Sustainability in F/OSS: developers as a non-renewable resource

Sustainability in F/OSS: developers as a
non-renewable resource

Graham Percival
http://percival-music.ca

Rencontres Mondiales du Logiciel Libre 2010
Bordeaux, France

Friday, 9 July, 2010

®0O

This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 License.

http://percival-music.ca

Sustainability in F/OSS: developers as a non-renewable resource

L Overview

Current development is not sustainable
m Core developers do most of the work
m Losing core developers is bad
m Projects will lose core developers

Keeping developers
m Incentives
m Disincentives

Preparing for developer loss
m Survival of a species
m Training the next generation: harder than it sounds
m Successes and failures from GNU LilyPond
m Fitering out offers of help
m Dealing with new developers

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

Current development is not sustainable
m Core developers do most of the work
m Losing core developers is bad
m Projects will lose core developers

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LCore developers do most of the work

Do F/OSS projects share the workload?

m Popular view is that F/OSS has lots of developers.

e e.g., “Given enough eyeballs, all bugs are shallow”

m Actually, workload generally follows Zipf's law.
(frequency is inversely proportional to rank)

e Healy and Schussman, 2003. “The Ecology of Open-Source
Software Development”

» Data from over 45,000 sourceforge projects.

> # of developers, commits / developer, # of emails, etc.

> “The distribution of projects on a range of activity measures
is spectacularly skewed, with only a relatively tiny number of
projects showing evidence of the strong collaborative activity
which is supposed to characterize oss.” [from paper abstract]

e Similar results from other studies.

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LCore developers do most of the work

Is “Number of Commits” a good metric?

m Number of commits is a vague measure of project work.

m Problems:
e Not all commits are equal (new feature vs. 1-line typo fix).

e Code vs. documentation vs. build vs. translations?
e Some people break work into more pieces than others.
m Why use them?

e Easy to measure.

e Easy to understand.
e The exact workload distribution doesn't matter for this talk!

m Not a good metric, but it's an acceptable metric.

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LCore developers do most of the work

Case study: GNU LilyPond (sheet music typesetter)

m Compiles text files into beautiful printable scores.
m Simple example:
{ Commands start with \

\time 2/4 Letters are notes
\clef bass /_
c4dcggaag2

Nlumbers are durations

m Computational aesthetics is hard.
(details not important — this is not a talk about music)

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LCore developers do most of the work

LilyPond Development

m Code size:

~ 100, 000 lines of C

~2 30, 000 lines of scheme (a dialect of lisp)

~ 25,000 lines of python

~ 18,000 lines of metafont

~ 450,000 lines of documentation source files (including
translations)

m Began in 1996 by 2 Dutch undergraduates.
m 92 authors in 14 years, 46 in the past 6 months.

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LCore developers do most of the work

Commits vs. developer rank, last 5 years. (almost Zipf's law)

Git commits to LilyPond, 2005 - 2010
4000 T T T T T T T

3500 g

3000 g

2500

2000

1500

Number of commits

1000

500

0 . T
0 10 20 30 40 50 50 70 80 g0

Ranl of developer

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LCore developers do most of the work

Same graph, log-log scale. (Zipf's law would be a straight line)

Git commits to LilyPond, 2005 - 2010
10000 T

1000

100

Number of commits

10

l 1
1 10 100

Ranlk of dewveloper

Sustainability in F/OSS: developers as a non-renewable resource

LCurrent development is not sustainable

L Core developers do most of the work

Split into 6-month intervals.

Git commits to LilyPond, 2005 - 2010 in 6 morth intervals

800 : : : : : : : : :
2005-1 to 2005-7 ——
2005-7 to 2006-1 ——
700 | 2006-1 to 2006-7 —— 1
2006-7 to 2007-1 ——
600 2007-1to 2007-7 —— |
o 2007-7 to 2008-1
= 2008-1 to 2008-7 ——
£ 500 2008-7 t0 2009-1 ———]
) 2009-1 to 2009-7 ——
s 400 2009-7 t0 2010-1 —— -
= 2010-1to 2010-7 ——
£ 300
-
=
200
100

Ranl of developer

Sustainability in F/OSS: developers as a non-renewable resource

LCurrent development is not sustainable

L Core developers do most of the work

Split into 6-month intervals, log y.

Git commits to LilyPond, 2005 - 2010 in 6 month intervals
1000

' ' ‘ ' " 2005-1 to 2005-7
2005-7 to 2006-1
2006-1 to 2006-7
2006-7 to 2007-1
2007-1 to 2007-7
2007-7 to 2008-1
2008-1 to 2008-7
2008-7 to 2008-1
2009-1 to 2009-7
2009-7 to 2010-1
2010-1 to 2010-7

100

Number of commits

10 |

0 2 4 6 8 10 12 14 16 18 20

Ranlc of dewveloper

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LLosing core developers is bad

Effect of losing core developers (selected data)
Top 4 developers, selected 6-month periods:

Date | Commits (name)

05-1 | 626 (Han-Wen) 237 (Jan) 123 (Graham) 35 (Werner)
06-7 | 780 (Han-Wen) 87 (Jan) 87 (Joe) 76 (Graham)
07-7 | 446 (Graham) 164 (John) 148 (Joe) 116 (Reinhold)
08-7 | 379 (Reinhold) 281 (John) 278 (Paco) 158 (Neil)
09-1 | 95 (John) 93 (Paco) 78 (Carl) 60 (Joe)

09-7 | 321 (Graham) 165 (Patrick) 132 (John) 99 (Neil)

10-1 | 284 (Graham) 236 (Paco) 153 (Jan) 92 (Patrick)

m 2009-1 to 2009-7, the top three overall developers were away.
e Core developers can motivate others.
m The drop-off in commits is less abrupt in recent years.

e Less disruption if somebody leaves.

Sustainability in F/OSS: developers as a non-renewable resource

L Current development is not sustainable

LProjects will lose core developers

Developer Loss — it will happen

m Developers can leave due to project problems...

e Not enough incentives
e Too many disincentives

m ... but also for for non-project reasons.

e Graduating from high school / university
o Career change

o Getting married or having a baby

e Passing away

> Hopefully after a long life, but sometimes earlier.
m Fix project problems, but we'll all die eventually.

e Developer loss is unavoidable!

Sustainability in F/OSS: developers as a non-renewable resource

LKeeping developers

Keeping developers
m Incentives
m Disincentives

Sustainability in F/OSS: developers as a non-renewable resource

LKeeping developers

LIncentives

Incentives: Financial

m Money:

e Job / full-time contract.
e Cash / short-term contract — might backfire.

» Offer a professor $25 for 10 hours of work?
> Users value new features more than bugfixes.
» Why work on bugfixes for free vs. new features for cash?

m Invite them to conferences.
m Send them stuff:

e “Swag": company-branded t-shirts, USB drives, etc.
e Postcards, special beer from your country, buy them dinner if
they visit your city, etc.

Sustainability in F/OSS: developers as a non-renewable resource

LKeeping developers

LIncentives

Incentives: (almost) Free

m Send them artistic or “end-user” stuff:

e Beautiful printed sheet music.

o Professionally-recorded performance.

e Printed artwork.

e Game that uses your library / compiler / etc.

m Give praise / credit / feed ego.
m Make development entertaining:

e Create friendships.
e Write funny emails on mailing lists.
o Make them feel like part of a team.

m Ask them!

Sustainability in F/OSS: developers as a non-renewable resource

LKeeping developers

LIncentives

Incentives: Risky

m Guilt trip

e Bad: "You do so much work around here... you have to keep
on working or else everything will fall apart!”

o Slightly better: "l can’t handle everything at once, and | really
need a break. Patrick, Trevor: could one of you handle bug
reports for the next two months?”

(temporary, end in sight, but still pressures individuals)

m Bargain

e "“I'd like to release binaries for Windows, but | can't do that if |
need to keep on writing documentation.”

m Both strategies can backfire.

e Use infrequently.
e Gambling about how much people trust you.

Sustainability in F/OSS: developers as a non-renewable resource

LKeeping developers

L Disincentives

Getting Rid of Developers

Insult developers (especially from users).
e |nsults to other developers made me shelve some doc work.

m Demand that a particular bug be fixed.

i

e Users saying “you must...” prompted me to leave for 4 months.

Ignore requests for feedback (from users).

e Our new website was delayed for about 8 months due to this.

Ignore requests for freeback (from developers).

o Code style, patch review, architecture changes, etc.
o We recently lost one of our top 20 developers due to this, and
it's a constant disincentive for other developers.

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

Preparing for developer loss
m Survival of a species
m Training the next generation: harder than it sounds
m Successes and failures from GNU LilyPond
m Fitering out offers of help
m Dealing with new developers

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LSurvival of a species

Survival of a species

m Developers can leave with or without prior notice:

e Graduation will be known in advance.
o Career change might be unexpected.
o Accidental death will never give advanced notice.

m Don't rely on advance warning — prepare now!
m How to prepare for loss of developers?

e Biological analogy: survival of a species.
e Train new developers to replace those who will leave.

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LSurvival of a species

What needs to be taught?

m Consider each developer — how can they be replaced?
e Unique knowledge or access?
> Build process, login to web server, specialized code, etc.
e Unwritten policies?
e Time-saving tips + experience.
m “Apprentices”’ are vital.

e Try to do each task by yourself.
e Discover what you don't know and document it.

> Oral tradition is not reliable!
e “Apprentice” could even be another core developer.

» Documenting unwritten knowledge is the primary goal.

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LSurvival of a species

When should you have apprentices?

m Definitely too late:

e Dead developer.
e Developer who left due to a huge argument.

m Maybe too late:

e Developer leaves due to career change, baby duties,
graduation.

m Too early:

o Developer is currently an apprentice.
e Policies / code / procedures are changing drastically.

m Start as soon as possible:

e Training an apprentice takes a lot of time+effort.
e Biological analogy: don’t wait until old age for a baby!

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LTraining the next generation: harder than it sounds

Training the next generation: harder than it sounds

m Need the right kind of person to train people — technical
knowledge, good at explaining, available time, etc.

m Stages of a new developer:

Recruitment.

Initial training, explain task(s).

Patch review and critique.

B Independent: produces good patches without help.

m How much mentoring to become independent?

e Some people send perfect patches without any mentoring.
e Usually new developers need hours of mentoring.

> Some of our most active developers started this way.
> Sometimes all this mentoring effort is worthwhile.

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LTraining the next generation: harder than it sounds

Evaluating offers of help (in retrospect) (1)

m Net gain to the project = Tk — Tmentoring

o T,ork is the amount of time it would take an existing developer
to do the work.

® T rentoring 1S the time that developer spent helping a new
developer learn how to do that task.

m Example 1: Mike (the mentor) asks for doc-writing help.

o Avery says he can help. Mike assigns him a 10-minute task.
Avery needs to be taught how to use svn and diff, makes
typos, etc. Avery spends 2 hours working.

Mike spends a total of 60 minutes teaching + correcting.
Avery is demoralized and leaves the project.

Net gain of 10 - 60 = -50 minutes. (omit Avery's time)
Project would be better off if Avery had not offered to help. :(

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LTraining the next generation: harder than it sounds

Evaluating offers of help (in retrospect) (2)

m Example 2: Mike (the mentor) asks for doc-writing help.

Billy says he can help. Mike assigns him a 10-minute task.
Billy is completely unfamiliar with open-source development,
and requires 2 hours of mentoring before finishing the patch.
At this point, net gain of 10 - 120 = -110 minutes.
However, Billy is stubborn, and keeps on working in the
project. He finishes another nineteen 10-minute tasks.

At this point, net gain of 20*¥10 - 120 = 80 minutes.
Project benefitted from mentoring Billy.

m Example 3: Carlos offers to help.

Would the project benefit if Mike mentored him?
Probability of Carlos being a net gain?
Any ways of minimizing the risk?

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss
LSuccesses and failures from GNU LilyPond

Data from GNU LilyPond
m LilyPond GDP (Grand Documentation Project):

e 15t goal — 12-month project to train new doc editors.

e 2" goal — give unlimited mentoring; is this effective?

e 20 volunteers (~ 5 were already involved in LilyPond).

e | spent = 700 — 800 hours mentoring volunteers, up to 4 hours
a day.

m Results:

e Only 1 in 4 volunteers were definitely a net gain.
e Another 1 in 4 were not a significant net gain or loss.

e Overall, GDP was not a significant net gain or loss.

e 6 months later, we had 0 people working on documentation.

> (3-4 people who began as doc editors became strong
programming developers — GDP was not a complete failure!)

m Conclusion:

e Unlimited mentoring is not effective.

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LFitering out offers of help

Filtering out offers of help

m Not a nice thought, but important to consider.

m Balance mentoring potential developers (risky) and improving
the project yourself (no risk).
m A few techniques for finding this balance:
e “Read the source and submit well-formed patches.”
> No risk to existing developers, but far fewer new recruits.
> Might turn away some potentially fantastic developers.
e Write documentation about how to work on your project.

» LilyPond Contributor's Guide is 120 pages!
> Answer all questions by referring to that guide.

o Test tasks: keep a few simple tasks for new developers.
> Insist that new developers finish those tasks before asking for

help with the work they want to do.
> Only the really motivated new developers will do them.

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LDealing with new developers

Tips for documentation for new developers

Difficult to formalize all policies, architecture, tricks.

m Can become another time sink:

e LilyPond Contributor's Guide: at least 200 hours, mostly from
our most skilled developers.
e We could have fixed a lot of bugs with that time!

m Ask the new developers to add to your guide.
e These could be used as additional “test tasks.”

New developers gradually do less “guide writing.”

e Time to start recruiting another generation of developers.

Sustainability in F/OSS: developers as a non-renewable resource

LPreparing for developer loss

LDealing with new developers

Keeping New Developers Happy

m Generally the same things that keep developers happy!
m Fast response time.
o | try to keep my response within 24 hours.
m Private emails; “newbie developer” mailing list?
e Many new developers are shy about emailing
lilypond-devel.
m Praise them, prominently give them credit, don't insult or
ignore them.
e This is harder than it sounds — new developers will make
stupid mistakes, but make sure you correct them gently.
e How many senior developers are available to review patches?

24 hours might not be possible... but try to give an accurate
estimate of when the review might happen.

Sustainability in F/OSS: developers as a non-renewable resource

L Overview (end)

Current development is not sustainable
m Core developers do most of the work
m Losing core developers is bad

m Projects will lose core developers

Keeping developers
m Incentives
m Disincentives

Preparing for developer loss

m Survival of a species

m Training the next generation: harder than it sounds
m Successes and failures from GNU LilyPond

m Fitering out offers of help

m Dealing with new developers

	Overview
	Current development is not sustainable
	Keeping developers
	Preparing for developer loss
	Overview (end)

