Top
Back: 5.1.120 status
Forward: 5.1.122 stdfglm
FastBack: 5. Functions and system variables
FastForward: 6. Tricks and pitfalls
Up: 5.1 Functions
Top: Singular 2-0-4 Manual
Contents: Table of Contents
Index: F. Index
About: About This Document

5.1.121 std

Syntax:

std ( ideal_expression)
std ( module_expression)
std ( ideal_expression, intvec_expression )
std ( module_expression, intvec_expression )
std ( ideal_expression, intvec_expression, intvec_expression )
std ( module_expression, intvec_expression, intvec_expression )
std ( ideal_expression, poly_expression )
std ( module_expression, vector_expression )

Type:

ideal or module

Purpose:

returns a standard basis of an ideal or module with respect to the monomial ordering of the basering. A standard basis is a set of generators such that the leading terms generate the leading ideal, resp. module.
Use an optional second argument of type intvec as Hilbert series (result of hilb(i,1), see hilb), if the ideal, resp. module, is homogeneous (Hilbert driven standard basis computation, stdhilb). If the ideal is quasihomogeneous with some weights w and if the Hilbert series is computed w.r.t. to these weights, then use w as third argument.
Use an optional second argument of type poly, resp. vector, to construct the standard basis from an already computed one (given as the first argument) and one additional generator (the second argument).

Note:

The standard basis is computed with a (more or less) straight-forward implementation of the classical Buchberger (resp. Mora) algorithm. For global orderings, use the groebner command instead (see groebner), which heuristically chooses the "best" algorithm to compute a Groebner basis.
To view the progress of long running computations, use option(prot) (see option(prot)).

Example:
 
  // local computation
  ring r=32003,(x,y,z),ds;
  poly s1=1x2y+151xyz10+169y21;
  poly s2=1xz14+6x2y4+3z24;
  poly s3=5y10z10x+2y20z10+y10z20+11x3;
  ideal i=s1,s2,s3;
  ideal j=std(i);
  degree(j);
→ 0
  // Hilbert driven elimination (standard)
  ring rhom=32003,(x,y,z,h),dp;
  ideal i=homog(imap(r,i),h);
  ideal j=std(i);
  intvec iv=hilb(j,1);
  ring rlex=32003,(x,y,z,h),lp;
  ideal i=fetch(rhom,i);
  ideal j=std(i,iv);
  j=subst(j,h,1);
  j[1];
→ z64
  // Hilbert driven elimination (ideal is quasihomogeneous)
  intvec w=10,1,1;
  ring whom=32003,(x,y,z),wp(w);
  ideal i=fetch(r,i);
  ideal j=std(i);
  intvec iw=hilb(j,1,w);
  ring wlex=32003,(x,y,z),lp;
  ideal i=fetch(whom,i);
  ideal j=std(i,iw,w);
  j[1];
→ z64

See facstd; fglm; groebner; ideal; mstd; option; ring; stdfglm; stdhilb.


Top Back: 5.1.120 status Forward: 5.1.122 stdfglm FastBack: 5. Functions and system variables FastForward: 6. Tricks and pitfalls Up: 5.1 Functions Top: Singular 2-0-4 Manual Contents: Table of Contents Index: F. Index About: About This Document
            User manual for Singular version 2-0-4, October 2002, generated by texi2html.