staves. A
context has an extent in time, which is often the entire score, but which can
also be shorter, as illustrated by Figure 5.

Contexts are organised as a tree, where e.g. voices are children of staves, and
staves are children of the score. The tree of contexts represents the structure of
the score during a given moment.

To represent context types, LilyPond uses a class context definition. This
class contains information on how to interpret the context by default, and how
the context can relate to other context types. For example, the Staff context
definition defines that Staff contexts are rendered with five staff lines, and that
a Staff context only may have Voice contexts as children.

The set of context definitions forms a graph, where an edge from A to B
means that instances of B can be contained inside instances of A. Figure 7
contains a subgraph that is sufficient for this thesis.

Contexts which can’t have child contexts, such as Voice and Lyrics con-
texts, are called bottom contexts. All music events are reported to bottom con-
texts during the music iteration process.

The Global context is the root of the context tree, and is created before the
iteration starts. After that, contexts are usually created by the commands \new
and \context. However, LilyPond can also use the context definition graph to
create contexts implicitly. If, for example, a LY file only contains the expression
{ c4 d4 }, then a Score, a Staff and a Voice context are created implicitly.
This happens because

25



Global Score PianoStaff

Staff

Lyrics

Voice

Figure 7: The context definition graph of our LY sub-language. It shows, for
example, that a PianoStaff context only can be a child of a Score context,
and that it only can have children of types Staff and Lyrics.

• All events need to be sent to bottom contexts, so the Voice context must
be created.

• The context tree must comply to the context definition graph, therefore
the Score and Staff contexts are created between the Voice and the
Global context.

The Global context always has exactly one child, the Score context. Both
the Global and the Score context represent the entire score, but the two con-
texts perform slightly different tasks. The difference is not essential for under-
staning this thesis.

Each context has an associated text label, called its id. This is mainly used
in advanced commands, to distinguish a context from its siblings. A context’s id
is only well-defined if the context has been created with the \context command.

Each context also has a property list. Context properties specify settings
for the further processing of music events, and they can be tweaked with the
\set command. Context definitions contain default values for most context
properties.

During one moment, three context methods are normally called:

• The method prepare is recursively called in all contexts at the beginning
of each moment.

• Each music event that happens during a moment, is reported to a bottom
context, using the method try_music of that context.

• The method one_time_step is called at the end of each moment; this
usually means that the reported music events are further processed into
data structures of a more graphical nature, that later are used to create
PDF output.

There are other operations on contexts as well; these are used e.g. to override
context properties, and to create child contexts.

4.5 Music iterators

The iteration of the global music expression is, in principle, done by repeatedly
doing the following:

• Find the first moment M which we have not yet processed in the expres-
sion.

26



• Recursively process all music expressions that happen at moment M .

A data structure called music iterator is used to achieve this. A tree of
music iterators is built, which is isomorphic to the iterated music expression
tree. Each music iterator is associated with the corresponding music expression.
The purpose of the music iterator tree, is to report each music event to the right
context, at the right moment.

A music iterator is an object of a class Music_iterator. Central to this
class are two methods:

• The method pending_moment returns the next moment when an unpro-
cessed music event occurs in the associated music expression.

• The method process (M) recursively processes and reports all music
events that occur at moment M .

The iteration of a music expression is naturally carried out by repeatedly calling
process (pending_moment ()) in the root iterator.

The functionality of the methods process and pending_moment differ, de-
pending on the type of the associated music expression. For example, the
process method of the iterator of a music event typically reports the event
to a context, while the process method of the iterator of a SequentialMusic

expression recursively calls the process method of one child expression.
A music iterator always has an associated context, which is called its outlet.

This is the context that the iterator normally operates on. A music event is
always reported to its iterator’s outlet, which must be a bottom context.

As a concrete example, let’s look at the processing of the following file:

\new Staff \new Voice { c’2 d’2 }

The file is first parsed into a music expression, see Figure 8. One iterator is
created for each expression. Initially, the Global context is created, and a child
context of type Score is created implicitly.

\new Staff \new Voice { }

c’2

d’2

Figure 8: The iterated music expression tree.

Now, the actual iteration can start. The pending_moment method of the root
iterator (i.e., the iterator belonging to the \new Staff expression) is repeatedly
called to find the next moment, and the process method is invoked on that
moment. The entire process looks like this:

27



• The first pending_moment call returns 0, since the expression c’2 is un-
processed.

• The method prepare (0) is called in the global context, to prepare all
contexts to receive music events.

• The method process (0) is called in the root node of the music expres-
sion. The method recurses through a number of music iterators:

1. The iterator of the \new Staff expression, which creates a Staff

context, with the Score context as its parent.

2. The iterator of the \new Voice expression, which creates a Voice

context, with the Staff context as its parent. The outlets of the it-
erators of all child expressions are recursively set to this newly created
context.

3. The iterator of the { } expression, which recurses into the left child.

4. The iterator of the c’2 expression, which reports the event to its
outlet, which is the previously created Voice context.

• The context method one_time_step is called in the global context, to
process the incoming music event into objects of graphical nature. This
method is called once at the end of every moment.

• pending_moment is called. Since the c’2 expression now has been pro-
cessed, the function returns 1/2.

• prepare (1/2) is called in the global context.

• process (1/2) is called in the iterator of the root node of the expression.
This recurses down to the iterator of the expression d’2, which reports
this event to the Voice context.

• one_time_step is called again in the Global context, to process this music
event.

• Finally, the final moment 1/1 is processed, with the methods prepare,
process and one_time_step. This results in the addition of the final bar
line.

After this, all music events have been processed, so the iteration process is
finished. The final step is to generate an actual PDF file from the objects
created during one_time_step method calls; this is however outside the scope
of this thesis.

4.6 Translators

So far, we have seen what a context tree is, and some examples of how the
iteration process can act on the context tree. We will now see how a context
further processes a music event that the iteration process reports. Central to
this, is a class Translator with subclasses.

The task of a translator is to translate music events into objects of a more
graphical nature. These objects are called grobs, graphical objects. For example,

28



a quarter note might be converted into two objects, a note head and a stem,
which are linked to each other. The grobs are used to generate graphical output
after the music iteration has finished.

Each context is connected to a number of translators. The main job of all
translators mentioned in this thesis, is to generate grobs from music events.
These translators are also called engravers. The distinction between the words
“translator” and“engraver” is not relevant to this thesis; the words can therefore
be considered as synonymous within this report.

A context usually calls the following two methods in its translators:

• Music events can be sent to a translator through the method try_music.
Depending on the type of the music event, the translator will either ignore
the event, or swallow it. If the event is swallowed, it will normally just be
placed in a temporary list in the translator, which is further processed at
the end of each moment.

A music event may only be swallowed by one translator; this translator
is made responsible for all necessary further processing of this event into
graphical output. The try_music method returns true whenever the
passed event is swallowed, this is used to prohibit other translators from
swallowing the event.

The return value of the try_music method causes some problems when
implementing music streams; this is further discussed in Section 7.

• A translator can generate grobs through the method process_music. This
method is called from the context’s one_time_step method at the end of
each moment, and grobs are normally generated by processing the tempo-
rary list of music events that the try_music method created during the
same moment.

The methods can be illustrated with an example: If two note events, d’4 and
f’4, happen in the same voice during one moment, then the events are first sent
to the voice’s note head translator. The try_music method of the translator
is called twice, one for each note event, and a list of the two events is stored
in the translator. At the end of the processing of the moment, the translator’s
process_music method is called; the method reads the previously stored list
and creates grobs that form a chord: One stem and two note heads are created,
and the note heads are connected to the stem.

Each context connects to its translators via a generic translator called trans-

lator group, which administers a list of specialised child translators. The meth-
ods process_music and try_music of a translator group simply recurse into all
child translators.

When a music event is found by a music iterator, it is sent to the try_music
method of its outlet context, which should be a bottom context. The context
sends the event to the try_music method of its translator group, which recurses
into the try_music methods of all its child translators. If no translator can
swallow the music event, the event is recursively sent to the try_music method
of the parent context. This way, an event that affects an entire staff, such as an
event that changes the key signature, is handled by a translator on staff level.

Note that both music iterators, contexts, and translators have a method
called try_music. The common denominator is that the method attempts to

29



process the only argument, a music expression, in the scope defined by the class,
and that it returns a boolean value telling whether any translator managed to
swallow the event. If an event can’t be swallowed, try_music will report a
failure, and the caller will typically attempt to process the expression within a
different scope.

An optimisation is carried out by translator groups: Each music expression
is defined to belong to a number of music classes, and each translator is said
to accept a number of music classes. When a translator group tries a music
expression m, it only calls the try_music method of translators which accept
a class that m belongs to. This is a way to early filter out some translators
that never could process m anyway. One side-effect of this thesis is that this
optimisation can be generalised; this is discussed in Section 6.2.3.

4.7 Summary

• A music expression is an AST-like tree, which represents the input file.
Subtrees of this tree are also called music expressions. The leaves of a
music expression are called music events.

• One music iterator is created for each music subexpression. The resulting
tree of music iterators handles the processing of the main music expression.
This task includes the following:

– To build and maintain the context tree.

– To order all music events chronologically, and to send them to ap-
propriate bottom contexts.

• A context is a data structure that represents a voice, a staff or a group of
staves. Each context has a type. All contexts form a tree, where the root
is of type Global, and where all leaves are of type Voice or Lyrics. The
leaves are also called bottom contexts.

The context tree can change over time; for example, a staff or a voice can
be added in the middle of a piece. Therefore, a context tree represents
how instruments are organised at a given moment.

• Each context is connected to a number of translators. When a music event
is sent to a context, this context sends the event to its translators. These
convert the event to graphical objects, or grobs, and insert them into a
large graph of grobs. The graph of grobs is the main output from the
processing of the main music expression.

• The grob graph is finally processed into a PDF file; this task is irrelevant
for this thesis.

30



5 Some commands in the LY language

This section describes some of LilyPond’s more complex commands, and ex-
plains how the commands are originally implemented by LilyPond.

The section has two purposes:

• The previous section defines LilyPond’s data structures in a rather ab-
stract way. This section gives a more concrete understanding, by explain-
ing how the data structures are used in practice.

• Many of the commands listed in this section are implemented in a way
that interferes with the implementation of music streams. In order to
understand these problems, the original implementations need to be un-
derstood.

This section however only describes how the problematic commands are
implemented, it avoids discussing why they are problematic. All such dis-
cussions are postponed to Section 7, which also explains how the problems
have been solved.

5.1 The \change command

Piano music is traditionally notated in two staves, so that notes that are played
with the right hand are placed in the upper staff, and notes played with the left
hand are placed in the lower staff.

In some situations, a melody can move from the right to the left hand. This
is notated by letting the melody change staff, as in this example:

A melody is represented by a Voice context, and a Voice context is always
the child of a Staff context. So, to notate this kind of piano music properly, a
Voice must be able to change its parent context in the middle of a piece.

LilyPond contains a command \change, which lets a voice change the staff
it belongs to. With this command, the above example can be represented with
the following code:

\new PianoStaff <<

\context Staff = "up" \new Voice {

a’8 f’8 d’8

\change Staff = "down" a8

\change Staff = "up" r4 d’4

}

\context Staff = "down" { c1 }

>>

31



5.2 The \autochange command

\autochange is a command that automatically inserts \change commands into
a melody.

The command takes a voice of music as its argument. It creates two staves,
named up and down, and each note is assigned to one of these. Notes with
pitches above a certain threshold go to the upper staff, while notes below it go
to the lower staff. Rests are assigned to the same staff as the next note after
the rest.

The previous example of the \change command can be written more conve-
niently using the \autochange command:

\new PianoStaff <<

\autochange { a’8 f’8 d’8 a8 r4 d’4 }

\context Staff = "down" { c1 }

>>

Implementation

The \autochange command is a music function, i.e., a Scheme function that
returns a music expression. The function takes one argument mus, a music
expression, and it returns a different music expression.

When the parser encounters the expression \autochange {c c’}, the argu-
ment {c c’} is parsed into a music expression M , which is sent to the Scheme
function \autochange. The function’s return value is then used as the resulting
node in the music expression tree.

The function call \autochange M returns a music expression, which contains
the music in M , and adds \change commands where appropriate.

In order to insert the \change commands correctly, the \autochange func-
tion needs to analyse the music expression M . The analysis is not trivial: For
example, a rest should always belong to the same staff as the following note;
this can in some rare situations be difficult to achieve. The following music
expression illustrates the problem:

{ << { s4 d’4 } { r4 s4 } >> b4 }

When looking only at the music expression, it is difficult to spot that the rest
r4 directly precedes the note d’4. This particular example may not look like a
realistic LY file, but it does illustrate a problem that needs to be addressed in
order to correctly handle more complex music.

LilyPond’s solution to the problem is to create a chronologically ordered list
of all note events in M , and to analyse that list instead of M .

Chronological ordering is exactly what music iteration is about, and the
function \autochange re-uses this mechanism: While the LY file still is being
parsed, the \autochange function starts its own music interpretation step, which
creates the chronological event list that is needed. This process is implemented
as follows:

32



• The \autochange function creates a modified version of the context def-
inition graph. The graph is isomorphic with the original one, but some
settings are changed in the context definitions:

– Various changes are made that make all translators skip the typeset-
ting pass, i.e., the creation of grobs.

– The Voice definition is changed, so that a special translator group
Recording_group_engraver is used. This translator group was de-
signed specifically for this task: it does the normal job of a translator
group, and in addition it stores each processed music event in a list,
which automatically gets chronologically ordered.

• A new music interpretation process, which processes the expression M ,
is started. This process uses the modified set of context definitions in-
stead of the standard one, and doesn’t result in any graphical output:
The only side-effect of the process is the list of music events that the
Recording_group_engraver translator groups create.

• The list of music events is read by the \autochange function, which pro-
cesses the list further, and produces a split list. This is a chronological
list of pairs (T,D), where T is a moment, and D ∈ {−1, 1}. One such
pair represents that the voice should appear in the staff specified by D,
starting at moment T . D = −1 represents the lower staff, and D = 1
represents the upper staff.

• The \autochange function creates a music wrapper, which it returns. The
music wrapper is of the type AutoChangeMusic, and it has M as its only
child. The previously created split list is stored as a music property in
this music wrapper.

During the music iteration phase, the iterator of the AutoChangeMusic

expression reads the split list, and uses the mechanisms from the \change

command to change the staff appropriately.

5.3 The \partcombine command

The command \partcombine is used to merge two voices into one staff. When
the rhythms of the two parts are identical, the two voices are merged into a
chord; otherwise the two voices are written out in parallel, using two separate
voices.

The syntax is:

\partcombine E1 E2

where E1 and E2 are music expressions. For example:

\partcombine { c’’8 d’’8 e’’4 } { a’4 a’4 }

33



The implementations of \partcombine and \autochange are very similar;
in fact the two commands share a lot of code. \partcombine is a music func-
tion, just like \autochange, but the \partcombine function takes two music
expressions as parameters.

The command returns a special music expression PartCombineMusic, which
gets E1 and E2 assigned as its children. The PartCombineMusic expression
basically works like a SimultaneousMusic expression, but its iterator performs
some additional work as well:

• Initially, the iterator creates a number of Voice contexts, which have
different properties. For example, in one voice, all notes have their stems
pointing upward, in another they point down, and in a third they can
point in any direction (that voice is dedicated to chords).

• During iteration, the iterator of a PartCombineMusic expression some-
times makes its child iterators, i.e., the iterators of E1 and E2, change
their outlets to the different voice contexts. By making the changes at the
right moments, the desired effect is achieved.

In the example above, the PartCombineMusic first sets the outlet of the
the { c’’8 d’’8 e’’4 } expression’s iterator to the“stems up”voice, and
the outlet of the { a’4 a’4 } expression’s iterator to the “stems down”
voice. At time 1/4, both outlets are changed to the “chord” voice.

To calculate when to switch outlets, the \partcombine function first inter-
prets both E1 and E2 in the same way as \autochange interprets its argument,
to collect two lists of note and rest events. These are further processed into a
split list, similar to the one used by \autochange. These lists are then anal-
ysed, and a chronological split list is created, which is used by the \partcombine
iterator to decide when to switch outlets.

5.4 The \addquote command

A third command, \addquote, also makes use of the music iteration mechanism
internally. The system for handling cue notes, described in Section 3.2, is based
on the mechanisms from the \addquote command.

The syntax of the command is as follows:

\addquote N M

Here, N is an arbitrary text string, and M is a music expression. The
\addquote command is a kind of assignment, and it must be placed before the
main music expression in the LY file, where variable assignments normally are
placed.

\addquote is a Scheme function with undefined return value, and one side-
effect: In any subsequent music expression, the command \quoteDuring # N
M ′ can be used. The \quoteDuring command extracts all notes of M that
happen simultaneously with the expression M ′, and adds the extracted notes as
if they were written inside the expression M ′.

The following example shows how the command is used:

\addquote foo { f’4 c’16 d’16 e’16 f’16 g’8 g’8 }

34



\new Staff \new Voice {

d’4 \quoteDuring # "foo" { s4 } e’8 e’8

}

The command is implemented as follows:

• \addquote interprets its argument just like \autochange, associates the
resulting chronological event list with the name N , and stores it in a global
list.

• \quoteDuring is a music function that creates a music wrapper around
M ′. The iterator of this music wrapper recursively interprets M ′, and
in addition, it retrieves the event list named N . When a moment T is
processed by the iterator, the iterator extracts any events that occurred
in M during T , and reports these events to its outlet context.

5.5 The \lyricsto command

The \lyricsto is a command that simplifies the typesetting of music with lyrics
in LilyPond, by automatically synchronising lyric syllables to note events.

The command has the following syntax:

\lyricsto ctx lyr

Here lyr is a music expression containing lyrics, and ctx is a string, containing
the context id of the Voice context to synchronise with. This context is called
the \lyricsto expression’s synchronisation context. The \lyricsto command
overrides the durations of the lyric syllables in lyr, so that the syllables are
synchronised with note events from the voice with id ctx.

Example:

<<

\new Staff \context Voice = V { d’’2 c’’4 b’2 }

\new Lyrics \lyricsto V { "Join"1 "us"1 "now"1 }

>>

4
7

nowusJoin

4
7

Implementation

When the parser encounters \lyricsto ctx lyr, it creates a music wrapper of
type LyricCombineMusic, which has lyr as its only child. The music iterator of
the LyricCombineMusic expression gives the child expression’s iterator a false
sense of time; this fools the child to only generate lyric events when they are
synchronised with note events from the synchronisation context.

35



When the LyricCombineMusic expression is processed, its iterator performs
the following actions during each moment:

• It finds the synchronisation context, i.e., the Voice context V that has id
ctx.

• It creates a dummy event E of type BusyPlayingEvent. This is a dummy
music expression type, that has no effects on graphical output. However,
the try_music method of any translator that accepts note events, will
swallow BusyPlayingEvent events if and only if a note event has been
swallowed previously during the same moment.

• It runs V ->try_music (E). If this function returns success, it is con-
cluded that a new note has been created in the context V during the
current moment, and that the next note from the LyricCombineMusic ex-
pression’s child expression should be processed. This is carried out by call-
ing the child expression’s pending_moment method, to find out at which
moment T in L that the next unprocessed lyric event occurs. Then, the
child’s process method is called, with T as its argument.

5.6 The \times command

The \times command is used to create tuplets. The syntax is:

\times N/D mus

Here, N and D are positive integers, and mus is a music expression. The
command multiplies the duration of all music in mus by N/D, and typesets a
tuplet bracket above mus.

Example:

{ \times 2/3 { g’4 a’4 b’4 } c’’2 }

3

Implementation

When the \times expression is parsed, the expression mus is first compressed,
which means that the durations of all subexpressions are recursively multiplied
by N/D. After this, a music wrapper TimeScaledMusic is created, with mus as
its only child.

When the TimeScaledMusic expression is iterated, the iterator reports the
entire expression to its outlet context, through the try_music method. Note
that this is different from the standard behaviour: Normally, only music events

are sent to the try_music method; in this case, a music wrapper is sent. This
causes some problems, which are discussed in Section 7.1.2.

When a TimeScaledMusic expression is sent to a context, the context for-
wards the expression to a translator Tuplet_engraver. This translator calcu-
lates the total duration of the TimeScaledMusic expression, and uses this to
determine the width of the tuplet bracket.

36



5.7 The \set command

The main purpose of the command \set is to offer a way to modify the param-
eters of some translators. The command has the following syntax:

\set C . P = # S

Here, C is a context type, P is the name a context property, and S is a
Scheme expression. The command defines the value of the context property P
to S.

For example, the context property fontSize can be modified to make note
heads smaller:

\new Staff \new Voice {

d’8 e’8

\set Voice . fontSize = # -3

f’8 g’8

}

Implementation

The \set command is parsed into a music event. When this event is processed
during iteration, the appropriate context is found. The context contains a prop-
erty list, and the setting of P is directly changed to S in this list.

When music events are subsequently processed by translators in this context,
they read the new value of the fontSize property, and produce smaller note
heads. This is why the \set command above only affects the f’8 and g’8

notes.

37



38



6 Implementation of music streams

We recollect that the goal of the thesis is to separate LilyPond into two modules,
connected through some API, and to introduce a chronological intermediate
music representation format which can be extracted through this API.

This section first introduces the new music representation format; this is
followed by a description of the API which connects the two modules.

6.1 A music stream

This section presents an example of what a music stream looks like, for a real
piece of music.

A short music fragment is first presented, including a representation of the
piece in the LY language. This is followed by a presentation of the corresponding
music stream.

6.1.1 The example score

This section presents a short fragment of a real piece of music. The representa-
tion of this piece as a music stream is presented in the next section.

The score consists of the first measure of Mozart’s Clarinet Quintet KV 581,
with two staves removed. The full score of the first 16 measures can be found
in Appendix D, along with a corresponding music stream.

4
3

4
3

4
3

p

p
4
3

4
3

4
3

p

The following LY code represents the score:

% Lines starting with % are comments.

% First, music is stored in variables.

% Music between { } are interpreted in sequence.

clar = {

% c’’8 adds a note with pitch c’’ and duration 1/8

% Slurs are denoted with ( and ), and

% \p adds a piano mark.

c’’8 ( \p e’’8

g’’8 e’’8 c’’’4 ) g’’8 e’’8

}

39



violinI = {

% change the key signature to A major

\key a \major

r4 r4 a’4 \p a’4

}

cello = {

\clef "F"

\key a \major

r4 a4 \p r4 r4

}

% The music in the variables are now inserted

% into staves, which are combined into a score.

% Music between << >> is interpreted simultaneously.

<<

% Time signature is set once globally.

% Bar lines are added automatically.

\time 3/4

% Upbeat with the duration of a quarter note

\partial 4

% The following line creates a new staff

% that contains the clarinet notes.

\new Staff \clar

\new Staff \violinI

\new Staff \cello

>>

6.1.2 Representation as a music stream

A music stream consists of a sequence of stream events. Each stream event used
in this example represents either a music event, the creation of a context, a
modification of a context property, or a time increment. The music stream for
the Mozart example above, consists of the following stream events (represented
as a Lisp-style association list [Wik05]):

1 ((context . 0) (class . CreateContext) (unique . 1) (ops) (type . Score) (id . ""))
2 ((context . 1) (class . CreateContext) (unique . 2) (ops) (type . Staff) (id . "\\new"))
3 ((context . 2) (class . CreateContext) (unique . 3) (ops) (type . Voice) (id . ""))
4 ((context . 1) (class . CreateContext) (unique . 4) (ops) (type . Staff) (id . "\\new"))
5 ((context . 4) (class . CreateContext) (unique . 5) (ops) (type . Voice) (id . ""))
6 ((context . 1) (class . CreateContext) (unique . 6) (ops) (type . Staff) (id . "\\new"))
7 ((context . 6) (class . CreateContext) (unique . 7) (ops) (type . Voice) (id . ""))
8 ((context . 0) (class . Prepare) (moment . #<Mom 0>))
9 ((context . 1) (class . SetProperty) (symbol . timeSignatureFraction) (value 3 . 4))

10 ((context . 1) (class . SetProperty) (symbol . beatLength) (value . #<Mom 1/4>))
11 ((context . 1) (class . SetProperty) (symbol . measureLength) (value . #<Mom 3/4>))
12 ((context . 1) (class . SetProperty) (symbol . beatGrouping) (value))
13 ((context . 1) (class . SetProperty) (symbol . measurePosition) (value . #<Mom -1/4>))
14 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "c’’8">))
15 ((context . 3) (class . MusicEvent) (music . #<Music SlurEvent "( ">))
16 ((context . 3) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))
17 ((context . 5) (class . MusicEvent) (music . #<Music KeyChangeEvent "\key a \major">))
18 ((context . 5) (class . MusicEvent) (music . #<Music RestEvent "r4">))
19 ((context . 7) (class . MusicEvent) (music . #<Music KeyChangeEvent "\key a \major">))
20 ((context . 6) (class . SetProperty) (symbol . clefGlyph) (value . "clefs.F"))
21 ((context . 6) (class . SetProperty) (symbol . middleCPosition) (value . 6))
22 ((context . 6) (class . SetProperty) (symbol . clefPosition) (value . 2))

40



23 ((context . 6) (class . SetProperty) (symbol . clefOctavation) (value . 0))
24 ((context . 7) (class . MusicEvent) (music . #<Music RestEvent "r4">))
25 ((context . 0) (class . OneTimeStep))
26 ((context . 0) (class . Prepare) (moment . #<Mom 1/8>))
27 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))
28 ((context . 0) (class . OneTimeStep))
29 ((context . 0) (class . Prepare) (moment . #<Mom 1/4>))
30 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))
31 ((context . 5) (class . MusicEvent) (music . #<Music RestEvent "r4">))
32 ((context . 7) (class . MusicEvent) (music . #<Music NoteEvent "a4">))
33 ((context . 7) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))
34 ((context . 0) (class . OneTimeStep))
35 ((context . 0) (class . Prepare) (moment . #<Mom 3/8>))
36 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))
37 ((context . 0) (class . OneTimeStep))
38 ((context . 0) (class . Prepare) (moment . #<Mom 1/2>))
39 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "c’’’4">))
40 ((context . 3) (class . MusicEvent) (music . #<Music SlurEvent ") ">))
41 ((context . 5) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))
42 ((context . 5) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))
43 ((context . 7) (class . MusicEvent) (music . #<Music RestEvent "r4">))
44 ((context . 0) (class . OneTimeStep))
45 ((context . 0) (class . Prepare) (moment . #<Mom 3/4>))
46 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))
47 ((context . 5) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))
48 ((context . 7) (class . MusicEvent) (music . #<Music RestEvent "r4">))
49 ((context . 0) (class . OneTimeStep))
50 ((context . 0) (class . Prepare) (moment . #<Mom 7/8>))
51 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))
52 ((context . 0) (class . OneTimeStep))
53 ((context . 0) (class . Prepare) (moment . #<Mom 1>))
54 ((context . 0) (class . OneTimeStep))
55 ((context . 3) (class . RemoveContext))
56 ((context . 2) (class . RemoveContext))
57 ((context . 5) (class . RemoveContext))
58 ((context . 4) (class . RemoveContext))
59 ((context . 7) (class . RemoveContext))
60 ((context . 6) (class . RemoveContext))
61 ((context . 0) (class . Finish))

A longer example of a music stream can be found in Appendix D.

Some notes:

• Each event contains a field context, which tells which context the event
happens in. 0 is the global context, which exists before the iteration begins.

• Events 1 – 7 generate the context tree. In this example, the context tree
never changes over time. The unique fields of these events denote the
context value that will be used by future events, to refer to the newly
created context.

• Each event contains a property class, which defines the event’s type. For
example:

– A CreateContext event creates a context.

– A Prepare event increments time.

– A SetProperty event modifies a context property; for example, event
11 modifies the measureLength property, which controls the time
signature.

– A MusicEvent event assigns a music event to a voice context.

41



6.2 Implementation of music streams

This section introduces the abstract data type dispatcher, and explains how it
has been used to implement an API for music streams.

With the introduction of music streams, LilyPond gains two new operations:

• A LY file can be converted into a music stream, which is saved to disk.

• A previously saved music stream can be loaded from a file, and the stream’s
musical content can be typeset as a PDF file.

In order to implement these two operations, LilyPond is separated into two
modules, a front-end and a back-end, which connect through a generic plug-in
API. By default, the front-end consists of music iterators, and the back-end
contains translators. The import and export of music streams are implemented
by creating alternative front- and back-ends, which substitute the defaults.

The API is based on ideas from event-driven programming: The front-end
generates stream events; each stream event is sent to an event dispatcher. By
registering event handlers in this dispatcher, the back-end can listen to all gen-
erated events. This way, it is easy to substitute either the front-end or the
back-end.

The dispatchers in the plug-in API are in many ways different from dispatch-
ers that are used traditionally in event-driven programming. The dispatchers
implemented in this thesis are mainly characterised by the following properties:

• Dispatchers are sensitive to event classes: If an event handler is only
interested in receiving CreateContext stream events, then no dispatcher
will ever send it a Prepare stream event, for instance.

• The API is a set of several dispatchers. Many dispatchers are event han-
dlers for other dispatchers, so a stream event that is sent to a dispatcher,
is often distributed recursively to the event handlers of many different
dispatchers.

• While most real-world examples of event-driven systems use asynchronous
events, the dispatcher system used in LilyPond is synchronous: There is
no concurrency in the system, so dispatchers always call one event handler
at a time, and wait for each call to finish before the next one is started.

• If more than one event handler is registered to listen to the same stream
events in a dispatcher, it is sometimes essential that the stream event is
sent to the event handlers in the right order : One event handler may
depend on the results of another. Therefore, a stream event is always
sent first to the event handler that registered first as a listener to the
dispatcher.

6.2.1 The use of dispatchers in LilyPond

The dispatcher system is inserted as an extra layer between music iterators and
translators.

Before the implementation of dispatchers, music iterators called methods of
translator groups and contexts directly. This has been changed in this thesis:
Each context now contains a dispatcher, called the event-source dispatcher. The

42



context and its translator group register some of their methods as event handlers
to this dispatcher. Instead of calling these methods directly, a music iterator
can send a stream event to the context, so that the intended method is called
as an event handler.

The rewrite can be illustrated by the following two examples:

• Previously, a music iterator reported a note event to a translator group by
calling the method try_music. This has been changed in this thesis: The
translator group of each context has registered its try_music method as
an event handler to the event-source dispatcher in the context. So, instead
of calling the try_music method directly, the music iterator can create a
stream event of type MusicEvent, which is sent to the dispatcher in the
target context. This triggers the dispatcher to call the try_music method
of the translator group.

• Suppose a music iterator iterates a ContextSpeccedMusic music expres-
sion, and decides to create a voice context. Previously, the voice was
created by directly telling the parent context, a Staff context, to create a
new child context of type Voice. This behaviour has been changed in this
thesis: The iterator instead creates a stream event of type CreateContext,
which is sent to a dispatcher in the staff context. The staff context has reg-
istered an event handler to this dispatcher, so the context hears the event
and creates a child context. The staff’s translator group has also regis-
tered an event handler for CreateContext stream events, so it receives
the event right after the staff context has created the voice context. The
translator group reacts on the event by creating a new translator group in
the newly created voice.

It might look like an unnecessarily complex solution to use a complete event
dispatching system just to implement an API between two modules. One of the
motivations behind the system is that the dispatcher API makes it very easy to
export and import music streams:

• In order to import a music stream and typeset its music, it is sufficient
to create a new context tree, and to send all stream events, in order, to
the appropriate contexts in that tree. Note that no special action needs
to be taken to maintain the structure of the context tree – each context
automatically listens to CreateContext events, and can thereby take care
of the creation of any child contexts.

• In order to export a music stream, it is sufficient to register an event
handler that hears all stream events in all contexts, and to let this handler
append all incoming events to the end of the destination file.

There are several additional motivations for the dispatcher system; in fact, the
initial motivation for the system was that the functionality of the \lyricsto

command can be preserved using dispatchers, as explained in Section 7.1.1. The
system also enables some further improvements to LilyPond, which fall outside
the scope of this thesis; these improvements are discussed further in Section 9.4
and in Section 9.5.

43



6.2.2 Dispatchers as event handlers

Apart from the event-source dispatcher, each context contains a dispatcher
events-below, which collects all events that are sent to the event-source in the
context and all its child contexts, recursively. This is achieved by letting the
dispatcher listen to events from other dispatchers. The events-below dispatchers
make it easy to export music streams: It is sufficient to add one event handler
to the events-below dispatcher of the global context. Figure 9 illustrates how
dispatchers are connected to each other during one moment in a score, and how
stream events flow between these dispatchers when a music stream is exported.

If only graphical output is produced, and no music stream is exported, each
stream event is typically sent directly from the event-source of a context to the
translator group in that context; in this case, the events-below dispatchers serve
no purpose. This issue is further discussed in Section 7.2.

4
3
4
3

Score

Staff

Voice (lower)

Voice (upper)

ES

EB
Music
stream

exporter

ES

EB

ES EB

ES EB

Music
iterators

\time 3/4

\clef "F"

c8

e8

Figure 9: A graph showing how stream events are sent between dispatchers in a
single-staff score, when a music stream is exported. The nodes marked ES are
event-source dispatchers, while nodes marked EB are events-below dispatchers.
Dashed edges indicate stream events that are not sent between dispatchers.

6.2.3 The dispatcher data type

This section explains, on a rather technical level, the different operations that
can be carried out by a dispatcher.

The dispatcher supports five different operations. The following two opera-
tions are the most basic ones, and are sufficient for most applications:

• The operation Register (D, H, C) registers the call-back procedure H
as an event handler for the dispatcher D. H is a procedure which takes a
single stream event as parameter, and it will henceforth be called whenever
a stream event with event class C is reported to the dispatcher D.

44



For example, when a translator group is first created, it calls Regis-

ter (event-source, try_music, MusicEvent), to register its try_music

method as a handler for stream events of type MusicEvent.

• The operation Broadcast (D, E) sends the event E to all event handlers
in dispatcher D that are interested in it. In other words, for each event
handler H that is registered in D to listen for events of the same class as
E, call H(E).

For example, a music iterator can send a stream event c’4 to the event-
source dispatcher of a context, using something like:

Broadcast (event-source, c’4)

This operation causes the event-source dispatcher to call the transla-
tor group method try_music, which was previously registered to the dis-
patcher through the Register operation.

The reason why the Register and Broadcast operations take event classes
into account, is that this makes some optimisations possible. This is further
discussed in Section 7.2

There are three additional operations, which are not strictly needed, but
which improve the elegance and performance of the system:

• The operation Connect (D1,D2) connects the dispatcher D2 to the dis-
patcher D1. The operation is in many ways similar to registering D1’s
Broadcast operation as an event handler for all event classes in D1;
there are however essential differences in the way event classes are han-
dled. These differences are discussed in Section 7.2.

• The operations Unregister (D,H,C) and Disconnect (D1,D2) are
used to unregister event handlers from a dispatcher. This happens, e.g.,
when a context is removed.

45



46



7 Implementation notes

7.1 Obstacles encountered while separating iterator from
formatter

This section discusses problems that were encountered while implementing the
previously described music stream API.

We recall that the music stream API is a generic API, to which one can plug
in any front-end, and any back-end. Therefore, a front-end may not depend on
which back-end is used; in particular, no music iterator may ever depend on
what translators do, because it might happen that the translator back-end is
not plugged in.

The only essential obstacle for implementing music streams is that music
iterators, as originally implemented, sometimes do depend on the return value
of the method try_music, which in turn depends on what translators do.

There are essentially three situations where problems occur with the function
try_music; all these problems have been solved in this thesis.

7.1.1 Problems with the \lyricsto command

We recall from section that the command \lyricsto in its original implemen-
tation probes the translators of its synchronisation context, to see whether any
translator has received a note event during the same moment. This is imple-
mented by sending a dummy event to the try_music method of the synchro-
nisation context; all translators are programmed to swallow the dummy event
whenever a note event had been previously swallowed. The \lyricsto then
uses the return value of the try_music method to determine whether a lyric
should be added.

This original approach causes problems for the implementation of music
streams, because information is transmitted from a translator to a music itera-
tor.

In this thesis, the problem is solved by re-implementing the \lyricsto com-
mand using dispatchers: The music iterator of the \lyricsto command registers
an event handler with the event-source dispatcher of the iterator’s synchronisa-
tion context. This way, the music iterator is notified whenever a note event is
sent by the synchronisation context, which is exactly what’s needed.

The re-implementation of the \lyricsto command is one of the reasons why
the dispatcher model was chosen for the music stream API: In order to make
the \lyricsto command independent of translators, a system with functionality
similar to that of dispatchers had to be built anyway, in order to re-implement
the command.

7.1.2 Problems with the \times command

When a \times expression is interpreted, as explained in Section 5.6, the ar-
gument to the try_music method of a Tuplet_engraver translator is a music
wrapper. The translator Tuplet_engraver, which swallows the music wrap-
per, traverses that entire music expression to calculate its total duration. All
sub-expressions of the TimeScaledMusic music expression are accessed by this
translator. This is problematic, because a large expression needs to be trans-
ferred over a music stream, just to express a duration.

47



In this thesis, the problem is solved by letting the iterator of the \times

music expression calculate the expression’s duration. This duration is then sent
to the translator Tuplet_engraver by encoding it in a special event. This is
a sufficient solution, because the translator Tuplet_engraver does not depend
on any other properties of TimeScaledMusic expressions than their durations.

7.1.3 Warning messages for unprocessed events

If there is no translator that can swallow a music event, a warning message
should normally be displayed. LilyPond originally implemented this warning
message within music iterators: Whenever a music iterator reported a music
event, it did so by calling the try_music method. By inspecting the return
value of try_music, the iterator could conclude whether to issue a warning.
This behaviour is problematic, because information is sent from the translator
back-end back to an iterator.

The problem has been solved in this thesis by moving the warning message
to the dispatchers: Whenever a dispatcher receives an event which it can’t send
to any event handler, a warning message is displayed. The correctness of this
behaviour depends on optimisations discussed in Section 7.2.

7.2 Efficiency considerations

Ideally, the implementation of music streams should have minimal negative im-
pact on LilyPond’s performance. If there has to be some negative impact, it
should be linear in the size of the music stream. This section discusses some
problems, and explains how they have been solved.

All the operations of dispatchers can be implemented so that they essentially
consume O(1) time, using standard techniques. The only way to optimise further
is therefore to reduce the number of dispatcher operations that are executed.

There is one situation where dispatchers may perform unnecessary opera-
tions: Suppose that a MusicEvent stream event is sent to a dispatcher D0, and
that a large number of dispatchers, D1,D2, . . . ,Dn, listen to events in D0, i.e.,
they have all been connected to D0 through the Connect operation. Sup-
pose also that there is no event handler for MusicEvent stream events except
in dispatcher D1. In this case, there is no point for D0 to send events to the
dispatchers D2, . . . ,Dn.

For this reason, the Connect and Register operations have been written
so that a dispatcher never sends a stream event to another dispatcher, unless

the event needs to be sent there in order to make the event eventually reach a
non-dispatcher event handler.

In other words, the following properties are always maintained for the set of
dispatchers:

• A dispatcher D1 is said to be connected to a dispatcher D2 if, and only
if, Connect (D1,D2) has been called (this is of course cancelled by a
subsequent Disconnect call). The set of dispatchers can be viewed as a
directed graph, with connections as the edges, and dispatchers as edges.
In this graph, there may be at most one distinct path between each pair
of dispatchers.

48



• For each event class C, the Broadcast operation of a dispatcher is either
registered as an event-handler for C in all dispatchers it is connected to,
or in none of them.

• The Broadcast operation of a dispatcher is registered as an event handler
for an event-class C if, and only if, some other event handler is registered
to listen to the class C in D.

While maintaining these properties, all dispatcher operations have been opti-
mised to still only consume O(1) amortised time for all operations, in principle.
The extra overhead that is consumed by the music stream API for processing
one event, is thereby linear in the longest path of the dispatcher graph.

In practice, the implementation of music stream has a negative impact on
the performance of LilyPond. Appendix Appendix E contains benchmarks that
indicate that the impact is rather small: the presence of the music stream API
makes the program less than 3% slower in practice.

7.3 Implemented applications of music streams

As mentioned in Section 3.4, there is a number of potential applications of music
streams. Prototypes of some applications have been implemented:

• A new implementation of the quoting mechanism has been written, which
uses music streams instead of music event lists. While the original im-
plementation only could quote music events, the new implementation can
quote modifications to context properties as well.

• A LY file has been written, which makes LilyPond output the music stream
that corresponds to an arbitrary music expression. Appendix C and Ap-
pendix D contain examples of music streams created using this LY file.

• A LY file has been written, which makes LilyPond read a music stream as
input, and produce a corresponding PDF file.

49



50



8 Conclusions

LilyPond is successfully separated into two modules:

• The iterator reads a LY file, and encodes all musical content of this file
into chronologically ordered stream events. The sequence of stream events
is called a music stream.

• The formatter reads a sequence of stream events, and uses these to typeset
a PDF file.

The modules connect via a generic API, which consists of dispatchers, and which
uses ideas from event-driven programming. By substituting the iterator and
formatter modules, it is possible to export a music stream to a file, and to use
music streams as an alternative LilyPond input format.

The implementations of two LilyPond commands, \lyricsto and \times,
had to be partially rewritten in order to separate the two modules. This was
achieved while preserving full backward compatibility.

An alternative implementation of the system for quoting music has been im-
plemented using music streams. One benefit of the new system is that changes
to context properties are recorded in music streams. The new command can
thereby quote changes to context properties, in addition to ordinary music
events.

The implementation of music streams has a measurable negative impact on
LilyPond’s performance; however, the performance loss is very small, and in
realistic cases, the difference is not noticeable.

Given that the costs for implementing music stream are low, and that there
are significant benefits, my conclusion is that music streams are overall a useful
addition to GNU LilyPond. The main advantages, apart from the ones already
mentioned, are that the separation of LilyPond into modules is a well-needed
general code cleanup, and that some new possibilities for future development
are opened, as discussed in Section 9.

51



52



9 Suggestions for future work

This section presents different ideas on future work.

9.1 Using music streams for analysing and manipulating
music

By introducing an abstraction layer around music streams, a number of com-
mands, namely \autochange, \partcombine, and \quoteDuring, can be rewrit-
ten in a more elegant, powerful, and efficient way.

For example: When manipulating a music stream, it may be interesting to
inspect a property of a context, or the context’s child list, at a given moment.
This can be achieved by representing each context as a time interval, and to
introduce an abstract data type context history for inspecting and manipulating
contexts. By using interval trees [CLR90] for context properties and child lists,
most operations on the context history can be implemented efficiently.

9.2 Formalise the music stream

The decisions made when designing the music stream format were mainly based
on how to minimise the impact on the existing code base. It can be interesting to
see whether the format can be minimised, and formally specified. For example:

• Is it sensible to normalise the ordering of all music events during one
moment? For example, events could be ordered by context.

• Is it sensible to specify different “passes” within each moment? For exam-
ple, all context creation/removal events could happen in one pass, and all
music events could happen in a different pass.

• With the current implementation, Prepare stream events represent time
using absolute moments. An alternative would be to use relative moments,
i.e., to state the difference since the last moment, rather than the total
time elapsed since the beginning of the piece. This would make it easy to
insert a new moment in the middle of a piece.

9.3 Music stream as a music representation format

A given piece has a unique representation as a music stream, apart from per-
mutation of stream events during one moment.

Investigate whether this property makes the format suitable as a generic
music representation format; in particular, investigate whether there are ap-
plications where the music stream has significant benefits over other existing
formats.

9.4 Unify the event class and music class concepts

In music streams, music events are wrapped inside stream events: Each music
event is stored as a property in a stream event. When a translator group receives
the stream event, the music event is unpacked and sent to appropriate child
translators.

53



Translator groups use a rather complex system, similar to the dispatcher
system, for distributing music events to translators: An incoming event is sent
to a set of translators, which is decided by the music-class property of the
music event.

It would be easier to let translators use the dispatcher system directly. This
can be achieved by extending the set of event classes, so that “music class”
becomes a special case of “event class”. The stream event wrapper around a
music event can then have its event-class property set to the music event’s
music-class property, and each translator can register itself as a listener to
any relevant music classes.

9.5 Using dispatchers for optimising context tree walks

One of the consequences of a OneTimeStep stream event, is that all contexts are
visited in a post-order tree walk; i.e., each context is visited after all its chil-
dren have been visited. When a context is visited during this walk, a method
process_music is called in each of its translators. This method typically gen-
erates grobs, based on which events that previously have been reported to the
translator during the current moment.

In most translators, the process_music method does nothing, unless a music
event has been reported to the translator during the same moment. So the
majority of process_music calls are superfluous.

The dispatcher system can be used to eliminate all superfluous calls to the
process_music method: The post-order context tree walk can be implemented
by adding new dispatchers to all contexts, which are connected to each other
in a clever way. Each translator can register its process_music method as an
event handler to one of these post-order dispatchers only when the call isn’t
superfluous; this way, a smaller number of process_music methods need to be
called.

LilyPond performs a number of pre-order and post-order walks during each
moment; these can all be optimised similarly using dispatchers.

54



10 Acknowledgments

I want to thank, in chronological order:

• All authors and contributors to the GNU LilyPond project; in particular,

• Han-Wen Nienhuys, who supervised this project.

• Arne Andersson and the Department of Information Technology at Upp-
sala University, who kindly hosted the project, and offered an office where
I could work.

• All friends and relatives who have helped and supported me while working
with the project. In particular, thanks to Anders & Anna-Karin, to Anna-
Maria, to Björn and to my parents.

55



56



A General music terminology

This appendix is intended for non-musicians, who do not understand music
terminology.

A.1 Music

It is difficult to answer the question “What is music?”. However, the practice of
music notation does implicitly suggest an answer: Anything that can be notated
with music notation, is music.

A.2 Staves

Music notation is a graphical representation of music, where a piece of music is
represented by a score, which consists of a number of staves. One staff usually
represents one instrument, and consists of five horizontal lines, called staff lines:

A.3 Notes

Each staff usually contains a single melody, which often is played by a single
instrument. A melody consists of a sequence of tones, which are to be played.
Each tone is a sound, with a pitch and a duration, and the musician that plays
the melody, is supposed to emit the sounds corresponding to these tones.

Each tone is represented in music notation by a note, which is drawn on the
staff. The leftmost notes represent the tones that are played first.

A.3.1 Duration

A note consist of a note head, an optional stem connected to the note head, and
an optional flag or beam connected to the stem. The attributes of these decide
the duration of a tone:

Beam

(shortest)

16th notes

Flag

note

8th

note

quarter

note

half

(longest)

whole note

The duration of one whole note equals the duration of sixteen 16th notes,
and so on. The speed, or tempo, of the music, is constant throughout a score.
This means that each whole note in a score takes equally long time to play; this
is usually between 1 and 4 seconds.

57



A.3.2 Pitch

The vertical position of a note head defines the tone’s frequency, or pitch. Each
pitch is named with an alphabetic letter between a and g, followed by a number
of ′ symbols; each ′ symbol denotes that the frequency is multiplied by two.
Each staff line represents a pitch. Usually, the pitch on the middle line is b′;
this is indicated by drawing a clef in the left edge of the staff. With other clefs,
staff lines represent other pitches.

Notes that are typeset in the upper half of a staff, are often typeset upside
down. This is a purely typographical decision, and does not affect the semantics
of music.

Clef
880 Hz

a''g'f'e'd'c'b'

440 Hz

a'

Clef

A.3.3 Rests

Silence can be notated using rests. A rest works like a note, except that the
musician is silent for the duration of the rest. Rests are notated with special
symbols:

(shortest)

16th rest

rest

8th

rest

quarter

rest

half

(longest)

whole rest

The vertical position of a rest has no significance, and unlike notes, rests can
not be typeset upside down.

A.4 Measures

Notes are played in sequence, from left to right. The time is split into measures

of equal duration, separated by bar lines. The duration of each measure is
defined by the time signature, which denotes a fraction of a whole note.

Bar lineTime signature

4
3

Time signature

4
3

Usually, the duration of a measure is equal to a whole note; this is mostly

abbreviated with a special symbol .

58



A.5 Simultaneous music

The entire sheet of music is called a score.
When many musicians play together, each musician usually reads from a

small score containing only his own notes. This score is called an (instrumental)
part. In some situations, however, several parts are displayed on the same score;
for example, a conductor, who leads an orchestra, usually reads notes from an
orchestral score, which contains all notes from all parts.

A.5.1 More than one staff

An orchestral score normally consists of several connected staves, where each
staff contains the music played by one instruments. Notes that are played at
the same time, are always written in the same horizontal position:

Instrument 2

Instrument 1

Not only orchestral scores use several connected staves: For example, piano
music normally uses two staves, containing the notes for the left and right hand,
respectively.

A.5.2 Many voices in one staff

Sometimes, two instruments are merged into one staff; in this case, the stem

direction decides which notes that should be played by which instrument. The
notes with up and down stems are often called the upper and lower voice, re-
spectively. The term “voice” originates from choral music, where this notation
is common.

Both

A single instrument can also play a chord, consisting of many simultaneous
tones. This is notated by adding many note heads to the same stem:

A.6 Lyrics

Vocal music, such as songs, can be notated using music notation. This is done
by writing the song text, or lyrics, below the staff that represents the melody
to be sung. Each syllable is written right below the note it belongs to:

59



4
7

nowusJoin

4
7

60



B A subset of LilyPond’s language

LilyPond reads a text file as input, and writes a PDF file. This appendix presents
a quasi-formal grammar of the LY language, which is used for the input file.

Most of the input language is irrelevant to this thesis; therefore, only a rather
small subset of the language is presented. As experienced LilyPond users may
notice, a number of mechanisms that make music more convenient to enter, have
been left out from this sub-language.

B.1 Token types

Most of the token types in the language are common to most programming
languages. Some token types are however non-standard:

• IDENT : a sequence of alphabetic characters

• PITCH : a letter [a . . . g] followed by zero or more ’ characters. This
represents the pitch of a note.

• DUR: {1,2,4,8,16}. Represents the duration of a note or rest. 1 repre-
sents a whole note, 4 a quarter note, etc.

• SCM : A Scheme expression. This is treated as a single token by the LY
parser; the expression itself is parsed and evaluated by a separate Scheme
interpreter.

B.2 LY file layout

An input file consists of a series of variable assignments, followed by a sin-
gle music expression; the expression to be typeset. The syntax of a variable
assignment is name = expr, where expr is a music expression, and name is an
IDENT token. After a variable declaration, all occurences of \name inside music
expressions, are replaced with expr.

Lines starting with the character % are comments, just as in LATEX.

B.3 Music expression

A music expression is a tree, which roughly corresponds to the abstract syntax
tree of a compiler. Each node in the tree has a type, and depending on this
type, it has a number of children and a number of properties.

A music expression can be constructed from the following informal rules:

• PITCH DUR: Note event. Represents a note with the given pitch and
duration.

• r DUR: A rest with the given duration.

• R DUR [ * N ]: A long rest, that occupies at least one full measure. The
duration DUR is multiplied by N, and if the measure occupies many bars,
it can be appropriately collapsed:

{ R1*10 }

61



10

• STRING DUR: A lyric syllable with the given text and duration. This
is only effective inside Lyrics contexts, while note events are effective
outside Lyrics contexts.

• { EXPR1 EXPR2 . . . }: Sequential music. The music expressions are
interpreted after each other.

• << EXPR1 EXPR2 . . . >>: Simultaneous music. The expressions are inter-
preted in parallel.

• \new IDENT EXPR: Interpret the music expression EXPR within a newly
created context of type IDENT. A context is a subset of the score, which
can represents e.g. one instrument, one voice, or a collection of instru-
ments.

Values of IDENT include Global, Score, PianoStaff, Staff, Voice and
Lyrics.

• \context IDENT = STRING EXPR: Like \new, but the new context
is assigned a label STRING. This label is used by some commands, to
uniquely identify a context.

• \ IDENT : Dereference variable. Replace the expression by the contents
of the variable named IDENT.

• \set Ctx.prop = val: Sets a context property prop to val. This is used
to override default settings locally, inside a context.

• # SCM : Evaluate the Scheme expression SCM, and replace this expression
with its return value, which must be a music expression.

Some additional commands are available as well; these are presented when
they are used.

There is a number of articulations. An articulation can be added to a note
or rest, this will place the articulation on the note. Examples include:

• -. denotes staccato, and adds a dot above or below the note.

• ( and ) denote the start-point and end-point of a slur. A bow is drawn
from each start-point to the next following end-point.

• Some articulations are stored in predefined variables. For example, ar-
ticulations for dynamics are stored in the variables p and f, so when \p

is entered after a note, a p mark is typeset below the note. This is an
indication that the note should be played piano, i.e., silently.

62



B.4 An example LY file

The following LY file represents a very short song with piano accompaniment,
where most of the above commands are demonstrated.

% Music and lyrics is stored in variables

melody = { c’’8 \p d’’4 -. e’’8 }

text = { "La"8 "la"4 "la"8 }

<<

\new Staff \melody

\new Lyrics \text

\new PianoStaff <<

\new Staff \melody

\new Staff <<

% \stemUp and \stemDown are predefined variables

% that use \set to change the stem directions.

\new Voice { \stemUp e’8 f’4 g’8 }

\new Voice { \stemDown c’4 ( d’8 e’8 ) }

>>

>>

>>

When LilyPond reads this file as input, the program renders the following
output:

lala

p

La

p

63



64



C Music streams for the impatient

This appendix presents a quick introduction to LilyPond’s program architecture,
followed by a demonstration of a very simple music fragment along with the
corresponding music stream.

The appendix is stand-alone, and duplicates some of the information that is
present in the report.

The appendix first explains the basics of LilyPond’s program architecture;
this background is required to understand the contents of a music stream. This is
followed by a short presentation of the example piece, including a representation
in the LY language. Finally, the corresponding music stream is presented, and
briefly explained.

C.1 Prerequisites

The reader is assumed to know the basics of LilyPond’s input language. It
should be sufficient to read the introduction to this report.

The reader is also assumed to know how lists and function calls are notated
in the Lisp family of programming languages.

C.2 An introduction to LilyPond’s program architecture

LilyPond transforms its input in several steps, before producing a PDF file.
In the first step, which is not relevant for this thesis, all notes are converted
into music events. For example, the text c’’4 is converted to a music event,
which tells that it is a quarter note, with pitch c′′ and duration 1/4. Some data
structures are also created to relate the music events to each other.

The second step in music processing, is called iteration. Each music event is
assigned to a moment and to a voice context.

The third step, is to generate a PDF file from these notes; this process
involves complex formatting algorithms, and is not relevant to this thesis.

C.2.1 Moments

Moments are LilyPond’s way of measuring time. In this report, it is sufficient to
view a moment as a rational number, where 1 represents the duration of a whole
note, 1/4 represents the duration of a quarter note, and so on. The beginning
of a score is considered to occur at time 0; after this the time increases in the
natural way.

C.2.2 Contexts

A voice represents a simple (monophonic) melody line. A voice often represents
one instrument, but in e.g. keyboard music, one instrument can be represented
by more than one voice.

During the music iteration process, each voice is represented with a data
structure called voice context. There are also contexts that do not represent
voices; these are used to glue the voice contexts together, and to define in what
way all voices are combined to form a score.

A context is active during a time interval, which usually, but not always, is
the entire score.

65



Figure 10 demonstrates how different contexts are included in each other in
a score. We can notice that the set of contexts form a tree, where voice contexts
are the leaves. We can also see that the context tree changes over time.

Figure 10: Illustration of contexts.

Contexts are also used to store some settings that can be modified. For
example, each staff context contains a setting for key signature, which defaults
to C major. These settings are called properties.

C.2.3 Iteration

During the music iteration process, all moments in the score are processed
chronologically. The processing of a moment consists roughly of the following
steps:

• Contexts are created or removed.

• Context properties are updated.

• Music events are assigned to voices.

When a note has been assigned to a voice, it is immediately sent to a part
of the LilyPond program that is called the formatter. After a number of trans-
formations, the formatter eventually uses the note to generate a final PDF file.
The details of the formatter are not very relevant for understanding this thesis.

C.3 A music stream representing a simple music fragment

Music streams are rather verbose, so before studying the music stream of a
real piece of music, let us first return to a simple music fragment, previously
presented in the introduction:

<<

\new Staff { c’4 d’8 e’8 f’2 }

\new Staff <<

66



\new Voice { \stemUp g’2 f’2 }

\new Voice { \stemDown e’2 a2 }

>>

>>

The corresponding music stream consists of a sequence of stream events.
The stream events used in this fragment represent e.g. music events, creations
of contexts, modifications to context properties, and time increments. The frag-
ment above corresponds to the following sequence of stream events, represented
as Lisp-style association lists [Wik05]:

1 ((context . 0) (class . CreateContext) (unique . 1) (ops) (type . Score) (id . "\\new"))
2 ((context . 1) (class . CreateContext) (unique . 2) (ops) (type . Staff) (id . "\\new"))
3 ((context . 2) (class . CreateContext) (unique . 3) (ops) (type . Voice) (id . ""))
4 ((context . 1) (class . CreateContext) (unique . 4) (ops) (type . Staff) (id . "\\new"))
5 ((context . 4) (class . CreateContext) (unique . 5) (ops) (type . Voice) (id . "\\new"))
6 ((context . 4) (class . CreateContext) (unique . 6) (ops) (type . Voice) (id . "\\new"))
7 ((context . 0) (class . Prepare) (moment . #<Mom 0>))
8 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "c’4">))
9 ((context . 5) (class . Revert) (symbol . Stem) (property . direction))

10 ((context . 5) (class . Override) (symbol . Stem) (property . direction) (value . 1))
11 ((context . 5) (class . MusicEvent) (music . #<Music NoteEvent "g’2">))
12 ((context . 6) (class . Revert) (symbol . Stem) (property . direction))
13 ((context . 6) (class . Override) (symbol . Stem) (property . direction) (value . -1))
14 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’2">))
15 ((context . 0) (class . OneTimeStep))
16 ((context . 0) (class . Prepare) (moment . #<Mom 1/4>))
17 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "d’8">))
18 ((context . 0) (class . OneTimeStep))
19 ((context . 0) (class . Prepare) (moment . #<Mom 3/8>))
20 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))
21 ((context . 0) (class . OneTimeStep))
22 ((context . 0) (class . Prepare) (moment . #<Mom 1/2>))
23 ((context . 3) (class . MusicEvent) (music . #<Music NoteEvent "f’2">))
24 ((context . 5) (class . MusicEvent) (music . #<Music NoteEvent "f’2">))
25 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a2">))
26 ((context . 0) (class . OneTimeStep))
27 ((context . 0) (class . Prepare) (moment . #<Mom 1>))
28 ((context . 0) (class . OneTimeStep))
29 ((context . 3) (class . RemoveContext))
30 ((context . 2) (class . RemoveContext))
31 ((context . 5) (class . RemoveContext))
32 ((context . 6) (class . RemoveContext))
33 ((context . 4) (class . RemoveContext))
34 ((context . 0) (class . Finish))

In the above listing, some complex data structures, such as music events and
moments, are not written out in full, but condensed into a more human-readable
form, enclosed in #< >. Therefore, this textual representation is not suitable to
use when storing a music stream to disk.

In the following listing, these data structures are represented textually, using
constructor functions and quasi-quoting (‘ and ,). Each line contains a Scheme
expression that evaluates to a valid stream event object.

67



1 ‘((context . 0) (class . CreateContext) (unique . 1) (ops) (type . Score) (id . "\\new"))
2 ‘((context . 1) (class . CreateContext) (unique . 2) (ops) (type . Staff) (id . "\\new"))
3 ‘((context . 2) (class . CreateContext) (unique . 3) (ops) (type . Voice) (id . ""))
4 ‘((context . 1) (class . CreateContext) (unique . 4) (ops) (type . Staff) (id . "\\new"))
5 ‘((context . 4) (class . CreateContext) (unique . 5) (ops) (type . Voice) (id . "\\new"))
6 ‘((context . 4) (class . CreateContext) (unique . 6) (ops) (type . Voice) (id . "\\new"))
7 ‘((context . 0) (class . Prepare) (moment . ,(ly:make-moment 0 1)))
8 ‘((context . 3) (class . MusicEvent)
8 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 4 0 1) ’elements ’()
8 ’duration (ly:make-duration 2 0 1 1) ’pitch (ly:make-pitch 0 0 0))))
9 ‘((context . 5) (class . Revert) (symbol . Stem) (property . direction))

10 ‘((context . 5) (class . Override) (symbol . Stem) (property . direction) (value . 1))
11 ‘((context . 5) (class . MusicEvent)
11 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 2 0 1) ’elements ’()
11 ’duration (ly:make-duration 1 0 1 1) ’pitch (ly:make-pitch 0 4 0))))
12 ‘((context . 6) (class . Revert) (symbol . Stem) (property . direction))
13 ‘((context . 6) (class . Override) (symbol . Stem) (property . direction) (value . -1))
14 ‘((context . 6) (class . MusicEvent)
14 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 2 0 1) ’elements ’()
14 ’duration (ly:make-duration 1 0 1 1) ’pitch (ly:make-pitch 0 2 0))))
15 ‘((context . 0) (class . OneTimeStep))
16 ‘((context . 0) (class . Prepare) (moment . ,(ly:make-moment 1 4)))
17 ‘((context . 3) (class . MusicEvent)
17 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 8 0 1) ’elements ’()
17 ’duration (ly:make-duration 3 0 1 1) ’pitch (ly:make-pitch 0 1 0))))
18 ‘((context . 0) (class . OneTimeStep))
19 ‘((context . 0) (class . Prepare) (moment . ,(ly:make-moment 3 8)))
20 ‘((context . 3) (class . MusicEvent)
20 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 8 0 1) ’elements ’()
20 ’duration (ly:make-duration 3 0 1 1) ’pitch (ly:make-pitch 0 2 0))))
21 ‘((context . 0) (class . OneTimeStep))
22 ‘((context . 0) (class . Prepare) (moment . ,(ly:make-moment 1 2)))
23 ‘((context . 3) (class . MusicEvent)
23 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 2 0 1) ’elements ’()
23 ’duration (ly:make-duration 1 0 1 1) ’pitch (ly:make-pitch 0 3 0))))
24 ‘((context . 5) (class . MusicEvent)
24 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 2 0 1) ’elements ’()
24 ’duration (ly:make-duration 1 0 1 1) ’pitch (ly:make-pitch 0 3 0))))
25 ‘((context . 6) (class . MusicEvent)
25 (music . ,(make-music ’NoteEvent ’length (ly:make-moment 1 2 0 1) ’elements ’()
25 ’duration (ly:make-duration 1 0 1 1) ’pitch (ly:make-pitch -1 5 0))))
26 ‘((context . 0) (class . OneTimeStep))
27 ‘((context . 0) (class . Prepare) (moment . ,(ly:make-moment 1 1)))
28 ‘((context . 0) (class . OneTimeStep))
29 ‘((context . 3) (class . RemoveContext))
30 ‘((context . 2) (class . RemoveContext))
31 ‘((context . 5) (class . RemoveContext))
32 ‘((context . 6) (class . RemoveContext))
33 ‘((context . 4) (class . RemoveContext))
34 ‘((context . 0) (class . Finish))

LilyPond can import the above text, and use it to reproduce the original
graphical output.

68



D Demonstration

The purpose of this section, is to demonstrate what a music stream may look
like for a real piece of music.

The first 16 bars of Mozart’s Clarinet Quintet KV 581, taken from [SF97],
is presented, along with the corresponding LY source code. This is followed by
a listing of the corresponding sequence of stream events.

4
3

4
3

4
3

4
3

4
3

p

p

p

p
4
3

4
3

4
3

4
3

4
3

p

6

3

6

69



11

pizz.

pizz.

pizz.

p

p

p

11

The score can be represented as follows in the LY language:

% Lines starting with % are comments.

% First, music is stored in variables.

% Music between { } are interpreted in sequence.

clar = {

% If the durations of a note is omitted,

% LilyPond will use the duration of the previous note.

% Slurs are entered with ( and ), and

% \p adds a piano mark.

c’’8( \p e’’

g’’ e’’ c’’’4) g’’8( e’’

d’’ f’’ a’’4) f’’8( d’’

c’’ b’ e’’ d’’ g’’ f’’)

dis’’4( e’’) c’’8( e’’

g’’ e’’ c’’’4) g’’8( e’’

d’’ f’’ a’’4) r

% Rests given with capital R are full measure rests.

R4*3

% \times creates a tuplet

r4 r \times 2/3 { d’8( a f }

% -. creates staccato dots.

a8) d’-. f’-. a’-. d’’-. f’’-.

a’’( g’’ f’’ e’’ f’’ d’’)

c’’2( e’’8 d’’)

c’’4 r r R4*9 r4 r g’’

}

violI = {

% Change the key signature to A major

% (default is C major)

\key a\major

r4 r a’\p a’ r a’ a’ r gis’ gis’ r a’ a’ r a’ a’

fis’ r cis’’8( ais’ b’ d’’ fis’’4) cis’’8( ais’

b’ d’’ fis’’4) r

R4*6

cis’8( e’ cis’ e’ d’ e’) cis’4 r e’8( gis’

b’ gis’ e’’4) e’8( a’ cis’’ a’ e’’4)

e’8( b’ d’’ b’ e’’ d’’

cis’’ a’) gis’( b’ e’’4) e’8( gis’)

70



}

violII = {

\key a\major

r4 r e’\p e’ r fis’ fis’ r d’

d’ r cis’ cis’ r e’ e’ d’ r

g’( fis’2 g’4 fis’2) r4

R4*6

a2( gis4) a r r

% Music between << >> is played simultaneously,

% in this case this generates chords.

% ^"pizz." typesets the text above the staff.

<< gis’\p ^"pizz." b >> << gis’ b >> r

<< { a’ a’ } { a a } >> r

<< { b’ b’ cis’’ b’ b’ } { gis’ gis’ a’ gis’ gis’ } >> r

}

viola = {

% Change clef (default is G clef)

\clef C

\key a\major

r4 r cis’\p cis’ r b b r b b r a a

r cis’ cis’ b r e’( d’2 e’4 d’2) r4

R4*6

e2. ~ e4 r

r << { e’\p ^"pizz." e’ } { d’ d’ } >> r

<< { e’ e’ } { cis’ cis’ } >> r

e’ e’ e’ e’ e’ r

}

cello = {

\clef F

\key a\major

r4 a\p r r d r r e r r

fis r r cis r r d r r

R4*12

e,4-. ( e,-. e,-. ) a, r

r e\p ^"pizz." e r e e r

e e e e e, r

}

% The music in the variables are now inserted

% into staves, which are combined into a score.

% Music between << >> is interpreted in parallel

\new StaffGroup <<

% Time signature is set once globally.

% Bar lines are added automatically.

\time 3/4

% Upbeat with the duration of a quarter note

\partial 4

% After 12 measures, insert a double repeat bar globally.

{ \skip 4*3*12 \bar ":|:" }

% Finally, insert the actual music.

\new Staff \clar

\new Staff \violI

\new Staff \violII

\new Staff \viola

\new Staff \cello

>>

The quintet is represented by the following sequence of stream events:
1 ((context . 0) (class . CreateContext) (unique . 1) (ops) (type . Score) (id . "\\new"))

2 ((context . 1) (class . CreateContext) (unique . 2) (ops) (type . StaffGroup) (id . "\\new"))

71



3 ((context . 2) (class . CreateContext) (unique . 3) (ops) (type . Staff) (id . "\\new"))

4 ((context . 3) (class . CreateContext) (unique . 4) (ops) (type . Voice) (id . ""))

5 ((context . 2) (class . CreateContext) (unique . 5) (ops) (type . Staff) (id . "\\new"))

6 ((context . 5) (class . CreateContext) (unique . 6) (ops) (type . Voice) (id . ""))

7 ((context . 2) (class . CreateContext) (unique . 7) (ops) (type . Staff) (id . "\\new"))

8 ((context . 7) (class . CreateContext) (unique . 8) (ops) (type . Voice) (id . ""))

9 ((context . 2) (class . CreateContext) (unique . 9) (ops) (type . Staff) (id . "\\new"))

10 ((context . 2) (class . CreateContext) (unique . 10) (ops) (type . Staff) (id . "\\new"))

11 ((context . 0) (class . Prepare) (moment . #<Mom 0>))

12 ((context . 1) (class . SetProperty) (symbol . timeSignatureFraction) (value 3 . 4))

13 ((context . 1) (class . SetProperty) (symbol . beatLength) (value . #<Mom 1/4>))

14 ((context . 1) (class . SetProperty) (symbol . measureLength) (value . #<Mom 3/4>))

15 ((context . 1) (class . SetProperty) (symbol . beatGrouping) (value))

16 ((context . 1) (class . SetProperty) (symbol . measurePosition) (value . #<Mom -1/4>))

17 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "c’’8">))

18 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

19 ((context . 4) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

20 ((context . 6) (class . MusicEvent) (music . #<Music KeyChangeEvent "\key a \major ">))

21 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

22 ((context . 8) (class . MusicEvent) (music . #<Music KeyChangeEvent "\key a \major ">))

23 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

24 ((context . 9) (class . SetProperty) (symbol . clefGlyph) (value . "clefs.C"))

25 ((context . 9) (class . SetProperty) (symbol . middleCPosition) (value . 0))

26 ((context . 9) (class . SetProperty) (symbol . clefPosition) (value . 0))

27 ((context . 9) (class . SetProperty) (symbol . clefOctavation) (value . 0))

28 ((context . 9) (class . CreateContext) (unique . 11) (ops) (type . Voice) (id . ""))

29 ((context . 11) (class . MusicEvent) (music . #<Music KeyChangeEvent "\key a \major ">))

30 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

31 ((context . 10) (class . SetProperty) (symbol . clefGlyph) (value . "clefs.F"))

32 ((context . 10) (class . SetProperty) (symbol . middleCPosition) (value . 6))

33 ((context . 10) (class . SetProperty) (symbol . clefPosition) (value . 2))

34 ((context . 10) (class . SetProperty) (symbol . clefOctavation) (value . 0))

35 ((context . 10) (class . CreateContext) (unique . 12) (ops) (type . Voice) (id . ""))

36 ((context . 12) (class . MusicEvent) (music . #<Music KeyChangeEvent "\key a \major ">))

37 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

38 ((context . 0) (class . OneTimeStep))

39 ((context . 0) (class . Prepare) (moment . #<Mom 1/8>))

40 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

41 ((context . 0) (class . OneTimeStep))

42 ((context . 0) (class . Prepare) (moment . #<Mom 1/4>))

43 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))

44 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

45 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

46 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

47 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "a4">))

48 ((context . 12) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

49 ((context . 0) (class . OneTimeStep))

50 ((context . 0) (class . Prepare) (moment . #<Mom 3/8>))

51 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

52 ((context . 0) (class . OneTimeStep))

53 ((context . 0) (class . Prepare) (moment . #<Mom 1/2>))

54 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "c’’’4">))

55 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

56 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

57 ((context . 6) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

58 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

59 ((context . 8) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

60 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

61 ((context . 11) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

62 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

63 ((context . 0) (class . OneTimeStep))

64 ((context . 0) (class . Prepare) (moment . #<Mom 3/4>))

65 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))

66 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

67 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

68 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

69 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

70 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

71 ((context . 0) (class . OneTimeStep))

72 ((context . 0) (class . Prepare) (moment . #<Mom 7/8>))

73 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

74 ((context . 0) (class . OneTimeStep))

75 ((context . 0) (class . Prepare) (moment . #<Mom 1>))

76 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

77 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

78 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

79 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

80 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "d4">))

81 ((context . 0) (class . OneTimeStep))

82 ((context . 0) (class . Prepare) (moment . #<Mom 9/8>))

83 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’’8">))

84 ((context . 0) (class . OneTimeStep))

85 ((context . 0) (class . Prepare) (moment . #<Mom 5/4>))

86 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "a’’4">))

87 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

88 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

89 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "fis’4">))

90 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "b4">))

91 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

92 ((context . 0) (class . OneTimeStep))

93 ((context . 0) (class . Prepare) (moment . #<Mom 3/2>))

94 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’’8">))

95 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

96 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

97 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "fis’4">))

98 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "b4">))

99 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

100 ((context . 0) (class . OneTimeStep))

101 ((context . 0) (class . Prepare) (moment . #<Mom 13/8>))

72



102 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

103 ((context . 0) (class . OneTimeStep))

104 ((context . 0) (class . Prepare) (moment . #<Mom 7/4>))

105 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "c’’8">))

106 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

107 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

108 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

109 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

110 ((context . 0) (class . OneTimeStep))

111 ((context . 0) (class . Prepare) (moment . #<Mom 15/8>))

112 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "b’8">))

113 ((context . 0) (class . OneTimeStep))

114 ((context . 0) (class . Prepare) (moment . #<Mom 2>))

115 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

116 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

117 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "d’4">))

118 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "b4">))

119 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

120 ((context . 0) (class . OneTimeStep))

121 ((context . 0) (class . Prepare) (moment . #<Mom 17/8>))

122 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

123 ((context . 0) (class . OneTimeStep))

124 ((context . 0) (class . Prepare) (moment . #<Mom 9/4>))

125 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))

126 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

127 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "d’4">))

128 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "b4">))

129 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

130 ((context . 0) (class . OneTimeStep))

131 ((context . 0) (class . Prepare) (moment . #<Mom 19/8>))

132 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’’8">))

133 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

134 ((context . 0) (class . OneTimeStep))

135 ((context . 0) (class . Prepare) (moment . #<Mom 5/2>))

136 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "dis’’4">))

137 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

138 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

139 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

140 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

141 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "fis4">))

142 ((context . 0) (class . OneTimeStep))

143 ((context . 0) (class . Prepare) (moment . #<Mom 11/4>))

144 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’4">))

145 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

146 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

147 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

148 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "a4">))

149 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

150 ((context . 0) (class . OneTimeStep))

151 ((context . 0) (class . Prepare) (moment . #<Mom 3>))

152 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "c’’8">))

153 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

154 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

155 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

156 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "a4">))

157 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

158 ((context . 0) (class . OneTimeStep))

159 ((context . 0) (class . Prepare) (moment . #<Mom 25/8>))

160 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

161 ((context . 0) (class . OneTimeStep))

162 ((context . 0) (class . Prepare) (moment . #<Mom 13/4>))

163 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))

164 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

165 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

166 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

167 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "cis4">))

168 ((context . 0) (class . OneTimeStep))

169 ((context . 0) (class . Prepare) (moment . #<Mom 27/8>))

170 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

171 ((context . 0) (class . OneTimeStep))

172 ((context . 0) (class . Prepare) (moment . #<Mom 7/2>))

173 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "c’’’4">))

174 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

175 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

176 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

177 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

178 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

179 ((context . 0) (class . OneTimeStep))

180 ((context . 0) (class . Prepare) (moment . #<Mom 15/4>))

181 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))

182 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

183 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

184 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

185 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

186 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

187 ((context . 0) (class . OneTimeStep))

188 ((context . 0) (class . Prepare) (moment . #<Mom 31/8>))

189 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

190 ((context . 0) (class . OneTimeStep))

191 ((context . 0) (class . Prepare) (moment . #<Mom 4>))

192 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

193 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "fis’4">))

194 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "d’4">))

195 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "b4">))

196 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "d4">))

197 ((context . 0) (class . OneTimeStep))

198 ((context . 0) (class . Prepare) (moment . #<Mom 33/8>))

199 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’’8">))

200 ((context . 0) (class . OneTimeStep))

73



201 ((context . 0) (class . Prepare) (moment . #<Mom 17/4>))

202 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "a’’4">))

203 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

204 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

205 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

206 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

207 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

208 ((context . 0) (class . OneTimeStep))

209 ((context . 0) (class . Prepare) (moment . #<Mom 9/2>))

210 ((context . 4) (class . MusicEvent) (music . #<Music RestEvent "r4">))

211 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "cis’’8">))

212 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

213 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "g’4">))

214 ((context . 8) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

215 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

216 ((context . 11) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

217 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

218 ((context . 0) (class . OneTimeStep))

219 ((context . 0) (class . Prepare) (moment . #<Mom 37/8>))

220 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "ais’8">))

221 ((context . 0) (class . OneTimeStep))

222 ((context . 0) (class . Prepare) (moment . #<Mom 19/4>))

223 ((context . 4) (class . MusicEvent) (music . #<Music MultiMeasureRestEvent "R4*3">))

224 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "b’8">))

225 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "fis’2">))

226 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "d’2">))

227 ((context . 12) (class . MusicEvent) (music . #<Music MultiMeasureRestEvent "R4*12">))

228 ((context . 0) (class . OneTimeStep))

229 ((context . 0) (class . Prepare) (moment . #<Mom 39/8>))

230 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

231 ((context . 0) (class . OneTimeStep))

232 ((context . 0) (class . Prepare) (moment . #<Mom 5>))

233 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "fis’’4">))

234 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

235 ((context . 0) (class . OneTimeStep))

236 ((context . 0) (class . Prepare) (moment . #<Mom 21/4>))

237 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "cis’’8">))

238 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

239 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "g’4">))

240 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

241 ((context . 0) (class . OneTimeStep))

242 ((context . 0) (class . Prepare) (moment . #<Mom 43/8>))

243 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "ais’8">))

244 ((context . 0) (class . OneTimeStep))

245 ((context . 0) (class . Prepare) (moment . #<Mom 11/2>))

246 ((context . 4) (class . MusicEvent) (music . #<Music RestEvent "r4">))

247 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "b’8">))

248 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "fis’2">))

249 ((context . 8) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

250 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "d’2">))

251 ((context . 11) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

252 ((context . 0) (class . OneTimeStep))

253 ((context . 0) (class . Prepare) (moment . #<Mom 45/8>))

254 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

255 ((context . 0) (class . OneTimeStep))

256 ((context . 0) (class . Prepare) (moment . #<Mom 23/4>))

257 ((context . 4) (class . MusicEvent) (music . #<Music RestEvent "r4">))

258 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "fis’’4">))

259 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

260 ((context . 0) (class . OneTimeStep))

261 ((context . 0) (class . Prepare) (moment . #<Mom 6>))

262 ((context . 4) (class . MusicEvent) (music . #<Music TupletSpannerEvent " ">))

263 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’8*2/3">))

264 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

265 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

266 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

267 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

268 ((context . 0) (class . OneTimeStep))

269 ((context . 0) (class . Prepare) (moment . #<Mom 73/12>))

270 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "a8*2/3">))

271 ((context . 0) (class . OneTimeStep))

272 ((context . 0) (class . Prepare) (moment . #<Mom 37/6>))

273 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f8*2/3">))

274 ((context . 0) (class . OneTimeStep))

275 ((context . 0) (class . Prepare) (moment . #<Mom 25/4>))

276 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "a8">))

277 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

278 ((context . 6) (class . MusicEvent) (music . #<Music MultiMeasureRestEvent "R4*6">))

279 ((context . 8) (class . MusicEvent) (music . #<Music MultiMeasureRestEvent "R4*6">))

280 ((context . 11) (class . MusicEvent) (music . #<Music MultiMeasureRestEvent "R4*6">))

281 ((context . 0) (class . OneTimeStep))

282 ((context . 0) (class . Prepare) (moment . #<Mom 51/8>))

283 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’8">))

284 ((context . 4) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

285 ((context . 0) (class . OneTimeStep))

286 ((context . 0) (class . Prepare) (moment . #<Mom 13/2>))

287 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’8">))

288 ((context . 4) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

289 ((context . 0) (class . OneTimeStep))

290 ((context . 0) (class . Prepare) (moment . #<Mom 53/8>))

291 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "a’8">))

292 ((context . 4) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

293 ((context . 0) (class . OneTimeStep))

294 ((context . 0) (class . Prepare) (moment . #<Mom 27/4>))

295 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

296 ((context . 4) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

297 ((context . 0) (class . OneTimeStep))

298 ((context . 0) (class . Prepare) (moment . #<Mom 55/8>))

299 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’’8">))

74



300 ((context . 4) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

301 ((context . 0) (class . OneTimeStep))

302 ((context . 0) (class . Prepare) (moment . #<Mom 7>))

303 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "a’’8">))

304 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

305 ((context . 0) (class . OneTimeStep))

306 ((context . 0) (class . Prepare) (moment . #<Mom 57/8>))

307 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "g’’8">))

308 ((context . 0) (class . OneTimeStep))

309 ((context . 0) (class . Prepare) (moment . #<Mom 29/4>))

310 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’’8">))

311 ((context . 0) (class . OneTimeStep))

312 ((context . 0) (class . Prepare) (moment . #<Mom 59/8>))

313 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

314 ((context . 0) (class . OneTimeStep))

315 ((context . 0) (class . Prepare) (moment . #<Mom 15/2>))

316 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "f’’8">))

317 ((context . 0) (class . OneTimeStep))

318 ((context . 0) (class . Prepare) (moment . #<Mom 61/8>))

319 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

320 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

321 ((context . 0) (class . OneTimeStep))

322 ((context . 0) (class . Prepare) (moment . #<Mom 31/4>))

323 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "c’’2">))

324 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

325 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "cis’8">))

326 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

327 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "a2">))

328 ((context . 8) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

329 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e2.">))

330 ((context . 11) (class . MusicEvent) (music . #<Music TieEvent " ~ ">))

331 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e,4">))

332 ((context . 12) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

333 ((context . 12) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

334 ((context . 0) (class . OneTimeStep))

335 ((context . 0) (class . Prepare) (moment . #<Mom 63/8>))

336 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))

337 ((context . 0) (class . OneTimeStep))

338 ((context . 0) (class . Prepare) (moment . #<Mom 8>))

339 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "cis’8">))

340 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e,4">))

341 ((context . 12) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

342 ((context . 0) (class . OneTimeStep))

343 ((context . 0) (class . Prepare) (moment . #<Mom 65/8>))

344 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))

345 ((context . 0) (class . OneTimeStep))

346 ((context . 0) (class . Prepare) (moment . #<Mom 33/4>))

347 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

348 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "d’8">))

349 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "gis4">))

350 ((context . 8) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

351 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e,4">))

352 ((context . 12) (class . MusicEvent) (music . #<Music ArticulationEvent "-. ">))

353 ((context . 12) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

354 ((context . 0) (class . OneTimeStep))

355 ((context . 0) (class . Prepare) (moment . #<Mom 67/8>))

356 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

357 ((context . 4) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

358 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))

359 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

360 ((context . 0) (class . OneTimeStep))

361 ((context . 0) (class . Prepare) (moment . #<Mom 17/2>))

362 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "c’’4">))

363 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

364 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "a4">))

365 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

366 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "a,4">))

367 ((context . 0) (class . OneTimeStep))

368 ((context . 0) (class . Prepare) (moment . #<Mom 35/4>))

369 ((context . 4) (class . MusicEvent) (music . #<Music RestEvent "r4">))

370 ((context . 6) (class . MusicEvent) (music . #<Music RestEvent "r4">))

371 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

372 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

373 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

374 ((context . 0) (class . OneTimeStep))

375 ((context . 0) (class . Prepare) (moment . #<Mom 9>))

376 ((context . 1) (class . SetProperty) (symbol . whichBar) (value . ":|:"))

377 ((context . 4) (class . MusicEvent) (music . #<Music RestEvent "r4">))

378 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))

379 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

380 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

381 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

382 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

383 ((context . 0) (class . OneTimeStep))

384 ((context . 0) (class . Prepare) (moment . #<Mom 73/8>))

385 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "gis’8">))

386 ((context . 0) (class . OneTimeStep))

387 ((context . 0) (class . Prepare) (moment . #<Mom 37/4>))

388 ((context . 4) (class . MusicEvent) (music . #<Music MultiMeasureRestEvent "R4*9">))

389 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "b’8">))

390 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

391 ((context . 8) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

392 ((context . 8) (class . MusicEvent) (music . #<Music TextScriptEvent "^"pizz." ">))

393 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "b4">))

394 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

395 ((context . 11) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

396 ((context . 11) (class . MusicEvent) (music . #<Music TextScriptEvent "^"pizz." ">))

397 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "d’4">))

398 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

75



399 ((context . 12) (class . MusicEvent) (music . #<Music AbsoluteDynamicEvent "\p ">))

400 ((context . 12) (class . MusicEvent) (music . #<Music TextScriptEvent "^"pizz." ">))

401 ((context . 0) (class . OneTimeStep))

402 ((context . 0) (class . Prepare) (moment . #<Mom 75/8>))

403 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "gis’8">))

404 ((context . 0) (class . OneTimeStep))

405 ((context . 0) (class . Prepare) (moment . #<Mom 19/2>))

406 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’’4">))

407 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

408 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

409 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "b4">))

410 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

411 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "d’4">))

412 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

413 ((context . 0) (class . OneTimeStep))

414 ((context . 0) (class . Prepare) (moment . #<Mom 39/4>))

415 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))

416 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

417 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

418 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

419 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

420 ((context . 0) (class . OneTimeStep))

421 ((context . 0) (class . Prepare) (moment . #<Mom 79/8>))

422 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’8">))

423 ((context . 0) (class . OneTimeStep))

424 ((context . 0) (class . Prepare) (moment . #<Mom 10>))

425 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "cis’’8">))

426 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

427 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "a4">))

428 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

429 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

430 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

431 ((context . 0) (class . OneTimeStep))

432 ((context . 0) (class . Prepare) (moment . #<Mom 81/8>))

433 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’8">))

434 ((context . 0) (class . OneTimeStep))

435 ((context . 0) (class . Prepare) (moment . #<Mom 41/4>))

436 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’’4">))

437 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

438 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

439 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "a4">))

440 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

441 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "cis’4">))

442 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

443 ((context . 0) (class . OneTimeStep))

444 ((context . 0) (class . Prepare) (moment . #<Mom 21/2>))

445 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))

446 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

447 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

448 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

449 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

450 ((context . 0) (class . OneTimeStep))

451 ((context . 0) (class . Prepare) (moment . #<Mom 85/8>))

452 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "b’8">))

453 ((context . 0) (class . OneTimeStep))

454 ((context . 0) (class . Prepare) (moment . #<Mom 43/4>))

455 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

456 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "b’4">))

457 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

458 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

459 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

460 ((context . 0) (class . OneTimeStep))

461 ((context . 0) (class . Prepare) (moment . #<Mom 87/8>))

462 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "b’8">))

463 ((context . 0) (class . OneTimeStep))

464 ((context . 0) (class . Prepare) (moment . #<Mom 11>))

465 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’’8">))

466 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "b’4">))

467 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

468 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

469 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

470 ((context . 0) (class . OneTimeStep))

471 ((context . 0) (class . Prepare) (moment . #<Mom 89/8>))

472 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "d’’8">))

473 ((context . 0) (class . OneTimeStep))

474 ((context . 0) (class . Prepare) (moment . #<Mom 45/4>))

475 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "cis’’8">))

476 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "cis’’4">))

477 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "a’4">))

478 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

479 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

480 ((context . 0) (class . OneTimeStep))

481 ((context . 0) (class . Prepare) (moment . #<Mom 91/8>))

482 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "a’8">))

483 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

484 ((context . 0) (class . OneTimeStep))

485 ((context . 0) (class . Prepare) (moment . #<Mom 23/2>))

486 ((context . 4) (class . MusicEvent) (music . #<Music RestEvent "r4">))

487 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "gis’8">))

488 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

489 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "b’4">))

490 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

491 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

492 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e4">))

493 ((context . 0) (class . OneTimeStep))

494 ((context . 0) (class . Prepare) (moment . #<Mom 93/8>))

495 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "b’8">))

496 ((context . 0) (class . OneTimeStep))

497 ((context . 0) (class . Prepare) (moment . #<Mom 47/4>))

76



498 ((context . 4) (class . MusicEvent) (music . #<Music RestEvent "r4">))

499 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’’4">))

500 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

501 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "b’4">))

502 ((context . 8) (class . MusicEvent) (music . #<Music NoteEvent "gis’4">))

503 ((context . 11) (class . MusicEvent) (music . #<Music NoteEvent "e’4">))

504 ((context . 12) (class . MusicEvent) (music . #<Music NoteEvent "e,4">))

505 ((context . 0) (class . OneTimeStep))

506 ((context . 0) (class . Prepare) (moment . #<Mom 12>))

507 ((context . 4) (class . MusicEvent) (music . #<Music NoteEvent "g’’4">))

508 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "e’8">))

509 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent "( ">))

510 ((context . 8) (class . MusicEvent) (music . #<Music RestEvent "r4">))

511 ((context . 11) (class . MusicEvent) (music . #<Music RestEvent "r4">))

512 ((context . 12) (class . MusicEvent) (music . #<Music RestEvent "r4">))

513 ((context . 0) (class . OneTimeStep))

514 ((context . 0) (class . Prepare) (moment . #<Mom 97/8>))

515 ((context . 6) (class . MusicEvent) (music . #<Music NoteEvent "gis’8">))

516 ((context . 6) (class . MusicEvent) (music . #<Music SlurEvent ") ">))

517 ((context . 0) (class . OneTimeStep))

518 ((context . 0) (class . Prepare) (moment . #<Mom 49/4>))

519 ((context . 0) (class . OneTimeStep))

520 ((context . 4) (class . RemoveContext))

521 ((context . 3) (class . RemoveContext))

522 ((context . 6) (class . RemoveContext))

523 ((context . 5) (class . RemoveContext))

524 ((context . 8) (class . RemoveContext))

525 ((context . 7) (class . RemoveContext))

526 ((context . 11) (class . RemoveContext))

527 ((context . 9) (class . RemoveContext))

528 ((context . 12) (class . RemoveContext))

529 ((context . 10) (class . RemoveContext))

530 ((context . 0) (class . Finish))

77



78



E Benchmarks

This appendix investigates how LilyPond’s performance have been affected by
the implementation of music streams.

Preliminary experiments suggest that the implementation of music streams
has a very small performance impact in practice. Therefore, the benchmarks
have been designed to:

• Estimate the worst-case speed impact, both for realistic and for unrealistic
LY files.

• See if the performance has changed significantly for commands which have
been rewritten, such as \lyricsto.

E.1 System information

All tests have been performed on an Intel Celeron 466 MHz, with 512 MB RAM,
running GNU/Linux (Ubuntu 5.10, “Breezy”).

Both binaries have been compiled with the same tools, and both are linked
to the same libraries. Most importantly:

• Version 1.6.7 of Guile [Fou05] has been used for handling Scheme code in
LilyPond.

• Both binaries are compiled with gcc 4.0.2 20050808 (prerelease). Lily-
Pond’s default compilation flags have been used; this includes e.g. the
-O2 flag.

E.2 Compared programs

The speed of two binaries, called (A) and (B), has been compared. (A) is the
original LilyPond version 2.6.0, while (B) is a version based on 2.6.0, in which
music streams have been implemented.

There are therefore other differences between the two binaries, than the
introduced music stream layer: When music streams were implemented in pro-
gram (B), some additional modifications and cleanups were made as well; these
may affect the performance.

E.3 Input test files

The processing speed of the following files have been compared:

• silly.ly: A score which consists of a single note. The score generates 9
stream events. The purpose of this score is to estimate LilyPond’s time
overhead.

• mozart.ly: The fragment of Mozart’s Clarinet Quintet KV 581 presented
in Appendix D. The score generates 530 stream events.

• evil.ly: An example designed specifically to make the music stream layer
a bottleneck: The score consists of one single note, and 100000 dummy
property settings. Each property setting requires one stream event to be
created, while it presumably is the operation that requires least work by

79



LilyPond’s back-end to be carried out. The score generates 100009 stream
events.

• stille-nacht.ly: A reduced version of F. X. Gruber’s song Stille Nacht

[Gru01]. A two-page vocal score with only one voice and six lines of
lyrics, one for each verse. The score is intended to explore whether the
performance of the \lyricsto command has changed. The score generates
609 stream events.

• giuliano.ly: The first movement of G. Giuliano’s mandolin concerto
[Giu01]. This is a 10-page orchestral score, with four staves. The score
generates 7530 stream events.

E.4 Measurements

The running times that have been measured, are the total time consumed by
music interpretation. Music interpretation involves music iteration and format-
ting, but it does not include program initialisation, parsing or the generation of
an output PDF file.

Preliminary benchmarks suggested that the translation step, i.e., the step
where LilyPond performs formatting decisions, consumes a vast majority of the
measured time. Most of this step is completely unrelated to this thesis, so in
order to get more accurate measurements of performance differences, large parts
of the translation step has been suppressed in some test cases. This has been
achieved by appending the following line to each input file:

\layout { \context { \Score skipTypesetting = ##t } }

The effect of this line, is that LilyPond suppresses all calls to the process_music
method in all translators; this eliminates most of the typesetting step.

Each of the two LilyPond versions has been invoked five times on each input
file with typesetting suppressed, and twice on each file with typesetting enabled.
The measurements are listed in Table 1.

E.5 Conclusions

The speed impact of music streams is only measurable when the formatting
step is suppressed, and in most cases, program (B) iterates music slower than
program (A). However, the difference is not huge: The worst slowdown for a
real-life example happens in giuliano.ly, where (B) performs about 25% slower
than (A) when the formatting step is suppressed; the difference is however less
than 3% if the formatting step is included.

In the examples silly.ly and stille-nacht.ly, the total interpretation
times are less than 0.2 s. Because of the timer’s low resolution, we can not
use these measurements to draw any reliable conclusions about the slowdown.
Furthermore, the slowdown is not interesting in those cases, because they are
dominated by the execution times of other parts of the program, such as program
initialisation, parsing and PDF creation, which aren’t measured in this study.

In the worst case, evil.ly, (B) performs about 70% slower than (A), even
when typesetting isn’t suppressed. The example does not demonstrate a realistic
real-world use of the program, but it suggests an upper bound for the introduced

80



Input file Time (A) / s Time (B) / s Average slowdown
silly.ly 0.06 0.09
(no formatting) 0.06 0.10

0.06 0.08
0.07 0.10
0.07 0.10 47%

(with formatting) 0.07 0.08
0.08 0.08 6.7%

mozart.ly 0.38 0.18
(no formatting) 0.37 0.18

0.36 0.17
0.37 0.18
0.36 0.18 −52%

(with formatting) 2.82 2.87
2.83 2.87 1.6%

evil.ly 3.77 6.38
(no formatting) 3.79 6.33

3.79 6.38
3.78 6.42
3.80 6.35 68%

(with formatting) 3.77 6.36
3.76 6.28 68%

stille-nacht.ly 0.13 0.15
(no formatting) 0.13 0.14

0.13 0.16
0.13 0.15
0.13 0.14 14%

(with formatting) 0.50 0.72
0.49 0.71 44%

giuliano.ly 1.55 1.90
(no formatting) 1.52 1.93

1.55 1.90
1.55 1.97
1.57 1.94 25%

(with formatting) 42.96 44.12
42.81 44.13 2.9%

Table 1: Benchmarks. The table compares LilyPond’s time consumption before
and after the implementation of music streams.

81



slowdown of the program. By studying the example, we can also see that (B)
introduces an extra time consumption of about 25µs for each stream event. This
number appears to be about twice as high in the example giuliano.ly, which
might be because different types of stream events are predominant in evil.ly

and giuliano.ly.
There is something odd about the mozart.ly example: (B) does actually

perform twice as fast as (A) under some circumstances. This difference has not
been explained.

It should also be mentioned that these benchmarks only represent the time
consumed by the music interpretation step; if program initialisation, parsing
and PDF generation would be included, the relative slowdown would be slightly
lower.

The final conclusion of the benchmark, is that LilyPond is slower after the
implementation of music streams, and that the magnitude of the slowdown is
3% or lower.

82



F Documentation of LilyPond’s program archi-
tecture

Information about LilyPond’s program architecture can be found in the follow-
ing sources:

• LilyPond’s source code, which can be found on the program’s homepage
[NN+05]. Though the code is very sparsely commented, it is still the main
source of information on the program’s architecture.

• The LilyPond documentation [PNN05]. This contains some listings of
internal data structures and their relationships, along with some additional
documentation. There is also a general overview, aimed toward advanced
LilyPond users, over some of the program’s internals.

• A paper [NN03] written by LilyPond’s main authors. This contains a
rough overview of how the program works.

• The Programming Concepts manual [Sor04] by Carl Sorensen. This is a
discontinued effort to deliver an overview of LilyPond’s inner workings. It
is intended for programmers who want to make changes to the program.
The manual is incomplete, and contains little material that is relevant for
this thesis.

83



84



References

[AT&06] AT&T. Graphviz – Graph Visualization Software. http://graphviz.
org, 2006. [Online; accessed 24-January-2006].

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. In-

troduction to Algorithms. The MIT Press, 1990.

[Fou91] Free Software Foundation. GNU General Public License, version 2.
http://www.gnu.org/copyleft/gpl.html, 1991. [Online; accessed
24-September-2005].

[Fou05] Free Software Foundation. GUILE, GNU’s Ubiquitous Intelligent Lan-
guage for Extension. http://www.gnu.org/software/guile/, 2005.
[Online; accessed 24-September-2005].

[Giu01] G. Giuliano. Sinfoni per Mannolino con Più Istromenti. http://

mutopiaproject.org/cgibin/piece-info.cgi?id=332, 2001. [On-
line; accessed 08-March-2006].

[Gru01] F. X. Gruber. Stille Nacht. http://mutopiaproject.org/cgibin/

piece-info.cgi?id=81, 2001. [Online; accessed 08-March-2006].

[Hef06] Jim Hefferon. What are TEX, LATEX, and friends? http://ctan.org/

what_is_tex.html, 2006. [Online; accessed 24-January-2006].

[Mak06] MakeMusic Inc. Finale. http://finalemusic.com/finale/, 2006.
[Online; accessed 24-January-2006].

[NN03] Han-Wen Nienhuys and Jan Nieuwenhuizen. LilyPond, a system
for automated music engraving. http://lilypond.org/web/images/
xivcim.pdf, May 2003.

[NN+05] Han-Wen Nienhuys, Jan Nieuwenhuizen, et al. LilyPond, music no-
tation for everyone. http://lilypond.org/, 2005. [Online; accessed
12-December-2005].

[PNN05] Graham Percival, Han-Wen Nienhuys, and Jan Nieuwenhuizen. Lily-

Pond documentation version 2.6.1, July 2005. http://lilypond.org/
doc/v2.6/Documentation/out-www/.

[SF97] Eleanor Selfridge-Field. Beyond MIDI. The handbook of musical codes,
chapter Introduction: Describing Musical Information. MIT press,
1997.

[SFH97] Eleanor Selfridge-Field and Walter B. Hewlett. Beyond MIDI. The

handbook of musical codes, chapter MIDI. MIT press, 1997.

[Sib06] Sibelius Software Ltd. Music Software – Sibelius. http://sibelius.

com, 2006. [Online; accessed 24-January-2006].

[Sor04] Carl Sorensen. Programming Concepts manual. http:

//mail-archive.com/lilypond-devel@gnu.org/msg06619.html,
2004. [Online; accessed 08-September-2005].

85



[Wik05] Wikipedia. Associative array — Wikipedia, the free encyclope-
dia. http://en.wikipedia.org/w/index.php?title=Associative_

array&oldid=21015220, 2005. [Online; accessed 08-September-2005].

[Wik06] Wikipedia. Regular expression — Wikipedia, The Free Ency-
clopedia. http://en.wikipedia.org/w/index.php?title=Regular_
expression&oldid=36233116, 2006. [Online; accessed 24-January-
2006].

86


