LilyPond

The music typesetter

Learning Manual

The LilyPond development team

This le provides an introduction to LilyPond version 2.24.2.

For more information about how this manual ts with the other documentati on, or to read this
manual in other formats, see Section \Manuals" in General Information.

If you are missing any manuals, the complete documentation can be found at
https://lilypond.org/

Copyright ¢ 1998{2022 by the authors.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later vesion
published by the Free Software Foundation; with no Invariant Sectiors. A copy of
the license is included in the section entitled \GNU Free Documatation License".

For LilyPond version 2.24.2

https://lilypond.org/

Table of Contents

1 Installing I |
1.1 Graphical setup under GNU/LIinux :::::oorrorrrnirnnnnnnnnnnnnnnnnnn
1.2 Graphical setup under Windows :::::iiriiriiriirininininnninininininiinn 4
1.3 Graphical setup under macOS: ::::: i o9
1.4 Command line setup oo 13

2 Tutorial c:iiioiininin1s
21 Compilinga le::::zorrrorrrnrnnrrnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 1
2.2 Howtowrite input les :::iiiirriirirnninn 16

2.2.1 Simple notation:::::::iirriiiinnn 15
Pitches
Durations (rhythms)
Rests: ior i i
Time signature ;@i 18
Tempo marks: @i 19
Clef ooy 19
All together ::::iorrrorrrorrorrnrronnnnnnnnnnnnn i 19
2.2.2 Workingoninput les oo 20
2.3 Dealing with errors i
2.3.1 General troubleshooting tips::::::iriiriiriiririrnnnnnnnnininnnn 21
2.3.2 Some common errors;:::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiininiiniiiiniinn 21
24 Howtoreadthe manuals:::::::i:rroirrrorrorrnnrnnnnnnnnnnnnnnnnn 21
2.4.1 Omitted material :::::ooroorriirnrninnnininnnnnnnnnnnn 21
2.4.2 Clickable examples:: ;i iriiririnininininininininininiiniinn 22
2.4.3 Overview of manuals:::::iiriiiirinn i 22

3 Common notation :::ii23

3.1 Single sta notation :::::i:riiiiiiiiiiiiiiiiiiiiiiiiniininiinnninninn 23
3.1.1 Barlines and bar checks::::::irororrorrnnrrnrrnnrnnnnnnnnninnnnnn 23
Barlines::::icoiioriiiroirrirrnnnnnnninninnnnnnninnnininninninn 23
Bar checks ::::iirrriorrnr i 23
3.1.2 Pitches and key signatures::::::::iiiriiiiiiiiiiiiiiiiiiiiiiiiiiiiinniin 23
Pitch alterations ::::::icriiirrirrrinrnnronrinnnnnnnnnninnn 24
Key signatures: :::::iiiiiirriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiiniiiniinn 24
Warning: key signatures and pitches: :::::::iiirniin i 24
3.1.3 Tiesand slurs:: i 25
TieS: i 25
Slurs::criirrriir i 26
Phrasing slurs:::::ocrroorrooroorrinrinnninonnninniniiniiiiiiniin 26
Warnings: slurs vs. ties 111 26
3.1.4 Articulations and dynamics:::::iiiiiiiiiiiiiiiiiiiinininiiniiiiiiiiiiil 26
Articulations @i irriiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiniiniiiniiiniiinnn 27
Fingerings:::::iiirriirroionrinnnniiinnnnnninnn i 27
Dynamics::::::iiioriiiriiriiiiiiiiiiiiiiiinnnnnnnn i 27
3.1.5 Adding text:: i 28
3.1.6 Automatic and manual beams::::::iiciiiiiiiiiiiiiiiii i 28

3.1.7 Advanced rhythmic commands ::::::iicrrinirrirrnnnnnninnn 29

Partial measure:::::iiiiiiriiiiiiiiiiiiiiiin i 29
Tuplets i 29
Grace NOteS :::iiiiirriirriiiiiii i 29
3.2 Multiple notes at once:::::::rriiriiiriiiininnnnnn i 30
3.2.1 Music expressions explained ::::::iiiiiiriiiiriiiniii i 30
Analogy: mathematical expressions :::::::i:iiriiriiriirininiinininininnin 31
Simultaneous music expressions: multiple staves:::: i 31
Simultaneous music expressions: single sta::::::iiriirriiiiniiiiiininnn 31
3.2.2 Multiple staves: @il 32
3.2.3 Sta groups::::ii33
3.2.4 Combining notes into chords :::::iiorriiiii i 33
3.2.5 Single sta polyphony:::: i 34
3.3 Songs::iini 34
3.3.1 Setting simple songs:::::iiriiiriiiiiiiiiiiiiiiniininniiinniin 34
3.3.2 Aligning lyricstoamelody::::::ioiinriiiiiiiiiiii 35
3.3.3 Lyrics to multiple staves:::::::iiiiiriiiri i 38
3.4 Finaltouches:::::::iirriiii i 39
3.4.1 Organizing pieces with variables::::: ;oo niinniin 39
3.4.2 Adding titles
3.4.3 Absolute note names:::::iiiriiiiiiiiiiiiiiiiiiiiiiiiiiiniiniiinnininnn 4l
3.4.4 After the tutorial :::::iccriirirrn i 43
Fundamentalconcepts < 7
4.1 How LilyPond input les work ::::::iiriiriiriiiiiiiiiiiniiniiniiniiniiiiiiiiiiiin 44
4.1.1 Introduction to the LilyPond le structure ::::::::iiiiciiiiiiiiiiiiiiiiiiiiiiiidd
4.1.2 Score is a (single) compound musical expression:::::::::iiiiiiiiiiiiiiii 46
4.1.3 Nesting musiC eXpressions i i il 48
4.1.4 Structure of anote entry::::::iiirriiiiiiiiiiiiiiiiiiiiiniiiiiiiiiiininin 49
4.1.5 On the un-nestedness of brackets and ties:::::::iiiiinniiniini B0
4.2 Voices contain muSiC: i i i i
4.2.1 I'mhearing VOICES: © . i o
4.2.2 Explicitly instantiating voices
4.2.3 Voices and vocCals: iy
4.3 Contexts and engravers: ;i i
4.3.1 Contexts explained:::::: i
4.3.2 Creating contexts: @ :i i
4.3.3 Engravers explained::::::icriiiriiiiiiiiiiiiiiiiiiiiiiinnnnn
4.3.4 Modifying context properties
4.3.5 Adding and removing engravers::::iiiiiiiiiiiiiiiiiiiiiiiniiiiniinnnn 71
4.4 Extending the templates
441 Sopranoand cello::::::crrirrrirrirriirinrininnnii
4.4.2 Four-part SATB vocal score: @@ ::iiiiirriiriiriiinniiiiiiiiiiiiii
4.4.3 Building a score from scratch::::: i
4.4.4 Saving typing with variables and functions i
445 Scoresand partsS::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiII i
Tweakingoutput LI
5.1 Tweaking basics ::::: oo
5.1.1 Introduction to tweaks
5.1.2 Objects and interfaces ::::: i 93
5.1.3 Naming conventions of objects and properties:::::::::iiiiiiiiiiiiiiiiiii 94
5.1.4 Tweaking methods :::::::irrroirriirirniiin 94

The \override command::::: ;i 94

The \revert command:::::::iiirriiriirnirrinninniinnininniininiiiiiin 95
Thelonce prex :::iiiiriiriiriirrioiriiriiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 96
The Mtweak command:::::::iiriirriririrnnnninoonnonnoniniiiiiinil 96
The\single prex :@::iioriiiriirrooronnonrnnnnnnnnnnnnniinniinn 98
5.2 The Internals Reference manual:::::::iorriorrorronronrnnrinnnnnnnniiini 99
5.2.1 Properties of layout objects:: i 99
5.2.2 Properties found in interfaces ::::::iiriiriiiiiniininininininininnin 103
5.2.3 Typesof properties :::::icriiriiriiiiririnnnnnnnnnnnnnnnninninn 105
5.3 Appearance of objects
5.3.1 Visibility and color of objects:::::::iiorronnrrrnnr iy 105
The stencil property :::::iriiriiriiriririnininininnininiiniiinin 106
The break-visibility property :::iinn 107
The transparent property @:::::iiriiriiriiriiriininininininininiiii 108
The color property :::::iicrioirriiriorrinnnnnninnnnnnnnnnnnn 109
5.3.2 Size of objects
5.3.3 Length and thickness of objects:::::::iirrirririririninininiiniininn 114
5.4 Placement of objects:::::i:riiririiririininininininininiiin

5.4.1 Automatic behavior
5.4.2 Within-sta objects

The direction property ::::ii:iiiiriiiriiriirrinriiiiiiiiiiiiiiiii
Fingering
5.4.3 Outside-sta oObjects: i
The outside-staff-priority
The \textLengthOn command:::::::iiorriooiirriniiriniiin
Dynamics placement @ ;i :i ool
Grob sizing: iy
5.5 Vertical spacing:::: oo i
5.6 Collisions of Objects: @ oo
5.6.1 Moving objects:: i :rriiriiiriiin i
5.6.2 Fixing overlapping notation
The padding property @i
The right-padding property ::::i:iiiriiriiriiiiiririiiiiniiiniin
The staff-padding property ;i oo
The self-alignment-X property :::::ciiiiiiiiiiiiriiiiii 134
The staff-position property :::iiild4
The extra-offset property :::::i:iiiiiirrr i 1385
The positions property::::::i:iiirirrirnnnnnnnn 135
The force-hshift — property ::::ioorrrr o 137
5.6.3 Real music example:::::iioriirrrriiiiiiiiiininnn 138
5.7 FRurther tweaking :::::::iiriirririnirinininiiiniiniiinininiinnin 145
5.7.1 Other uses for tweaks::::::::iiirini i 145
Tying notes across voices: @ iiiiiii il 145
Simulating a fermata in MIDI ;i 146
5.7.2 Using variables for layout adjustments: :::: ;i i 147
5.7.3 Stylesheets::::::iiriiriiriririininiiniiiiiiniininniniiniinin 149
5.7.4 Other sources of information ::::::::riiiirrrrn i 162
5.7.5 Advanced tweaks with Scheme:::::::iiiirrirrnrnnnnninn 164
Appendix A Templates ::::iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinii1h5
A.l Built-intemplates oo 165
A1l SATBtemplate @:::::iiiioiiirririiiiiiin 165
A.1.2 SSAATTBB template ::::::ooorriioorrronnnrynnninnniinnnniins 1e0
A.2 Single sta templates ::::::i:iiiiiirini i 163

A21 NOteSOnlyZZZZZZZZZIZZZIZZZZZZZIZZZIZZZIZZZIZZZIZZZIZZZIZZZIZZZZIZZZIZZZZZZ 163

A.2.2 Notesand lyrics::::iiccriiiirrriirrnriiiinnn 1e4
A.2.3 Notesandchords:::::::::irrriiiooi oo 1e4
A.2.4 Notes, lyrics, and chords: :::::iorionrrnnnnnnninnnnnn 165
A3 Pianotemplates: ;i 1e6
A3.1 Solopiano::: ;i 1e6
A.3.2 Piano and melody with lyrics: ;i 166
A.3.3 Piano centered lyrics: ;i i 167
A.4 String quartet templates ::::i:ciiiriiiinniininnn i 168
A4l Stringquartet::::: oo 1e8
A.4.2 String quartet parts @i 169
A.5 Vocal ensembles templates:::::::i:iiriirn i 472
A5.1 SATBvocal score::::::::i i i iiiiiiioiooaiiiiriinnnnnaiiiiiiiiiiiinn 172
A.5.2 SATB vocal score and automatic piano reduction::::::::::iriiiiiiiiiiiiii 174
A.5.3 SATB with aligned contexts :::::::iiioiiinrrriniiniiiinn 176
A5.4 SATBonfourstaves::::::::iiiiiiiiiiiiioiiiiin 178
A5.5 Solo verse and two-part refrain::::::ooriiriiririninnnnnnnnnn 179
AS5.6 Hymntunes::::::i:::iiiiririinii18l
ADB.7 Psalms: ::::::iiiiiiiiiiiiiiiiiiiiiiiii ittt 184
A.6 Orchestral templates: ;. ::: oo 186
A.6.1 Orchestra, choir and piano: ... i 186
A.7 Ancient notation templates :::::::iiiriiiiiii i 190
A.7.1 Transcription of mensural music:::::::iioiininiinnin i 190
A.7.2 Gregorian transcription template :::::::iiiiriiiiiiiiiiiiiiiiiiininn o 195
A.8 Othertemplates::::::iiiriirrr i 196
A8.1 Jazzcombo: iy 196
Appendix B GNU Free Documentation License 2 0 X

Appendix C LilyPond index 241 K O

1 Installing

This gentle, step-by-step installation tutorial guides you through installing LilyPond and creating
a rst music score.

LilyPond input les are simple text les. You can use any raw text edi tor to edit a LilyPond
le (not a rich text editor such as Microsoft Word), but there are several edibrs tailored specif-
ically for LilyPond, making the editing process very comfortable. Because a choice has to be
made, this tutorial uses Frescobaldi (https://frescobaldi.org), which is the most popular
among such editors right now. However, there are several other optionsvailable. For more
information, see Section \Easier editing" in General Information.

Please choose the tutorial according to your needs. (If you don't know Wat the \command
line" is, you want the graphical setup!)

1.1 Graphical setup under GNU/Linux

These instructions work for the GNOME environment, for example on the default avors of
Ubuntu and Fedora. In other desktop environments, they can likely be adpted. For more
minimal GNU/Linux distributions, see Section 1.4 [Command line setup], page 13.

First, nd the GNOME Software app.

Q, software]

Software

In GNOME Software, search \Frescobaldi".
& Explore & Installed E_,gUpdates

Q, frescobaldi a

‘ ; Frescobaldi

Install Frescobaldi. Behind the scenes, this should also automatict install some version of
LilyPond.

https://frescobaldi.org

Chapter 1: Installing 2

Open Frescobaldi. It starts on a new le with some pre-lled text th at will be explained
later.

After the \version line, enter a new line containing exactly this:

{c}

Now click on the LilyPond icon, or pressControl-M . On the right, a simple score appeatrs.

Congratulations, you have just created your rst music sheet with Lily Pond! If you're satis ed
now, you can skip the rest of this section. However, it may be that theversion of LilyPond that
was installed is not the same one as this documentation is for. If you want @i erent LilyPond
version, you can register it in Frescobaldi, without losing the initial one. To do this, rst
download the archive from Section \Download" in General Information, and double-click to
unpack it.

Chapter 1: Installing 3

Move the unpacked folder out of your Downloads folder to the folder whee you want to
permanently store it. For example, put it in your home folder.

Now, in Frescobaldi, go the Preferences.

Select \LilyPond Preferences”, and click \Add" to register a new LilyP ond version.

Click on the le explorer icon.

Chapter 1: Installing 4

Navigate to the folder you just extracted, then inside this folder, to bin' and nally
“lilypond

You're done! You can click OK You now have two versions of LilyPond installed.

Now turn to Chapter 2 [Tutorial], page 15, to learn more about LilyPond's syntax.

1.2 Graphical setup under Windows

Download LilyPond for Windows from Section \Download" in General Information.
The le will a ZIP archive called lilypond- x.y.z-mingw-x86_64.zip (where \mingw"

Chapter 1: Installing 5

means it's for Windows). Extract this in the le explorer. Place th e resulting directory
lilypond- X.y.z-mingw-x86_64 in a permanent location; the actual folder doesn't matter, you
just need to put it somewhere you won't move it afterwards. For exampg, you could choose
your home folder.

After this, download the latest release of Frescobaldi from the projets download page
(https://github.com/frescobaldi/frescobaldi/releases). Choose the.exe le.

Double-click on the downloaded le in the le explorer. This launches the setup wizard.

Accept the license and install Frescobaldi using the wizard. You wil nd a startup screen
like this:

Chapter 1: Installing

Navigate to the Frescobaldi preferences.

Navigate to \LilyPond Preferences" on the left.

Click \Edit" on the right. This leads to a dialog for choosing the LilyPon d executable.

Chapter 1: Installing 7

Click on the folder icon and navigate to thelilypond- x.y. z-mingw-x86_64 folder you pre-
viously created. Inside this folder, openlilypond- Xx.y. z, then bin, and nally select lilypond

Now click \OK".

Chapter 1: Installing

Click \OK" again.

Type this simple le in the window:
\version "2.24.2"

{c}

Compile it with Control-M or using the \LilyPond" icon. A minimal score appears.

Chapter 1: Installing 9

Congratulations, you have just created your rst music sheet with Lily Pond! Now continue
with the Chapter 2 [Tutorial], page 15, to learn more about LilyPond's syntax.

1.3 Graphical setup under macOS

Download LilyPond for macOS from Section \Download" in General Information. The
le will be an archive called lilypond- x.y.z-darwin-x86_64.tar.gz (where \darwin"
means it's for macOS). In the Finder, extract this archive. Place the resulting directory
lilypond- x.y.z-darwin-x86_64 in a permanent location; the actual folder doesn't matter,
you just need to put it somewhere you won't move it afterwards. For exanple, you could
choose your home folder.

After this, download the latest release of Frescobaldi from the projets download page
(https://github.com/frescobaldi/frescobaldi/releases). Choose the.dmg le.

In the Finder, double-click on the le to run the installer. Atth is point, you might encounter
a problem:

Chapter 1: Installing 10

This is because Frescobaldi is developed independently from AppldNevertheless, it is totally
secure software, but you have to tell Apple so. To do this, you rst need to click \Cancel". After
having clicked \Cancel", open the \System Preferences" app and select \Security & Privacy".

Then click \Open Anyway".

Chapter 1: Installing 11

This leads to a new security warning. This time, you have the option b accept. Select
\Open". Again, do not fear: Frescobaldi is completely secure for your systm.

Frescobaldi is now open. Find the Preferences.

Chapter 1: Installing 12

Click on \LilyPond Preferences" on the left.

Click \Edit" on the right. This opens a new window:

Click on the ‘folder' icon. A Finder window opens. Navigate to the
lilypond- x.y.z-darwin-x86_64 folder you saved earlier. Inside it, nd lilypond- x.y.z,
then bin and nally lilypond

Chapter 1: Installing 13

When you press \OK", a new security warning about LilyPond will likely appear. Again,
rst click \Cancel", then enable LilyPond in the preferences, and redo the procedure to select
lilypond in the Finder.

Now click \OK" to everything until you are back to the main Frescobaldi window. Enter
this simple le in source view on the left:

\version "2.24.2"

{c}
Click on the button with the LilyPond icon to compile the le, or use th e Control-M key-
board shortcut. For a third time, the system will warn you about security, this time with \gs"
(GhostScript). Once more, go to the System Preferences to enablhe program to be executed.

Finally, the next compilation run will work and you will nd a minimal s core.

Congratulations! You have compiled your rst music sheet with LilyPond. Now continue
with the Chapter 2 [Tutorial], page 15, to learn more about LilyPond's syntax.

1.4 Command line setup

On many GNU/Linux distributions, LilyPond can be installed from the package manager. This
is also the case on macOS using either MacPortsh{tps://www.macports.org) or Homebrew
(https://brew.sh).

Chapter 1: Installing 14

In any case, you can install LilyPond by downloading the archive from Sedbn \Download"
in General Information and unpacking it. The binaries are usable immediately after unpackiig.
You can run

/... llilypond- x.y. z/bin/lilypond file.ly
(on Windows, replace the slashes/™ with backslashes).

This compilesfile.ly , and producesfile.pdf . To test your setup, you can use this minimal
le:

\version "2.24.2"

{c}
This will produce this output in file.pdf

R

Now continue with the Chapter 2 [Tutorial], page 15, to learn more about LilyPond's syntax,
or see Section \Command-line usage" inApplication Usage for more information on calling
LilyPond on the command line.

15

2 Tutorial

This chapter gives a basic introduction to working with LilyPond.

2.1 Compiling a le

\Compiling" is the term used for processing an input le in LilyPond f ormat to produce output
le(s). Output les are generally PDF (for printing or viewing), Ml DI (for playing), and PNG
(for online use). LilyPond input les are simple text les.

This example shows a simple input le:
\version "2.24.2"

{

cege
}
The graphical output is:

D

T
I
| |

==
il

Note: Notes and lyrics in LilyPond input must always be surrounded
by f curly braces g. The braces should also be surrounded by a space
unless they are at the beginning or end of a line to avoid ambiguities.
They may be omitted in some examples in this manual, but don't forget
them in your own music! For more information about the display of
examples in the manual, see Section 2.4 [How to read the manuals],
page 21.

In addition, LilyPond input is case sensitive {c d e } "is valid input; “{ C D E } produces
an error message.

2.2 How to write input les

This section introduces some basic LilyPond syntax to help get you staed writing input les.

2.2.1 Simple notation

LilyPond adds some notation elements automatically. In the next example we have only speci-
ed four pitches, but LilyPond has added a clef, a time signature, and hythms.

{

cege

}

D

i
I) |
i 1

==k
il

A0

This behavior may be altered, but in most cases these automatic valueare useful.

Chapter 2: Tutorial 16

Pitches

Music Glossary: Section \pitch" in Music Glossary, Section \interval" in Music Glossary,
Section \scale" in Music Glossary, Section \middle C" in Music Glossary, Section \octave"
in Music Glossary, Section \accidental" in Music Glossary.

LilyPond uses lowercase letters for pitches. Note names in all exammen this section use
the Dutch naming system (white piano keys are c, d, e, f, g, a, b). Howeer, LilyPond supports
many di erent naming schemes like "English’ or "Fixed-Do' (do, re,mi, .. .). See Section \Note
names in other languages" inNotation Reference The letters ‘c' through "b' denote pitches in
the “small octave' belowmiddle C. Added " ' or °,"' su xes indicate higher or lower octaves.
Here is a scale starting onmiddle C, and an arpeggio:

{cdefgabc
gcegc e gc }

It

NI A L h N3
- mHH H
[| In | HI | | L | [|
TR 1 :h 1 |

The easiest way to enter notes is by usingrelative mode. In this mode, the octave is
chosen automatically by assuming that the following note is always to beplaced closest to the
previous note, i.e., it is to be placed in the octave that is withinthree sta spaces of the previous
note. We begin by entering the most elementary piece of music, acalg in which every note is

within just one sta space of the previous note.

\relative {
c def
gabc

=

wi
=
wi
g
oy

Lo
A

=
=

o
| 2.

-
wi

nwi

=

}

M 1 I
N 1 11
i ||--
| |
| |

o
-

[a]
A

=

o

I
1
) L

-
i

|
[2
n i
| N L

The initial note is middle C, denoted byc . Each successive note is placed closest to the previous
note { in other words, the rst * c'is the closest C to middle C. This is followed by the closest D
to the previous note. We can create melodies that have larger interval, still using only relative

mode;

=

\relative {
d fag
cbfd
}
n W Ih 1
R
It

In the previous example, the rst note { the d with one ~ ' mark { is the D in the octave
starting from middle C and going up to B.

By adding (or removing) quotes (") or commas (, ") from the rst note, we can change the
starting octave:

\relative {
e cac

Chapter 2: Tutorial 17

Relative mode can be confusing initially, but is the easiest way toenter most melodies. Let
us see how this relative calculation works in practice. Starting froma B, which is on the middle
line in a treble clef, you can reach a C, D and E within 3 sta spaces goingup, and an A, G
and F within 3 sta spaces going down. So if the note following a B is a CD or E it is assumed
to be above the B, and an A, G or F is assumed to be below.

\relative {
b ¢ % cis 1 staff space up, so is the ¢ above
bd %dis 2 up or5 down, so is the d above
% e is 3 up or 4 down, so is the e above
% a is 6 up or 1 down, so is the a below
% g is 5 up or 2 down, so is the g below
% f is 4 up or 3 down, so is the f below

O T OTOCT
—TQ 9 O

[h

[a 1
A 1 11

|0 T

11 LELE & I ZN | & 1 DR
| L H—1 1
| | ! H i
I I— — —— | |
1 i i i i

>R

|
2.
11|
T

+

Exactly the same happens even when any of these notes are sharpened or teted. Acci-
dentals are totally ignored in the calculation of the relative position. Precisely the same sta
space counting is done from a note at any other position on the sta .

To add intervals that are larger than three sta spaces, we can raise theoctave by adding a
single quote "' (or apostrophe) to the note name. We can lower the octave by adding a coma
°, ' to the note name.

\relative {

a a, c f

gg a,f

}
| Ia .::.| h
Th Bt h

To change a note by two (or more!) octaves, we use multiple or,, { but be careful that you
use two single quotes and not one double quote "'!

Durations (rhythms)
Music Glossary: Section \beam" in Music Glossary, Section \duration" in Music Glossary,
Section \whole note" in Music Glossary, Section \half note" in Music Glossary, Section \quarter
note" in Music Glossary, Section \dotted note" in Music Glossary.

The duration of a note is speci ed by a number after the note name: I' for a whole note,
"2' for a half note, "4' for a quarter note and so on. Beams are added automatically.

Chapter 2: Tutorial 18

If you do not specify a duration, the previous duration is used for the rext note. The duration
of the rst note defaults to a quarter note.

\relative {

al

a2 a4 a8 a

al6 aaaal32aaaabdaaaaaaaa?l

}
o | o o [r— 2 2 |
A N1 I InN I I A N1

N H P e e N

To create dotted notes, add a dot (*.") to the duration number. The duration of a dotted
note must be stated explicitly (i.e., with a number).
\relative {
a4 a a4. a8

a8. al6é a a8. a8 a4.

Rests

Music Glossary: Section \rest" in Music Glossary.
A rest is entered just like a note with the name 1.
\relative {
adrr2
r8 a r4 r4. r8

a I"I“ Pal 3 i/L D
h * e oF

Time signature

Music Glossary: Section \time signature" in Music Glossary.
The time signature can be set with the\time command:
\relative {
\time 3/4
ad aa
\time 6/8
ad. a
\time 4/4
a4 a a a

=3
o0
=1
0o

D
ST
e
5T
5T

Chapter 2: Tutorial 19

Tempo marks

Music Glossary: Section \tempo indication" in Music Glossary, Section \metronome" in Music
Glossary.

The tempo indication and metronome mark can be set with the\tempo command:
\relative {
\time 3/4
\ tempo "Andante"
a4 aa
\time 6/8
\tempo 4. = 96
ad. a
\time 4/4
\tempo "Presto" 4 = 120
a4 a aa

InN I I IS
Ty 1nmn
——

Andante hF=) 96 Presto (H.|= 120)
| | La |]
|

P e [
) I 2N 2N Y =
LILA B) u

Clef

Music Glossary: Section \clef" in Music Glossary.
The clef can be set using thé\clef command:

\relative {
\clef treble
cl
\clef alto
cl
\clef tenor
cl
\clef bass
cl

}

All together
Here is a small example showing all these elements together:

\relative {
\clef bass
\time 3/4
\tempo "Andante" 4 = 120
c,2 e8 c
g2
f4 e d
cdcr

Chapter 2: Tutorial 20

Andante (Hl: RP L

5_
=27
»

N

II
1 T

See also

Notation Reference: Section \Writing pitches" in Notation Reference Section \Writing
rhythms" in Notation Reference Section \Writing rests” in Notation Reference Section
\Time signature” in Notation Reference Section \Clef" in Notation Reference

2.2.2 Working on input les

LilyPond input les are similar to source les in many common programming languages. They
contain a version statement, are case sensitive, and whitespace is geally ignored. Expressions
are formed with curly braces{} , and comments are denoted with % or “%f{ ... %} ".

If the previous sentences sound like nonsense, don't worry! We areow going to explain what
all these terms mean.

Version statement. Every LilyPond le should contain a version statement. A version

statement is a line that describes the version of LilyPond for which te le was written, as
in the following example:

\version "2.24.2"
By convention, the version statement is placed at the top of the LilyPond le.

The version statement is important for at least two reasons. First, it allows automatic
updating of the input le as LilyPond syntax changes. Second, it descrbes the version of
LilyPond needed to compile the le.

If the version statement is omitted from an input le, LilyPond print s a warning during the
compilation of the le.

Case sensitive It matters whether you enter a letter in lowercase (e.g., &, b, 's', 't") or
uppercase (e.g.,A, ‘B, 'S, 'T). Notes are lowercase:{ cde }'isvalidinput; { CDE }
produces an error message.

Whitespace insensitive It does not matter how many spaces (or tabs, or new lines) you
add.

{c4d e}
means the same thing as
{c4 de}
or
{ca4 d

e }
Of course, the previous example is hard to read. A good rule of thumb iso indent code
blocks with two spaces:

{
c4 de

}

However, whitespaceis required to separate many syntactical elements from others. In
other words, whitespace can always bedded but not always eliminated. Since missing
whitespace can give rise to strange errors, it is advisable to always $ert whitespace before
and after every syntactic element, for example, before and after evgrcurly brace.

Chapter 2: Tutorial 21

Expressions Every piece of LilyPond input needs to havef curly braces g placed around
the input. These braces tell LilyPond that the input is a single music expression, just like
parentheses “()' in mathematics. The braces should be surroundedyba space unless they
are at the beginning or end of a line to avoid ambiguities.

A LilyPond command followed by a simple expression in braces (such adrélative {
. }) also counts as a single music expression.

Comments. A comment is a remark for the human reader of the music input; it is igrored
while parsing, so it has no e ect on the printed output. There are two types of comments.
The percent symbol %introduces a line comment; anything after %on that line is ignored.
By convention, a line comment is placedabovethe code it refers to.

a4 a aa
% this comment refers to the next line with the two bs
b2 b

A block comment marks a whole section of music input as a comment. Anytimg that is
enclosed in%{and %} is ignored. However, block comments do not “nest'. This means that
you cannot place a block comment inside another block comment. If you ¥, the rst %}will
terminate both block comments. The following fragment shows possible uses for conemts.

% notes for twinkle twinkle follow
cdcg gaag2

%{
This line, and the notes below are ignored,
since they are in a block comment.

f4 feeddc2
%}

2.3 Dealing with errors

Sometimes LilyPond doesn't produce the output you expect. This setion provides some links
to help you solve the problems you might encounter.

2.3.1 General troubleshooting tips

Troubleshooting LilyPond problems can be challenging for people who areised to a graphical
interface, because invalid input les can be created. When this hapens, a logical approach is
the best way to identify and solve the problem. Some guidelines to &lp you learn to do this are
provided in Section \Troubleshooting" in Application Usage.

2.3.2 Some common errors

There are a few common errors that are di cult to troubleshoot based simply on the error
messages that are displayed. These are described in Section \Commorras" in Application
Usage

2.4 How to read the manuals

This section shows how to read the documentation e ciently, and also introduces some useful
interactive features available in the online version.

2.4.1 Omitted material

LilyPond input must be surrounded by { } marks or \relative { ... } ' (see Section 2.2.2
[Working on input les], page 20). For the rest of this manual, some short kamples omit this.

Chapter 2: Tutorial 22

To replicate these examples, you can copy displayed input, but past it between {' and “}' in
your input le.

{
}

Also, remember that every LilyPond le should have a \version statement. Because the
examples in the manuals are snippets, not les, thel\version statement is omitted. But you
should make a practice of including them in your les.

...example goes here...

2.4.2 Clickable examples

‘ Note: This feature is only available in the HTML manuals.

Many people learn programs by trying and ddling around with the program. T his is also
possible with LilyPond. If you click on a picture in the HTML version of this manual, you will
see the exact LilyPond input that was used to generate that image. Try it onthis image:

La

(% | |
—
I

ICIick here.

By cutting and pasting everything in the \ly snippet" section, you have a starting template for
experiments. To see exactly the same output (line-width and all),copy everything from \Start
cut-&-pastable section" to the bottom of the le.

2.4.3 Overview of manuals

There is a lot of documentation for LilyPond. New users are sometimes coosed about what
part(s) they should read, and occasionally skip over reading vital porions.

Note: Please do not skip over important parts of the documentation.
You will nd it much harder to understand later sections.

Before trying to do anything: see Chapter 2 [Tutorial], page 15, and Chapter 3 [Common
notation], page 23, of this manual. If you encounter musical terms which you d not
recognize, please look them up in théviusic Glossary.

Before trying to write a complete piece of music. see Chapter 4 [Fundamental concepts],
page 44, of this manual. After that, you may want to look into relevant sections of the
Notation Reference

Before trying to change the default output: see Chapter 5 [Tweaking output], page 93, in
this manual.

Before undertaking a large project: read the Usage document's Section \Suggestions for
writing les" in Application Usage.

23

3 Common notation

This chapter explains how to create beautifully printed music cortaining common musical no-
tation. For the most basic steps, see Chapter 2 [Tutorial], page 15.

3.1 Single sta notation

This section introduces common notation that is used for one voice on one at.
3.1.1 Bar lines and bar checks

Bar lines

Single bar lines are automatically placed in the music so there is no mel to add them manually.
Other types of bar lines are added usingbar , for example\bar "||* for a double bar line, or
\bar "|." for an ending bar line. For a full list of bar lines see Section \Bar line$ in Notation
Reference

\relatve {glel)\ bar "||*"c2. c4\ bar "."}

Lo

X |l |
1—

1)

N |
1 |
i H\ [

Bar checks

Though not strictly necessary, bar checksshould be used in the input code to show where bar lines
are expected to fall. They are entered using the bar symbol,|*. With bar checks, the program
can verify that you have input durations where each measure adds up tohte correct length. Bar
checks also make your input code easier to read, since they help kethings organized.

\relative {
gl|el|c2.c |gdcge|cdrr2]|
}
a R-hy =
Hy i ——*1——
NP
A\ I I A0

If you compile the code in the example above, you should see a warning the console output:

warning: barcheck failed at: 1/2
gl|el]|c2 c
|gdcge|cdrr2|

Although the missing duration is clear in the musical output in this simple example, the warning
in the console output is far more e ective in drawing attention to the missing 4' in bar 3.

See also
Notation Reference: Section \Bar and bar number checks" inNotation Reference

3.1.2 Pitches and key signatures

Note: New users often misunderstand how LilyPond uses the key sig-
nature { please read the warning at the end of this section.

Chapter 3: Common notation 24

Pitch alterations

Music Glossary: Section \sharp" in Music Glossary, Section \ at" in Music Glossary, Section
\double sharp" in Music Glossary, Section \double at"in Music Glossary, Section \accidental"
in Music Glossary.

Note namesin LilyPond identify pitches. For example, "c' always means C-natural, regardless
of the key signature.

In many languages, a note hame consists of a base name referring to the diatorsteps of
the C major/a minor scale (for example, d) and a su x, which indicates alteration of this
base pitch. The default input language for note names is "nederlands' (@tch). A sharp pitch
is made by adding is ' to the name, and a at pitch by adding "es'. As you might expect, a
double sharp or double at is made by adding isis ' or “eses'. This syntax is derived from
note naming conventions in Nordic and Germanic languages, like German and RQch. To use
other naming schemes for note names, see Section \Note names in other languaga Notation
Reference

\relative { cis 4 ees fisis, aeses }

—a—h P

Key signatures

Music Glossary: Section \key signature" in Music Glossary, Section \major" in Music Glossary,
Section \minor" in Music Glossary.

The key signature is set with the command\key followed by a pitch and \major or \minor .

\relative {
\ key d \major
d4 fis a c |
\bar "||"\ key c \ minor
cd ees gb |
}
[a J In |
—— Tt —hyH
Eimas O EaE

I A0 [

Warning: key signatures and pitches

Music Glossary: Section \accidental" in Music Glossary, Section \key signature" in Music Glos-
sary, Section \pitch" in Music Glossary, Section \ at" in Music Glossary, Section \natural" in

Music Glossary, Section \sharp" in Music Glossary, Section \transposition" in Music Glossary,
Section \Pitch names" in Music Glossary.

LilyPond makes a distinction between musical content and its printed representation. Input
such as d4 e fis2 ' de nes the pitches and durations of notes, which is musical content The key
signature is part of the printed representation. The key signature also sets rles for the printed
representations of notes. LilyPond compares each input pitch to the ke signature to determine
whether to print an accidental.

The command\key sets thekey signature, which a ects the printed representation, but does
not change the pitch assigned to a note such a€"in the input.

Consider this example.

\relative {

Chapter 3: Common notation 25

\ key d \major
cis 4 d e fis

No note has a printed accidental, but you must still add is ' and type “cis ' and fis ' in the
input le.

The code b' does not mean \print a thick black dot just on the middle line of the sta".
Rather, it means \there is a note with pitch B-natural". In the key of A- at major, it doesget
an accidental:

\relative {
\ key aes \major
aes4 cbc

To say it di erently: Whenever you enter a pitch that is a black ke y on the piano, you must
add is ' or “es' to the note name.

Adding all alterations explicitly might require a little more e ort w hen typing, but the
advantage is that transposing is easier, and accidentals can be printed according to di erent
conventions. For some examples of how accidentals can be printed accandito di erent rules,
see Section \Automatic accidentals" in Notation Reference

See also

Notation Reference: Section \Note hames in other languages" ifNotation Reference Section
\Accidentals" in Notation Reference Section \Automatic accidentals" in Notation Reference
Section \Key signature" in Notation Reference

3.1.3 Ties and slurs

Ties
Music Glossary: Section \tie" in Music Glossary.
A tie is created by appending a tilde ~' to the rst of the two notes being tied.
\relative { g4~ g c2~ | c4~c8 a~ a2 |}

NI h I, |
N—TFHH4A 1 N
|
|

=
-

Lo
A

-
al
I

=

W T TTIN
T i i T
I |

~— |
[-

When the pitch does not change, as is always the case with tied notesulssequent pitches
may be omitted, specifying just the bare duration:

\relative { g4~ 4 c2~|4~8a~ 2|}

N h W, |
I ~NT1 1Ih N\
| I-‘ I-- |. |!!!'\
~— | | | |~
I | —

o
i

Lo
A

T
&N
|

=

Chapter 3: Common notation 26

This shorthand may be useful in other places where the rhythm changewith an unchanging
pitch, but remember that a bare pitch followed by a space and a bare dration will be interpreted
as a single note. In other words, ¢4 a 8 8 would be interpreted as ¢4 a8 a8, not as ‘¢4 a4 a8
a8. Write " c4 a4 8 8 instead.

Slurs
Music Glossary: Section \slur" in Music Glossary.

A slur is a curve drawn across many notes. The starting note and ending note ammarked
with “(" and °) ', respectively. Note that *(' comes after the rst note of the slur.

\relative {d 4 (cl6) cis(deccisd) e db) }

Lo
A

h
L e e A mEREnaEs

Phrasing slurs
Music Glossary: Section \slur" in Music Glossary, Section \phrasing" in Music Glossary.

Slurs to indicate longer phrasing can be entered with\(and\) . You can have both slurs
and phrasing slurs at the same time.

\relative { g4\ (g8(a) b(c) b4\) }

—REFRADNE

I -
[

Warnings: slurs vs. ties

Music Glossary: Section \articulation" in Music Glossary, Section \slur" in Music Glossary,
Section \tie" in Music Glossary.

A slur looks like a tie, but it has a di erent meaning. A tie simply m akes the rst note longer,
and can only be used on pairs of notes with the same pitch. Slurs indicatéhe articulation of
notes, and can be used on larger groups of notes. Slurs and ties can be nested

\relative {c 4 (~c8d~4 ¢ }

See also

Notation Reference: Section \Ties" in Notation Reference Section \Slurs" in Notation Refer-
ence Section \Phrasing slurs" in Notation Reference

3.1.4 Articulations and dynamics

Articulations and dynamics are indicated by adding special codes aftethe notes to which they
apply.

27

Chapter 3: Common notation

Articulations

Music Glossary: Section \articulation” in Music Glossary.
Common articulations can be added to a note using a dash {") and a single character.

\relative {
c4-~c-+c-c-!

c4-> c-. C2-_

Fingerings
Music Glossary: Section \ ngering" in Music Glossary.
Similarly, ngering indications can be added to a note using a dash {*) and the digit to be

printed:

\relative { c 4-3 e-5b-2 a-1}

Articulations and ngerings are usually placed automatically, but you can specify a direction
by replacing the dash (=) with ~~' (up) or *_' (down). You can also use multiple articulations
on the same note. However, in most cases it is best to let LilyPond detenine the articulation

directions.
\relative {c4 -~ dr 4 2->eM +}

Dynamics
Music Glossary: Section \dynamics" in Music Glossary, Section \crescendo” inMusic Glossary,

Section \decrescendo” inMusic Glossary.
Dynamic signs are made by adding the markings (with a backslash) to the note:

\relative { c 2\ff c\mf c\p c\pp }

[\

| | N
NN

N
N

\

D

Crescendiand decrescendiare started with the commands\< and \>. The next dynamics
sign, for example\f , ends the (de)crescendo, or the commantl can be used:

\relative {c 2\< c | c4\ff\>c c c\! }

A Ha ko h
NN
| | | | |
| | | | | |
I I

| | |
< >

N

Lo
A !\

Chapter 3: Common notation 28

See also

Notation Reference: Section \Articulations and ornamentations" in Notation Reference
Section \Fingering instructions" in Notation Reference Section \Dynamics" in Notation Ref-
erence

3.1.5 Adding text

Text may be added to your scores:
\relative { c 2™"espr" a "legato" }

a NP
L) INL N
T N

' legato

Extra formatting may be added with the \markup command:

\relative {
c 2™ markup { \ bold espr }
a2 \'markup {
\dynamic f \ italic \small { 2nd } \ hspace #0.1 \ dynamic p }

P\
A | AN N
1 !'\

2nd ,

See also
Notation Reference: Section \Writing text" in Notation Reference

3.1.6 Automatic and manual beams
Music Glossary: Section \beam" in Music Glossary.
All beamsare drawn automatically:
\relative { a8 ais d eesrdcl6 b a8}

If you do not like the automatic beams, they may be overridden manually To correct just
an occasional beam mark the rst note to be beamed with [' and the last one with]'. Note
that “[' comes after the rst beamed note.

\relative { a8][ais] d eesr d] cl6 b a8 }

If you want to turn o automatic beaming entirely or for an extended secti on of music, use
the command \autoBeamOff to turn o automatic beaming and \autoBeamOnto turn it on
again.

\relative {

Chapter 3: Common notation 29

\ autoBeamOff
a8 c b4 d8. cl6 b4 |
\ autoBeamOn
a8 c b4 d8. cl6 b4 |

| N1 | I |]

b == 1 [|
[| [|
[l

See also

Notation Reference: Section \Automatic beams" in Notation Reference Section \Manual
beams" in Notation Reference

3.1.7 Advanced rhythmic commands

Partial measure
Music Glossary: Section \anacrusis" inMusic Glossary.

A pickup (or anacrusig is entered with the keyword \partial . It is followed by a duration:
\partial 4 'is a quarter note pickup and \partial 8 ' an eighth note.
\relative {
\partial 8 f 8 |
c2 d |
}
4 11 a1 N
A I 1 I\‘I II N
[H |
HH |
Tuplets

Music Glossary: Section \note value" in Music Glossary, Section \triplet" in Music Glossary.

Tuplets are made with the \tuplet keyword. It takes two arguments: a fraction and a piece
of music. The fraction is the number of tuplet notes over the numberof notes normally lling
the same duration. For triplets, there are three notes instead of two, e triplets have 3/2 as
their fraction.

\relative {
\tuplet 3/2 {f8 ga}
\tuplet 3/2 {c8rc}
\tuplet 3/2 { 8 g16 [a g a }
\tuplet 3/2 { d4 a8 }

}
o hNB=, & hhihls D
] ;

Grace notes

Music Glossary: Section \grace notes" inMusic Glossary, Section \acciaccatura" in Music
Glossary, Section \appoggiatura" in Music Glossary.

Chapter 3: Common notation 30

Grace notesare created with the \grace command, although they can also be created by
pre xing a music expression with the keyword \appoggiatura or \acciaccatura

\relative {
c 2\ grace { a32 b } c2 |
c2 \appoggiatura bl6 c2 |
c2 \acciaccatura bl6 c2 |

See also

Notation Reference: Section \Grace notes" inNotation Reference Section \Tuplets" in Nota-
tion Reference Section \Upbeats" in Notation Reference

3.2 Multiple notes at once

This section introduces notation having more than one note at the same the: multiple instru-
ments, multiple staves for a single instrument (i.e., piano), andchords.

Polyphony in music refers to having more than one voice occurring ina piece of music.
Polyphony in LilyPond refers to having more than one voice on the same sta.

3.2.1 Music expressions explained

In LilyPond input les, music is represented by music expressions A single note is a music
expression:

a4

==

Enclosing music in braces creates @ompound music expression Here we have created a
compound music expression with two notes:

\relative { a4 g4}

N

Putting a group of music expressions (e.g., notes) in braces means thétey are in sequence
(i.e., each one follows the previous one). The result is another musiexpression:

\relative {{a4g}fdg}

a III -I-i III

Chapter 3: Common notation 31

Analogy: mathematical expressions

This mechanism is similar to mathematical formulas: a big formula is ceated by composing
small formulas. Such formulas are called expressions, and they can contadther expressions,
so you can make arbitrarily complex and large expressions. For example,

1

1+2

a+ 2 3

(1+2 3=@4 9
This is a sequence of expressions, where each expression is corgdiin the next (larger) one.
The simplest expressions are numbers, and larger ones are made by comibg expressions with
operators (like +, , and =) and parentheses. Like mathematical expressions, music expresssn
can be nested arbitrarily deep, which is necessary for complex musiike polyphonic scores.

Simultaneous music expressions: multiple staves

Music Glossary: Section \polyphony" in Music Glossary.

This technique is useful for polyphonic music. To enter music with more voices or more
staves, we combine expressions in parallel. To indicate that two vaies should play at the same
time, simply enter a simultaneous combination of music expressionsA “simultaneous' music
expression is formed by enclosing expressions insid& and >>. In the following example, three
sequences (all containing two separate notes) are combined simultaoesly:

<<
\relatve { a2 g}
\relative {f2 e}
\relative {d2 b}
>>

[a |)
K NI N1
NI\
LM HA' |
fa
A |)
NI N1
NN
LI B |
[a
A
|
N1 |
NN

Note that we have indented each level of the input with a di erent amount of space. LilyPond
does not care how much (or little) space there is at the beginning of aie, but indenting
LilyPond code like this makes it much easier for humans to read.

Note: Each note is relative to the previous note in the input; the rst one
in a \relative block is relative to ‘¢’ (one octave below the middle C).

Simultaneous music expressions: single sta

To determine the number of staves in a piece, LilyPond looks at the bginning of the rst
expression. If there is a single note, there is one sta ; if there i& simultaneous expression, there
is more than one sta . The following example shows a complex expressm, but as it begins with
a single note it will be set out on a single sta.

\relative {

Chapter 3: Common notation 32

C 2 <<C e>> |
<< {e2f}{c2<<bd>}>|

3.2.2 Multiple staves

LilyPond input les are constructed out of music expressions (see S#ion 3.2.1 [Music expressions
explained], page 30). If the score begins with simultaneous music exgssions, LilyPond creates
multiples staves. However, it is easier to see what happens if waaate each sta explicitly.

To print more than one sta, each piece of music that makes up a sta is marked by adding
\new Staff before it. TheseStaff elements are then combined in parallel with<< and >>;

<<
\new Staff { \ clef treble c 4}

\new Staff { \ clef bass c4 }
>>

;a—h:
E

—

The command \new introduces a “notation context'. A notation context is an environment
in which musical events (like notes or\clef commands) are interpreted. For simple pieces,
such notation contexts are created automatically. For more complex piecest is best to mark
contexts explicitly.

There are several types of contextsScore, Staff , and Voice handle melodic notation, while
Lyrics sets lyric texts and ChordNamerints chord names.

In terms of syntax, prepending\new to a music expression creates a bigger music expression.
In this way it resembles the minus sign in mathematics. The formu& (4 +5) is an expression,
SO (4 +5) is a bigger expression.

Time signatures entered in one sta a ect all other staves by default. On the other hand, the
key signature of one sta doesnot a ect other staves. This di erent default behavior is because
scores with transposing instruments are more common than polyrhythng scores.

<<
\new Staff { \ clef treble \ key d \major \time 3/4 c 4}

\new Staff { \ clef bass c4 }
>>

iy

21

Chapter 3: Common notation 33

3.2.3 Sta groups

Music Glossary: Section \brace" in Music Glossary, Section \sta " in Music Glossary, Section
\system" in Music Glossary.

Piano music is typeset in two staves connected by drace. Printing such a sta is similar
to polyphonic music in multiple staves (see Section 3.2.2 [Multipe staves], page 32). However,
now this entire expression is inserted into aPianoStaff :

\new PianoStaff <<
\new Staff ...
\new Staff ...

>>

Here is a small example.

\ new PianoStaff <<
\new Staff \relative {\time 24 c4e|gg |}
\new Staff \relative {\clef basscdc |ec |}
>>

D

h !l

==

b ;ll_J.

=y

2r

4

Other sta groupings are introduced with \new GrandStaff , suitable for orchestral scores,
and \new ChoirStaff , suitable for vocal scores. These sta groups each form another type of
context, one that generates the brace at the left side of every system ahalso controls the extent
of bar lines.

See also

Notation Reference: Section \Keyboard and other multi-sta instrument s" in Notation Refer-
ence Section \Displaying staves" in Notation Reference

3.2.4 Combining notes into chords

Music Glossary: Section \chord" in Music Glossary.

We saw earlier how notes can be combined intehords: by enclosing them in double angle
brackets we indicated that they are simultaneous. However, the normalway of producing a
chord is to surround the pitches with single angle brackets. Note that all notes in a chord must
have the same duration, and that the duration is placedafter the closing bracket.

\relative {rd <c eg><cfa>2}

. i
2 s N

Think of chords as almost equivalent to single notes: virtually everyhing you can attach to
a single note can be attached to a chord, and usually these attachments nstibe put outside
the angle brackets. For example, you can combine markings like beams ande8 with chords.
\relative {
r4 <c e g>~ <c f a>2 |
<c e g>d <cfa><ceg><cfa>

Chapter 3: Common notation 34

<c e g>8\>] <c fa>q q]\ |
r4 <c e g>8.\p q16 (g4-. <c f a>) |
}

D)D)
)
D)D)

D)
D)

D
®
pz
®

— y

The above example also demonstrates a very useful feature: a chord cée repeated by using
the symbol g'. This even works with interspersed single notes.

\relative {c8<eg>8qqgg, qqgq?}

Lo
A

See also
Notation Reference: Section \Chorded notes" inNotation Reference

3.2.5 Single sta polyphony

Polyphonic music in LilyPond, while not di cult, uses concepts that we have not discussed yet,
SO we are not going to introduce them here. Instead, the following s#ions establish the basics
of these concepts and explain them thoroughly.

See also

Learning Manual: Section 4.2 [Voices contain music], page 51.
Notation Reference: Section \Simultaneous notes" inNotation Reference

3.3 Songs

This section introduces vocal music and simple song sheets.

3.3.1 Setting simple songs
Music Glossary: Section \lyrics" in Music Glossary.
Here is the start of the melody to a nursery rhyme,Girls and boys come out to play

\relative {
\key g \major
\time 6/8

d 4 b8 c4 a8 | d4 b8 g4
}

The lyrics can be set to these notes, combining both with théaddlyrics keyword. Lyrics
are entered by separating each syllable with a space.
<<
\relative {

Chapter 3: Common notation 35

\ key g \major

\time 6/8
d4 b8 c4 a8 | dd b8 g4
}
\addlyrics {
Girls and boys come out to play,
}
>>

| |l | | |
' 1 Tl
Girls and boyscome out to play,
>> around the whole piece to show that the music and

Note the double angle brackets<< ...
lyrics are to occur at the same time.

3.3.2 Aligning lyrics to a melody
Music Glossary: Section \melisma" in Music Glossary, Section \extender line" in Music Glos-

sary.
The next line in the nursery rhyme is The moon doth shine as bright as dayLet's extend it:

<<
\relative {
\ key g \major
\time 6/8
d4 b8 c4 a8 | d4 b8 g4 g8 |
a4 b8 c b a| d4 b8 g4. |
}
\ addlyrics {
Girls and boys come out to play,
The moon doth shine as bright as day;

}
>>
e L I MY 1 | U
| H—H i) — H—n by
| — | L | — | i | | Il |
' T— ' i
Girls and boys come out to play, The
3 | L | 2N L . L
i) H—HY—H"nN = H 2
T =
moon doth shine as bright as day;

Looking at the music, we see that the extra lyrics do not align properlywith the notes. The
word shine should be sung on two notes, not one. This is called anelisma a single syllable
sung to more than one note. There are several ways to spread a syllablgay multiple notes, the
simplest being to add a slur across them. See Section 3.1.3 [Ties anldirs], page 25, for more

information.
<<
\relative {

36

Chapter 3: Common notation

\ key g \major

\time 6/8
d4 b8 c4 a8 | d4 b8 g4 g8 |

a4 b8 o b) a | d4 b8 g4. |

}
\addlyrics {
Girls and boys come out to play,
The moon doth shine as bright as day;
}
>>
ey L Ia M h 1 , U
| =4 N | | @) ! ! I 1 | @A) LL LL
= — a——h
_' N B N
Girls and boys come out to play, The
s . 1 | 2N 1 . h L
—MN—H—H——N—
— ' m— — ! iT -
bright as day;

l

moon doth shine as

The words now line up correctly with the notes, but the automatic beaming for the notes
aboveshine asdoes not look right. We can correct this by inserting manual beaming cormands
to override the automatic beaming here. See Section 3.1.6 [Automatic anananual beams],

page 28, for more information.

<<
\relative {
\key g \'major
\time 6/8
d4 b8 c4 a8 | d4d b8 g4 g8 |
a4 b8 ¢ b)) a | d4 b8 g4. |
}
\addlyrics {
Girls and boys come out to play,
The moon doth shine as bright as day;
}
>>
=y 1 | .|u 1 . .u
=< 11 | @) ! ! I 11 | @) LL LL
== T H Tt
j 1 1 1
Girls and boys come out to play, The
3 . 1 I~ .|L'I h 1 .
—m——H—11——
— ' — — I | E—
— K [
as bright as day;

1
moon doth shine
As an alternative to using slurs, melismata may be indicated in justthe lyrics by using an

underscore "' for each note that should be included in the melisma.

<<

Chapter 3: Common notation 37

\relative {
\key g \'major
\time 6/8

d4 b8 c4 a8 | d4 b8 g4 g8 |
a4 b8 ¢ b] a| d4 b8 g4. |
}

\addlyrics {
Girls and boys come out to play,

The moon doth shine _ as bright as day;

}
>>
[[.Iu 1) .u
| H—H i) — H— by
i iT i L i iT | I | | Il |
Girls and boys come out to play, The
8 . 1 Ia 1 .|l"l h 1 ,
—h—H—H————
— e —— | o —
M — K A
moon doth shine as bright as day;

If a syllable extends over several notes or a single very long note axtender line is usually
drawn from the syllable extending under all the notes for that syllabe. It is entered as two
underscores (). It is important that the underscores are separated with one or more spaes

from the preceding (and following) syllable.
Here is an example from the rst three bars ofDido’'s Lament, from Purcell's operaDido and

neas :
<<
\relative {
\key g \'minor
\time 3/2
g2 a bes | bes2 (a) b2 |
c4.(bes8 a4. g8 fis4.) g8 | fisl
}
\ addlyrics {
When | am laid,
am laid __ in earth,
}
>>
™~ | A1 A1 | A1 L%g-j
E’ NN N—N—T™N | ——
| A | L | 1 L | | [— —
— I ! I 1 i
When | am laid, am laid in earth,

None of the examples so far have involved words containing more than one $ble. Such
words are usually split one syllable to a note, with hyphens betweemyllables. Such hyphens are
entered as two consecutive dashes+), resulting in a centered hyphen between the syllables.
It is important that the dashes are separated with one or more spaces from th preceding and

following syllable.

Chapter 3: Common notation 38

Here is an example showing this and everything we have learned so fabout aligning lyrics

to notes.
<<
\relative {
\key g \major
\time 3/4
\partial 4
d4 | g4 ga8(b)|gsghbd(c)|
dd de|c2
}
\addlyrics {
A -- way ina __ man -- ger,
no __ crib for a bed,
}
>>
. N ;1 1 I~h h h N
) | | DR L N L LL l?l“! ! 1 | | L !\‘I
-y A I I I !
Hl — 1 — |
bed,

A - way in a__ man-ger, no_ crib for a

Some lyrics, especially those in Italian, require the opposite: séhg more than one syllable
to a single note. This is achieved by linking the syllables togethemwith a single underscore (',
with no spaces), or enclosing them in quotes. Here is an example from Risi's operall barbiere
di Siviglia, where al has to be sung on the same note as thgo of Largo in Figaro's aria Largo

al factotum:
<<
\relative {
\clef bass
\key ¢ \ major
\time 6/8
c4~8db|c8 (d) bcdb]c8
}
\addlyrics {
Lar -- go_al fac -- to -- tum del -- la cit -- t a
}
>>
_pe——n 0 h B hhDh B
b — I —— S —— I i
|l | v
Lar - goalfac - to - tum del-la cit - ta
See also

Notation Reference: Section \Vocal music" in Notation Reference

3.3.3 Lyrics to multiple staves

The simple approach using\addlyrics
Here is an example from Handel's oratorioJudas Maccab us.

can be used for placing lyrics under more than one sta.

<<

Chapter 3: Common notation 39

\relative {

\key f \ major

\time 6/8

\partial 8

c8|c8 ([bes]) aaf g]) f|f4. b, | cd~ 4
}
\addlyrics {

Let flee -- cy flocks the hills a -- dorn,
}
\relative {

\key f \ major

\time 6/8

\partial 8

r8 | rd. r4 c8| a8 ([ag) ff(€) d|e8(d)) c bes4

}
\addlyrics {

Let flee -- cy flocks the hills a -- dorn,

}

>>

lu
I N
)]

o

e

SLEE " WP hP—h

-cy ocks the hills a - dorn,
. ']

W
Ho

o

Let

vy
0

+

%

—

LA L1 I]) .
1 —— - 1T g1
v

Let ee -cy ocks the hills adorn,

1 | ¥y 1
1

kS
(

Scores any more complex than this simple example are better produceldy separating out
the score structure from the notes and lyrics with variables. See Stion 3.4.1 [Organizing pieces
with variables], page 39, for an introduction.

See also
Notation Reference: Section \Vocal music" in Notation Reference

3.4 Final touches

This is the nal section of the tutorial; it demonstrates how to add the nal touches to simple
pieces, and provides an introduction to the rest of the manual.

3.4.1 Organizing pieces with variables

When all of the elements discussed earlier are combined to produdarger les, the music ex-
pressions get a lot bigger. In polyphonic music with many staves, thenput les can become
very confusing. We can reduce this confusion by usingariables

With variables (also known as identi ers or macros), we can break up comfex music expres-
sions. A variable is assigned as follows:

namedMusic = { ... }

The contents of the music expressiomamedMusiccan be used later by placing a backslash
in front of the name (\namedMusio), just like a normal LilyPond command.

violin =\ new Staff {

Chapter 3: Common notation 40

\relative {
adbch

}
}

cello = \new Staff {
\relative {
\clef bass
e2 d

}
}

{

<<
\ violin
\ cello
>>

iy

D
=2
bR
by

7

1

D
2
L7

<

! |
By convention, variable names consist of alphabetic characters only. Foretailed information,
see Section \File structure" in Notation Reference
Variables must be de ned before the main music expression, but may be used as many times
as required anywhere after they have been de ned. They may evenébused in a later de nition
of another variable, giving a way of shortening the input if a section of nusic is repeated many
times.

tripletA = \relative { \tuplet 3/2 {c8 e g}}
barA = { \ tripletA \tripletA \tripletA \tripletA }

{ \ barA \barA }

3 3 3 3 3 3 3 3

1 1 1 (B)] .FHF?FF. ?FF. ?Fn_-.
DR 6 I A O) A O 0 T O 0 N) I L) LD) I D D) I

|l | | i | | i | | i | | I | |l | | i | | i |
A0 A0 10 A0 A0 A0 10 A0

Variables may be used for many other types of objects in the input. For gample,
myWidth = 60 % a number to pass to a \paper variable
% (the unit is millimeter)
myName = "Wendy" % a string to pass to a markup
aFivePaper = \paper { #(set-paper-size "a5") }
Depending on its contents, the variable can be used in di erent plaes. The following example
uses the above variables:

\paper {
\aFivePaper
line-width = \myWidth

Chapter 3: Common notation 41

}
{

}
3.4.2 Adding titles

The title, composer, opus number, and similar information are enteredin the \header block.
This exists outside of the main music expression; théheader block is usually placed underneath
the version number.

\version "2.24.2"

c4M\myName

\header {
titte = "Symphony"
composer = "Me"

opus = "Op. 9"
}
{

... music ...
}

When the le is processed, the title and composer are printed abovéhe music. More information
on titling can be found in Section \Creating titles headers and footers in Notation Reference

3.4.3 Absolute note names

So far we have usedrelative to de ne pitches. This is usually the fastest way to enter most
music. Without \relative , pitches are interpreted in absolute mode.

In this mode, LilyPond treats all pitches as absolute values: ac ' always means middle C,
a b' always means the note one step below middle C, and aj, ' always means the note on the
bottom line of a sta with a bass clef.

{
\clef bass
cdbag g |
g4 f fc |
}
A | ! 11
i EE T
| LI I A III!III

Writing a melody in the treble clef involves a lot of quote ™ ' marks. Consider this fragment
from Mozart:

{

\key a \major
\time 6/8

cis 8. d 16 ci
b8. cis 16 b8

n
Q o

Chapter 3: Common notation 42

Common octave marks can be indicated just once, using the commandixed followed by a
reference pitch:

\fixed c {
\key a \'major
\time 6/8
cis8. d16 cis8 e4 e8 |
b,8. cis1l6 b,8 d4 d8 |

With \relative , the previous example needs no octave marks because this melodyoves
in steps no larger than three sta positions:

\relative {
\key a \major
\time 6/8

cis 8. d16 cis8 e4 e8 |
b8. cis16 b8 d4 d8 |

If you make a mistake with an octave mark (" ' or °, ") while working in \relative = mode, it
is very obvious { many notes will be in the wrong octave. When workingin absolute mode, a
single mistake will not be as visible, and will not be as easy to nd.

However, absolute mode is useful for music with large intervals, andsi extremely useful for
computer-generated LilyPond les. When cutting and pasting melody fragments, absolute mode
preserves the original octave.

Sometimes music is arranged in more complex ways. If you are usirigelative inside of
\relative , the outer and inner relative sections are independent:

\relative {c4 \ relatve {f g} c}

a_ NN

A0 A0

To use absolute mode inside ofrelative , put the absolute music inside\fixed c { ... }
and the absolute pitches will not a ect the octaves of the relative music:

\relative {
cd\fixed c{f g } c|
c4 \fixed ¢ {fg}c

}

Chapter 3: Common notation 43

3.4.4 After the tutorial

After nishing the tutorial, you should probably try writing a piece or two. Start by adding notes
to one of the templates (see Appendix A [Templates], page 155). If you néeany notation that
was not covered in the tutorial, look at the Notation Reference, starting with Section \Musical
notation" in Notation Reference If you want to write for an instrument ensemble that is not
covered in the templates, see Section 4.4 [Extending the templas], page 74.

Once you have written a few short pieces, read the rest of the Learnm Manual (chapters
3{5). There's nothing wrong with reading it now, of course! However, the rest of the Learning
Manual assumes that you are familiar with LilyPond input. You may wish to skim these chapters
right now, and come back to them after you have more experience.

In this tutorial and in the rest of the Learning Manual, there is a paragraph See alsoat the
end of each section, which contains cross references to other sectonyou should not follow
these cross references at rst reading; when you have read all of the Leging Manual, you may
want to read some sections again and follow cross references for furthezading.

If you have not done so already,pleaseread Section 2.4.3 [Overview of manuals], page 22.
There is a lot of information about LilyPond, so newcomers often do not knowwhere they should
look for help. If you spend ve minutes reading that section carefully, you might save yourself
hours of frustration looking in the wrong places!

44

4 Fundamental concepts

You've seen in the Tutorial how to produce beautifully printed music from a simple text le.
This section introduces the concepts and techniques requiredot produce equally beautiful but
more complex scores.

4.1 How LilyPond input les work

The LilyPond input format is quite free-form, giving experienced users a lot of exibility to
structure their les however they wish. But this exibility can make things confusing for new
users. This section will explain some of this structure, but may gbss over some details in favor
of simplicity. For a complete description of the input format, see Setion \File structure" in
Notation Reference

4.1.1 Introduction to the LilyPond le structure

A basic example of a LilyPond input le is
\version "2.24.2"

\header { }

\score {
... .compound music expression ... % all the music goes here!
\layout { }
\midi { }
}
There are many variations of this basic pattern, but this example serve as a useful starting
place.

Up to this point none of the examples you have seen have used\acore{} command. This
is because LilyPond automatically adds the extra commands which are needl when you give it
simple input. LilyPond treats input like this:

\relative {
cdabc

}

as shorthand for this:

\book {
\score {
\new Staff {
\new Voice {
\relative {
cdabc

}
}
}
\layout { }
}
}

In other words, if the input contains a single music expression, Lilyvond will interpret the
le as though the music expression was wrapped up inside the command$iewn above.

A word of warning! Many of the examples in the LilyPond documentation will omit the \new
Staff and \new Voice commands, leaving them to be created implicitly. For simple exampes

Chapter 4: Fundamental concepts 45

this works well, but for more complex examples, especially when adtional commands are used,
the implicit creation of contexts can give surprising results, maype creating extra unwanted
staves. The way to create contexts explicitly is explained in Setion 4.3 [Contexts and engravers],
page 63.

Note: When entering more than a few lines of music it is advisable t
always create staves and voices explicitly.

For now, though, let us return to the rst example and examine the \score command, leaving
the others to default.

A \score block must always contain exactly one music expression. Remembehat a music
expression could be anything from a single note to a huge compound exmsion like

{

\new StaffGroup <<
. insert the whole score of a Wagner opera in here ...
>>

}

Since everything is inside{ ... } , it counts as one music expression.
As we saw previously, the\score block can contain other things, such as

\score {
{cdabc}
\header { }
\layout { }
\midi { }
}
Note that these three commands {\header , \layout and \midi { are special: unlike many
other commands which begin with a backward slash\() they are not music expressions and are
not part of any music expression. So they may be placed inside \score block or outside it. In
fact, these commands are commonly placed outside thescore block { for example, \header is
often placed above the\score command, as the example at the beginning of this section shows.

Two more commands you have not previously seen ardayout {} and \midi {} . If these
appear as shown they will cause LilyPond to produce a printed output ad a MIDI output
respectively. They are described fully in the Notation Reference] Section \Score layout" in
Notation Reference and Section \Creating MIDI output” in Notation Reference

You may code multiple \score blocks. Each will be treated as a separate score, but they
will be all combined into a single output le. A \book command is not necessary { one will
be implicitly created. However, if you would like separate output |es from one.ly le then
the \book command should be used to separate the di erent sections: eactbook block will
produce a separate output le.

In summary:

Every \book block creates a separate output le (e.g., a PDF le). If you haven't explicitly
added one, LilyPond wraps your entire input code in a\book block implicitly.

Every \score block is a separate chunk of music within a\book block.

Every \layout block a ects the \score or \book block in which it appears { i.e., a \layout
block inside a\score block a ects only that \score block, but a \layout block outside of a
\score block (and thus in a\book block, either explicitly or implicitly) will a ect every \score
in that \book.

For details see Section \Multiple scores in a book" inNotation Reference

Chapter 4: Fundamental concepts 46

Another great shorthand is the ability to de ne variables, as shown in Setion 3.4.1 [Orga-
nizing pieces with variables], page 39. All the templates use this:

melody = \relative {
cdabc

}

\score {
\melody

}

When LilyPond looks at this le, it takes the value of melody (everything after the equals
sign) and inserts it whenever it seedmelody . There's nothing special about the name { it could
be melody, global , keyTime, pianorighthand , or something else. Remember that you can use
almost any name you like as long as it contains just alphabetic characters andsidistinct from
LilyPond command names. For more details, see Section 4.4.4 [Saving tym with variables
and functions], page 88. The exact limitations on variable names are detaitkin Section \File
structure" in Notation Reference

See also

For a complete de nition of the input format, see Section \File struct ure" in Notation Refer-
ence

4.1.2 Score is a (single) compound musical expression

We saw the general organization of LilyPond input les in the previous setion, Section 4.1.1
[Introduction to the LilyPond le structure], page 44. But we seemed to skip over the most
important part: how do we gure out what to write after \score ?

We didn't skip over it at all. The big mystery is simply that there is no mystery. This line
explains it all:

A \score block must contain exactly one music expression.

To understand what is meant by a music expression, you may nd it uséul to review the tutorial,
Section 3.2.1 [Music expressions explained], page 30. In that sectiowe saw how to build big
music expressions from small pieces { we started from notes, then ohds, etc. Now we're going
to start from a big music expression and work our way down. For simpliity, we'll use just a
singer and piano in our example. We don't need &taffGroup for this ensemble, which simply
groups a number of staves together with a bracket at the left, but we doneed staves for a singer
and a piano, though.
\score {
<<
\new Staff = "singer" <<
>>
\new PianoStaff = "piano” <<
>>
>>
\layout { }
}

Here we have given names to the staves { \singer" and \piano". This is not esential here,
but it is a useful habit to cultivate so that you can see at a glance what eak stave is for.

Remember that we use<< ... >> instead of {...} to show simultaneous music. This
causes the vocal part and piano part to appear one above the other in the scer The<< ... >>
construct would not be necessary for the Singer sta in the example abaow if it were going to
contain only one sequential music expression, buk< ... >> rather than braces is necessary if

Chapter 4: Fundamental concepts 47

the music in the Sta is to contain two or more simultaneous expressiois, e.g., two simultaneous
Voices, or a Voice with lyrics. We're going to have a voice with lyris, so angle brackets are
required. We'll add some real music later; for now let's just put in some dummy notes and
lyrics. If you've forgotten how to add lyrics you may wish to review \addlyrics in Section 3.3.1
[Setting simple songs], page 34.
\score {
<<
\ new Staff = "singer" <<
\ new Voice = "vocal" { c1 }
\addlyrics { And }
>>
\ new PianoStaff = "piano" <<
\ new Staff "upper" { c1}
\ new Staff "lower" { c1 }
>>
>>

\layout {}

}

Lo
A

And

A

D

e

Now we have a lot more details. We have the singer's sta : it contains avoice (in LilyPond,
this term refers to a set of notes, not necessarily vocal notes { for @mple, a violin generally
plays one voice) and some lyrics. We also have a piano sta: it contains ampper sta (right
hand) and a lower sta (left hand), although the lower sta has yet to be gi ven a bass clef.

At this stage, we could start lling in notes. Inside the curly braces next to \new Voice =
"vocal" , we could start writing

\relative {
r4 d 8\noBeam g, c4 r

}

But if we did that, the \score section would get pretty long, and it would be harder to
understand what was happening. So let's use variables instead. Thesgere introduced at
the end of the previous section, remember? To ensure the contentsf the text variable are
interpreted as lyrics we preface them with\lyricmode . Like \addlyrics , this switches the
input mode to lyrics. Without that, LilyPond would try to interpre t the contents as notes,
which would generate errors. (Several other input modes are availablesee Section \Input
modes" in Notation Reference)

So, adding a few notes and a bass clef for the left hand, we now have a péof real music:

melody = \relative {r4 d 8\ noBeamg, c4 r }
text \lyricmode { And God said, }

upper = \relative {<g d g,>2~<gd g,> }
lower \relative { b,2 e }

Chapter 4: Fundamental concepts

\score {
<<
\new Staff = "singer" <<
\ new Voice = "vocal' { \ melody }
\addlyrics { \text }

>>
\ new PianoStaff = "piano" <<
\ new Staff = "upper" { \ upper }
\ new Staff = "lower" {
\clef "bass"
\ lower
}
>>
>>
\layout {}

}

jlh%hI

And God said,

N

D

IN————N

>
[<=

D
>|

\

1
'\ I
|

48

When writing (or reading) a \score section, just take it slowly and carefully. Start with the
outer level, then work on each smaller level. It also really helps to b strict with indentation {
make sure that each item on the same level starts on the same horizontal pésin in your text

editor.

See also

Notation Reference: Section \Structure of a score" inNotation Reference

4.1.3 Nesting music expressions

It is not essential to declare all staves at the beginning; they may bentroduced temporarily at
any point. This is particularly useful for creating ossia sections { e Section \ossia" inMusic
Glossary. Here is a simple example showing how to introduce a new sta temeprarily for the

duration of three notes:

\ new Staff {
\relative {
r4 g8 g c4 c8 d |
e4 r8
<<
{f8 cc}
\new Staff {
f8 f c

}

>>

Chapter 4: Fundamental concepts 49

r4 |

:,Eﬁ-hihr

| H
ol

T

111 ==
——T— 1
[l

Note that the size of the clef is the same as a clef printed following alef change { slightly
smaller than the clef at the beginning of the line. This is usual for ckfs printed in the middle of
a line.

The ossia section may be placed above the sta as follows:
\new Staff = "main" {
\relative {
r4 g8 g c4 c8 d |
e4 r8
<<
{f8 c c}
\new Staff \with {
alignAboveContext = "main"

} {8 fc}
>>

r4 |

| |-

This example useswith , which will be explained more fully later. It is a means of modifying
the default behavior of a single Sta. Here it says that the new sta should be placed above the
sta called \main" instead of the default position which is below.

See also

Ossia are often written without clef and without time signature and are usually in a smaller
font. These require further commands which have not yet been intoduced. See Section 5.3.2
[Size of objects], page 111, and Section \Ossia staves" Notation Reference

4.1.4 Structure of a note entry

A note entry in LilyPond consists of a pitch, followed by a duration, optionally followed by one
or more “post-events'. LilyPond post-events add things such as artications, ngerings, string
numbers, slurs, ties and explanatory text.

The pitch may be explicitly de ned using the current LilyPond i nput language as described
in Section \Note names in other languages" inNotation Reference The pitch may be omitted.

Chapter 4: Fundamental concepts 50

If the pitch is omitted, the pitch of a current note will be the same as the pitch of the previous
note in the input le, see Section \Durations" in Notation Reference Note that neither r nor s
is a pitch.

The duration includes a number and optionally one or more dots. If a duratbn is not
explicitly de ned, the duration of a current note will be the same as the duration of the previous
note, chord, rest, or spacer rest, see Section \Durations" irNotation Reference

Post-events follow the note to which they are attached. Suppose we waro have an eighth
note c' with a ngering of 1, a tenuto articulation, a slur beginning wi th the note, a tie beginning
with the note, and a text annotation. This can be accomplished as shown.

{ ¢8-1-- (~™ markug"text annotation"} ¢ d) }

text annotation

i'u:a]:ﬁ

See also

Learning Manual: Section 3.1.3 [Ties and slurs], page 25, Section 3.1.4 [Actilations and
dynamics], page 26, Section 3.1.5 [Adding text], page 28.

Notation Reference: Section \Pitches" in Notation Reference Section \Rhythms" in Nota-
tion Reference Section \Expressive marks" in Notation Reference

4.1.5 On the un-nestedness of brackets and ties

You have already met a number of di erent types of bracket and bracketlike constructs in
writing the input le to LilyPond. These obey dierent rules whi ch can be confusing at rst.
Let's rst review the di erent types of brackets and bracket-like constructs.

Bracket Type Function
{..} Encloses a sequential segment of music
<> Encloses the notes of a chord
<< L >> Encloses simultaneous music expressions
(...) Marks the start and end of a slur
\(...\) Marks the start and end of a phrasing slur
[...] Marks the start and end of a manual beam
To these we should add other constructs which generate lines betweer across notes: ties
(marked by a tilde, ~), tuplets written as \tuplet x/y { ... } , and grace notes written as
\grace { ... }
Outside LilyPond, the conventional use of brackets requires the dierent types to be properly
nested, like this,<<[{(...)}]1>> , with the closing brackets being encountered in exactly

the opposite order to the opening brackets. Thisis a requirement for the three types of bracket
described by the word "Encloses' in the table above { they must ndsproperly. However, the
remaining bracket-like constructs, described with the word "Maks' in the table above together
with ties and tuplets, do not have to nest properly with any of the brackets or bracket-like
constructs. In fact, these are not brackets in the sense that they etlose something { they are
simply markers to indicate where something starts and ends.

So, for example, a phrasing slur can start before a manually inserted laen and end before
the end of the beam { not very musical, perhaps, but possible:

\relative { g8\ (a bl cb\) a g4}

Chapter 4: Fundamental concepts 51

In general, di erent kinds of brackets, bracket-like constructs, and those implied by tuplets,
ties and grace notes, may be mixed freely. This example shows a beamtending into a tuplet
(line 1), a slur extending into a tuplet (line 2), a beam and a slur extending into a tuplet, a tie
crossing two tuplets, and a phrasing slur extending out of a tuplet(lines 3 and 4).

\relative {
ri6[g \tuplet 3/2 {rl6 e8] }
0,16 (a \tuplet 3/2 { bl6 d) e }
g,8[(a \tuplet 3/2 { b8 d) e~ } |
\tuplet 5/4 { e32\ (a, bd e } a4\)

}

!
L
|
LT

4.2 \oices contain music

Singers need voices to sing, and so does LilyPond. The actual music forl ahstruments in a
score is contained in Voices { the most fundamental of all LilyPond's concpts.

4.2.1 I'm hearing Voices

The lowest, most fundamental or innermost layers in a LilyPond score ag called "Voice contexts'
or just "Voices' for short. Voices are sometimes called “layers' in o#fr notation packages.

In fact, a Voice layer or context is the only one which can contain music.If a Voice context is
not explicitly declared one is created automatically, as we saw at the bginning of this chapter.
Some instruments such as an Oboe can play only one note at a time. Musicritten for such
instruments requires just a single voice. Instruments which an play more than one note at a
time like the piano will often require multiple voices to encodethe di erent concurrent notes
and rhythms they are capable of playing.

A single voice can contain many notes in a chord, of course, so when exacthre multiple
voices needed? Look rst at this example of four chords:
\relative {
\key g \'major
<d g>4 <d fis> <d a> <d g>
}

i

H-HE

D

This can be expressed using just the single angle bracket chord symls, < ... > , and for
this just a single voice is needed. But suppose the F-sharp were adlly an eighth-note followed

Chapter 4: Fundamental concepts 52

by an eighth-note G, a passing note on the way to the A? Now we have two nogewhich start
at the same time but have di erent durations: the quarter-note D and t he eighth-note F-sharp.
How are these to be coded? They cannot be written as a chord because dtlet notes in a chord
must have the same duration. And they cannot be written as two sequenal notes as they need
to start at the same time. This is when two voices are required.

Let us see how this is done in LilyPond input syntax.

The easiest way to enter fragments with more than one voice on a sta is teenter each voice
as a sequence (with{ ... }), and combine them simultaneously with angle brackets,<< ...
>> The fragments must also be separated with double backward slashey, , to place them in
separate voices. Without these, the notes would be entered into a isgle voice, which would
usually cause errors. This technique is particularly suited to peces of music which are largely
homophonic with occasional short sections of polyphony.

Here's how we split the chords above into two voices and add both the paing note and a
slur:

\relative {
\ key g \major
% Voice ="1" Voice = "2"
<< {g4fis8 (g adg}t\N{ddddd} >>
}
a 1 I'/:I\'L N II
N M A
41 S hl

o
Notice how the stems of the second voice now point down.
Here's another simple example:

\relative {
\key d \'minor
% Voice ="1" Voice = "2"
<<{r4dg g4 a8} \N{d2d4d g} >> |
<< { bes4d bes cbes}\{g4gg8 (a g4} >>|
<< { a2.r4} \\ { fis2. s4 } >> |
}
a °® kel TR TR 7 NPT L ®
—— PR INR)
| | | | | |
e

It is not necessary to use a separatec< \\ >> construct for each bar. For music with few
notes in each bar this layout can help the legibility of the code, but f there are many notes in
each bar it may be better to split out each voice separately, like this

<<

\key d \'minor

\relative { % Voice ="1"
r4 g g4. a8 |
bes4 bes c bes |
a2. r4 |

P\

\relative { % Voice ="2"

Chapter 4: Fundamental concepts 53

d2 d4 g |
g4 g g& a) g4 |
fis2. s4 |
}
>>
a S L th N d
:N:B: ||!|'|'||”|' ’ﬂ_

o e

This example has just two voices, but the same construct may be usetb encode three or
more voices by adding more back-slash separators.

The Voice contexts bear the names'1" , "2", etc. The rst contexts set the outer voices, the
highest voice in context"1" and the lowest voice in context"2" . The inner voices go in contexts
"3" and "4" . In each of these contexts, the vertical direction of slurs, stemsties, dynamics etc.,
is set appropriately.

\ new Staff \relative {
% Main voice
cledef
% Voice ="1" Voice = "2" Voice = "3"
<< {gdfe}\N{r8eddc8~}>|
<<{d2e} N{cBblbab8g~2}W\{sd4bc2}>|

D

Wi I N

. S— i -
—Iﬁ\l st
| N1 N | I LBLE N N 1
BIAEEREAND M hptng 4
L
If you prefer entering the voices in a di erent order, like top to bottom, you can specify the
respective voice numbers in front of one<< ... >> construct using the \voices command, like

\ new Staff \relative {
% Main voice
clé6 def
% Voice ="1" Voice = "2"
<< {gdfe}\N{r8e4dc8~}>>|
\voices 1,3,2
% Voice ="1" Voice = "3" Voice = "2"
<< {d2e} W{s4bc2}\{c8bl6ab8g~2}>]|

Lo |
— R 1 " !

—rﬁ‘l st l

| H1 B L | HEBAMEEELEA) [|
i =

L

These voices are all separate from the main voice that contains the notes $ti outside the <<
... >> construct. Let's call this the simultaneous construct Slurs and ties may only connect

notes within the same voice, so slurs and ties cannot go into or out of a sinltaneous construct.
Conversely, parallel voices from separate simultaneous constructs oié same sta are the same

Chapter 4: Fundamental concepts 54

voice. Other voice-related properties also carry across simultaneouw®nstructs. Here is the same
example, with di erent colors and note heads for each voice. Note that changgin one voice do
not a ect other voices, but they do persist in the same voice later. Notealso that tied notes

may be split across the same voices in two constructs, shown here the blue triangle voice.

\new Staff \relative {
% Main voice
clé6def
<< % Bar 1

{
\ voiceOneStyle
g4 f e

}
\

{
\ voiceTwoStyle
r8 e4 d c8~
}
>> |
<< 0% Bar 2
% Voice 1 continues
{d2 e}
\\
% Voice 2 continues
{c8 bl6 a b8 g~-2}
\\

{
\ voiceThreeStyle
s4 b c2
}
>> |
}
—a— i : :
— 7 an
!I! | I L y "% | AN A,

Py

1%

\LJ
7 F et = g

The commands\voiceXXXStyle are mainly intended for use in educational documents such

as this one. They modify the color of the note head, the stem and the beamsnd the style of
the note head, so that the voices may be easily distinguished. Voice enis set to red diamonds,
voice two to blue triangles, voice three to green crossed circles, drvoice four (not used here) to
magenta crossesivoiceNeutralStyle (also not used here) reverts the style back to the default.
We shall see later how commands like these may be created by the use8ee Section 5.3.1 [Visi-
bility and color of objects], page 105, and Section 5.7.2 [Using variables for layt adjustments],
page 147.

Polyphony does not change the relationship of notes within arelative block. Each note is
still calculated relative to the note immediately preceding it, or to the rst note of the preceding
chord. So in

\relative { noteA << < noteB noteC > \\ noteD >> noteE }

noteB is relative to noteA
noteC is relative to noteB, not noteA;

Chapter 4: Fundamental concepts 55

noteD is relative to noteB, not noteA or noteC;
noteE is relative to noteD, not noteA.

An alternative way, which may be clearer if the notes in the voices arewidely separated, is
to place alrelative = command at the start of each voice:

\relative { noteA ... }

<<
\relative { < noteB noteC > ... }
\\
\relative { noteD ... }
>>

\relative { noteE ... }

Let us nally analyze the voices in a more complex piece of music. Here arthe notes from
the rst two bars of the second of Chopin's Deux Nocturnes, Op 32. This @ample will be
used at later stages in this and the next chapter to illustrate severaltechniques for producing
notation, so please ignore for now anything in the underlying code wtih looks mysterious and
concentrate just on the music and the voices { the complications will al be explained in later
sections.

The direction of the stems is often used to indicate the continuityof two simultaneous melodic
lines. Here the stems of the highest notes are all pointing up and the sims of the lower notes
are all pointing down. This is the rst indication that more than one voic e is required.

But the real need for multiple voices arises when notes which start athe same time have
di erent durations. Look at the notes which start at beat three in the r st bar. The A-at is
a dotted quarter note, the F is a quarter note and the D- at is a half note. These cannot be
written as a chord as all the notes in a chord must have the same durationNeither can they be
written as sequential notes, as they must start at the same time. Thissection of the bar requires
three voices, and the normal practice would be to write the whole bar ashree voices, as shown
below, where we have used di erent note heads and colors for the theevoices. Again, the code
behind this example will be explained later, so ignore anything you @ not understand.

D
¢

Lo
L%, LY. J
d
%

-~ e

e
X

[. ¢

Let us try to encode this music from scratch. As we shall see, this erounters some di culties.
We begin as we have learnt, using the<< \\ >> construct to enter the music of the rst bar in
three voices:

\ new Staff \relative {
\ key aes \major
<<
{c 2 aes4d. bes8 } \\ { <ees, ¢c>2 des } \ { aes 2 f4 fes }
>> |
<c ees aes c>1 |

}

Chapter 4: Fundamental concepts 56

The stem directions are automatically assigned with the odd-numberd voices taking upward
stems and the even-numbered voices downward ones. The stems for #e$ 1 and 2 are right,
but the stems in voice 3 should go down in this particular piece of mus. We can correct this by
skipping voice three and placing the music in voice four. This couldbe done by simply adding
another pair of \\ , but we use the\voices command instead (which would also allow us to
enter the voices in di erent order if we preferred doing that):

\ new Staff \relative {
\ key aes \major
\voices 1,2,4 % Omit Voice three
<< % Voice one

{ c 2 aes4. bes8 }
\\ % Voice two

{ <ees, c>2 des }
\ % Voice four

{ aes 2 f4 fes }
>> |
<c ees aes c>1 |

“
n | I Ll
(.3 D "l)]
I
|
i }

NEH—
I
We see that this xes the stem direction, but the horizontal placement of notes is not what we
want. LilyPond shifts the inner notes when they or their stems would collide with outer voices,
but this is not appropriate for piano music. In other situations, the shifts LilyPond applies might
fail to clear the collisions. LilyPond provides several ways to adjusthe horizontal placing of
notes. We are not quite ready yet to see how to correct this, so we shdkave this problem until

a later section | see the force-hshift property in Section 5.6.2 [Fixing overlapping notation],
page 132.

Note: Lyrics, spanners (such as slurs, ties, hairpins, etc.) cannot be
created "across' voices.

See also
Notation Reference: Section \Multiple voices" in Notation Reference

4.2.2 Explicitly instantiating voices

Voice contexts can also be created manually inside &< >>block to create polyphonic music,
using \voiceOne ... \voiceFour to indicate the required directions of stems, slurs, etc. In
longer scores this method is clearer, as it permits the voices to beeparated and to be given
more descriptive names.

Speci cally, the construct << \\ >> which we used in the previous section:

\new Staff {
\relative {

Chapter 4: Fundamental concepts 57

<<{edfgalt\N{cddef}>>
}
}

is equivalent to
\new Staff <<

\new Voice = "1" { \voiceOne \relative { e4 f g a}}
\new Voice = "2" { \voiceTwo \relative { c4 d e f} }
>>

Both of the above would produce

D

i

i

4=
|

The \voiceXXX commands set the direction of stems, slurs, ties, articulations, tet annota-
tions, augmentation dots of dotted notes, and ngerings. \voiceOne and \voiceThree make
these objects point upwards, while\voiceTwo and \voiceFour make them point downwards.
These commands also generate a horizontal shift for each voice when this fequired to avoid
clashes of note heads. The commanwneVoice reverts the settings back to the normal values
for a single voice.

Let us see in some simple examples exactly what e edbneVoice , \voiceOne and voiceTwo
have on markup, ties, slurs, and dynamics:

\relative {
% Default behavior or behavior after \ oneVoice
c4 d8~8e4(f|gda) b->c |
}
[a , e Ir\ |n
A ! M| L I | @) 1
) 2 LL In I'P !I! III LI
Jlr_h h\! I!m !I! | I | I i
\relative {
\ voiceOne
c4d8~8e4(f|gda) b->c|
\ oneVoice
c4 d8~8e4(f|l|gda) b->c |
}
h K
a | [N i/L l’%\ | 0l | | L i/L =’1 1
Y B DR In |] !I! | Il | | rw DR In rln !I! III L
ek e 1N 1 L
e E i 1
\relative {
\ voiceTwo
c4 d8~ 8 e4(f|gda) b->c |
\ oneVoice

c4 d8~8e4(f|lgda) b->c |

Chapter 4: Fundamental concepts 58

e n Ia
In 1 11
!ll | I

-
—
-

[Ia
" [] I~) 11 o]
N 1 ir'° N | In
|l | "%] 1 1 L]
Ll | Il | | | 11 1 N R LA | |
| o

S S —

Now let's look at four di erent ways to notate the same passage of polyphonianusic, each of
which is advantageous in di erent circumstances, using the exampldrom the previous section.

An expression that appears directly inside a<< >>belongs to the main voice (but, note,not
in a << \\ >> construct). This is useful when extra voices appear while the mairvoice is playing.
Here is a more correct rendition of our example. The red diamond-shapedates demonstrate
that the main melody is now in a single voice context, permitting a phrasing slur to be drawn
over them.

\new Staff \relative {

\ voiceOneStyle
% This section is homophonic

Lo
A

=

ox

BB
1111
1t

=

h
I

cle"(d e f
% Start simultaneous section of three voices
<<

% Continue the main voice in parallel
{gafe|d2e) |}
% Initiate second voice
\ new Voice {
% Set stems, etc., down
\ voiceTwo
r8 e4 d c8~ | 8 bl6 a b8 g~ 2 |
}
% Initiate third voice
\ new Voice ({
% Set stems, etc, up
\'voiceThree
s2. | s4 b c2 |

>>

D

Ml)
M
InNId 1]
| A L | HELAN EEAVA]
AL | |-. | |

The \voices command can also be used for continuing a main voice into the simultanesu
construct:

\ new Staff \relative {
\ new Voice = "main" {
\ voiceOneStyle
% This section is homophonic
cler(d e f
% Start simultaneous section of three voices
\voices "main",2,3
<<
% Continue the main voice in parallel

r4IY
g

Chapter 4: Fundamental concepts 59

{gdfel|d2e) |}

% Initiate second voice
\\

% Set stems, etc., down

{r8 e4 dc8~| 8 Dbl6 ab8g~2]|}
\

% Initiate third voice

% Set stems, etc, up

{s2.|s4bc2]|}

>>
}
}

a 1 |) L
I Pan N
[| =Y Ve 7115, k N

| AL | I L B H AN LWl 7)Y |

AL | |" AL el | .|_|:E

L
More deeply nested polyphony constructs are possible, and if a voice ppars only briey
this might be a more natural way to typeset the music:

\ new Staff \relative {
cle"(d e f
<<
{gdfeld2e) |}
\ new Voice ({
\ voiceTwo
r8 e4 d c8~ |
<<
{c8 ble ab8g~2]}
\ new Voice {
\ voiceThree
s4 b c2 |

}

>>

>>

D

1 M . .
| N1 L | ILALE N | 1
T
L L™
This method of nesting new voices brie y is useful when only smallsections of the music

are polyphonic, but when the whole sta is largely polyphonic it can be clkarer to use multiple
voices throughout, using spacing notes to step over sections wheréé voice is silent, as here:

+

\ new Staff \relative <<
% Initiate first voice
\ new Voice {
\ voiceOne
cle"(defgdfe|d2e) |

Chapter 4: Fundamental concepts 60

}

% Initiate second voice
\ new Voice {
% Set stems, etc, down
\ voiceTwo
s4 18 e4 d c8~ | 8 bl a b8 g~ 2 |
}
% Initiate third voice
\ new Voice {
% Set stems, etc, up
\ voiceThree
sl | s4bc2|
}

>>

ax

[a f
@ 1 .| . .
— 0 i histha l i
mt Ay
A Al Ny
Note columns

Closely spaced notes in a chord, or notes occurring at the same time ini drent voices, are
arranged in two, occasionally more, columns to prevent the note heads oxlepping. These are
called note columns. There are separate columns for each voice, and theroently specied
voice-dependent shift is applied to the note column if there wouldotherwise be a collision. This
can be seen in the example above. In bar 2 the C in voice two is shifte the right relative to
the D in voice one, and in the nal chord the C in voice three is also shifed to the right relative
to the other notes.

The \shiftOn , \shiftOnn , \shiftOnnn , and \shiftOff = commands specify the degree to
which notes and chords of the voice should be shifted if a collision wodlotherwise occur. By
default, the outer voices (normally voices one and two) haveshiftOff specied, while the
inner voices (three and four) have\shiftOn speci ed. When a shift is applied, voices one and
three are shifted to the right and voices two and four to the left.

\shiftOnn and \shiftOnnn de ne further shift levels which may be speci ed temporarily to
resolve collisions in complex situations { see Section 5.6.3 [Real mgséxample], page 138.

A note column can contain just one note (or chord) from a voice with stems upand one note
(or chord) from a voice with stems down. If notes from two voices whichhave their stems in
the same direction are placed at the same position and both voices have ndift or the same
shift speci ed, the error message \This voice needs avoiceXx or \shiftXx setting" will be
produced.

See also
Learning Manual: Section 5.6.1 [Moving objects], page 130.
Notation Reference: Section \Multiple voices" in Notation Reference

4.2.3 Voices and vocals
Vocal music presents a special di culty: we need to combine two epressions { notes and lyrics.

You have already seen thdaddlyrics{} command, which handles simple scores well. How-
ever, this technique is quite limited. For more complex music, yu must introduce the lyrics in a

Chapter 4: Fundamental concepts 61

Lyrics context using\new Lyrics and explicitly link the lyrics to the notes with \lyricsto{}
using the name assigned to the Voice.

<<
\ new Voice = "one" {
\relative {
\ autoBeamOff
\time 2/4
c 4 b8 alé | g4. 8 | e4 d | c2 |
}
}

\new Lyrics \lyricsto "one" {
No more let | sins and | sor -- rows | grow. |
}

>>

= AV
e — |I|l i i
| | | = |l | I\l
I 1] ' 1N
No more let sins and sor-rows grow.

=
-

])
N N1

=

Note that the lyrics must be linked to a Voice context, not a Staff context. This is a case
where it is necessary to createéStaff and Voice contexts explicitly.

The automatic beaming which LilyPond uses by default works well for ingrumental music,
but not so well for music with lyrics, where beaming is either not required at all or is used to
indicate melismata in the lyrics. In the example above we use the @ammand \autoBeamOff to
turn o the automatic beaming.

Let us reuse the earlier example from Judas Maccab us to illustrate this more exible tech-
nique. We rst recast it to use variables so the music and lyrics carbe separated from the sta
structure. We also introduce a ChoirSta bracket. The lyrics the mselves must be introduced
with \lyricmode to ensure they are interpreted as lyrics rather than music.

global = { \ key f \ major \time 6/8 \ partial 8 }

SopOneMusic= \relative {
c8|c8 (| bes)] aa g)] f|fd4. b, | cd~ 4
}
SopOnelLyrics = \lyricmode {
Let | flee -- cy flocks the | hills a -- dorn,
}
SopTwoMusic= \relative {
r8|r4. 14 c8 | a8 9] ff(€] d]| e8(d)] c bes
}
SopTwoLyrics = \lyricmode {
Let | flee -- cy flocks the | hills a -- dorn,

}

\score {
\ new ChoirStaff <<
\new Staff <<
\ new Voice = "SopOne" {
\ global
\ SopOneMusic

Chapter 4: Fundamental concepts 62

}
\ new Lyrics \lyricsto "SopOne" {
\ SopOneLyrics
}
>>

\new Staff <<
\ new Voice = "SopTwo" {

\ global
\ SopTwoMusic
}
\new Lyrics \lyricsto "SopTwo" {
\ SopTwolyrics
}
>>
>>
}
[o h hi Y nnr— .p AP—h—
bBHHFH h‘, h‘,TP £ H— i H
T — L | | |
Let ee-cy ocks the hills - dorn,
B L] ‘!D 11 -
1 T m | 2N) [] —
LI |l | | NI N I |
A N b N AT

Let ee-cy ocks the hills adorn,

This is the basic structure of all vocal scores. More staves may be aed as required, more
voices may be added to the staves, more verses may be added to theitg, and the variables
containing the music can easily be placed in separate les should thepecome too long.

Here is an example of the rst line of a hymn with four verses, set for SAB. In this case
the words for all four parts are the same. Note how we use variables to sepamtthe music
notation and words from the sta structure. See too how a variable, which we have chosen
to call "keyTime', is used to hold several commands for use within tb two staves. In other
examples this is often called “global'.

keyTime = { \ key ¢ \ major \time 4/4 \ partial 4 }

SopMusic = \relative {c4 | ed. e8 g4 ¢ |a4 a g }
AltoMusic = \relative {c4 | c4. c8 e4 e | f4 f e }
TenorMusic = \relative { e4 | g4. g8 c4. b8 | a8 bcded}
BassMusic = \relative { c4 | c4.c8 c4 c | 8 gabcsd}
VerseOne =

\lyricmode { E -- | ter -- nal fa -- ther, | strong to save, }
VerseTwo =

\lyricmode { O | Christ, whose voice the | wa -- ters heard, }
VerseThree =

\lyricmode { O | Ho -- ly Spi -- rit, | who didst brood }
VerseFour =

\lyricmode { O | Tri -- ni -- ty of | love and powr }

\score {
\ new ChoirStaff <<

Chapter 4: Fundamental concepts 63

\new Staff <<
\clef "treble"
\ new Voice = "Sop" { \ voiceOne \keyTime \ SopMusic }
\ new Voice = "Alto" { \ voiceTwo \ AltoMusic }
\new Lyrics \lyricsto "Sop" { \ VerseOne }
\new Lyrics \lyricsto "Sop" { \ VerseTwo }
\new Lyrics \lyricsto "Sop" { \ VerseThree }
\new Lyrics \lyricsto "Sop" { \ VerseFour }

>>
\ new Staff <<
\clef "bass"

\ new Voice = "Tenor" { \ voiceOne \keyTime \ TenorMusic }
\ new Voice = "Bass" { \ voiceTwo \BassMusic }

>>
>>
}
[a U . .
K . | y ILV. 1 1 1
[
ﬂ:‘ .) i | | | | hd L | |
] T |]
E -ter - nal fa-ther, strong to save,
O Christ, whosevoicethe wa -ters heard,
O Ho - Iy Spi-rit, whodidst brood
O Tri - ni -ty of uIove and pow®Oi
u m
&)] + QP hh i T f :a
| I | | |] | |
| - | 1 | I. - l : —
' I
See also

Notation Reference: Section \Vocal music" in Notation Reference

4.3 Contexts and engravers

Contexts and engravers have been mentioned informally in earlier stions; we now must look
at these concepts in more detail, as they are important in the ne-tuning of LilyPond output.

4.3.1 Contexts explained

When music is printed, many notational elements which do not appear eglicitly in the input

le must be added to the output. For example, compare the input and output of the following
example:

\relative { cis 4 cis2. | a4 a2. | }

The input is rather sparse, but in the output, bar lines, accidentals, clef, and time signature
have been added. When LilyPondnterprets the input the musical information is parsed from left
to right, similar to the way a performer reads the score. While reading the input, the program

Chapter 4: Fundamental concepts 64

remembers where measure boundaries are, and which pitches reqgiiexplicit accidentals. This
information must be held on several levels. For example, an accidental acts only a single sta,
while a bar line must be synchronized across the entire score.

Within LilyPond, these rules and bits of information are grouped in Contexts We have
already introduced the Voice context. Others are the Staff and Score contexts. Contexts are
hierarchical to re ect the hierarchical nature of a musical score. Forexample: aStaff context
can contain many Voice contexts, and a Score context can contain many Staff contexts.

| Score

Staves S

N
| —Voices

eg:f f2Se

Each context has the responsibility for enforcing some notation rulescreating some nota-
tion objects and maintaining the associated properties. For example, he Voice context may
introduce an accidental and then theStaff context maintains the rule to show or suppress the
accidental for the remainder of the measure.

As another example, the synchronization of bar lines is, by default, hantkd in the Score
context. However, in some music we may not want the bar lines to be syhronized { consider
a polymetric score in 4/4 and 3/4 time. In such cases, we must modify thedefault settings of
the Score and Staff contexts.

For very simple scores, contexts are created implicitly, and you nes not be aware of them.
For larger pieces, such as anything with more than one sta, they must becreated explicitly
to make sure that you get as many staves as you need, and that they are in theoorect order.
For typesetting pieces with specialized notation, it is usual to malify existing, or even to de ne
totally new, contexts.

In addition to the Score, Staff and Voice contexts there are contexts which t between the
score and sta levels to control sta groups, such as thePianoStaff and ChoirStaff contexts.
There are also alternative sta and voice contexts, and contexts for lyrcs, percussion, fret
boards, gured bass, etc.

The names of all context types are formed from one or more words, each word ing cap-
italized and joined immediately to the preceding word with no hyphen or underscore, e.g.,
GregorianTranscriptionStaff

See also
Notation Reference: Section \Contexts explained" in Notation Reference

4.3.2 Creating contexts

In an input le, a score block (introduced with a \score command) contains a single music
expression; but it can also contain associated output de nitions too {either a \layout block,

a\midi block or both. The Score context is usually left to be created automatically when the
interpretation of that music expression starts.

For scores with only one voice and one sta, theVoice and Staff contexts may also be
left to be created automatically, but for more complex scores it is hecgsary to create them by
hand. The simplest command that does this is\new. It is prepended to a music expression, for
example

\new type music-expression

Chapter 4: Fundamental concepts 65

wheretype is a context name (like Staff or Voice). This command creates a new context, and
starts interpreting the music-expressionwithin that context.

You have seen many practical examples which created newtaff and Voice contexts in
earlier sections, but to remind you how these commands are used in @ctice, here's an annotated
real-music example:

\score { % start of single compound music expression
<< % start of simultaneous staves section
\time 2/4
\new Staff { % create RH staff
\clef "treble"
\key g \'minor
\new Voice { % create voice for RH notes
\relative { % start of RH notes
d 4 eesl6 c8. |
d4 eesl6 c8. |
} % end of RH notes
} % end of RH voice
} % end of RH staff
\new Staff << % create LH staff; needs two simultaneous voices
\clef "bass"
\key g \'minor
\new Voice { % create LH voice one
\ voiceOne
\relative { % start of LH voice one notes
g8 <bes d> ees, <g c> |
g8 <bes d> ees, <g c> |
} % end of LH voice one notes
} % end of LH voice one
\new Voice { % create LH voice two
\ voiceTwo
\relative { % start of LH voice two notes
g4 ees |
g4 ees |
} % end of LH voice two notes
} % end of LH voice two
>> % end of LH staff
>> % end of simultaneous staves section
} % end of single compound music expression

I

I L1 I I
I] I I
1 -~ 1

VP Wy Pl

(Note how all the statements which open a block with either a curly kracket, {, or double
angle brackets,<<, are indented by two further spaces, and the corresponding closinfracket
is indented by exactly the same amount. While this is not required, following this practice
will greatly reduce the number of "unmatched bracket' errors, and isstrongly recommended. It
enables the structure of the music to be seen at a glance, and any unmédted brackets will be

Chapter 4: Fundamental concepts 66

obvious. Note too how the LH sta is created using double angle brackets beause it requires two
voices for its music, whereas the RH sta is created with a single mus expression surrounded
by curly brackets because it requires only one voice.)

The \new command may also give an identifying name to the context to distingui it from
other contexts of the same type,

\new type = id music-expression

Note the distinction between the name of the context type, Staff , Voice, etc, and the
identifying name of a particular instance of that type, which can be any sequence of letters
invented by the user. Digits and spaces can also be used in the idéflying name, but then it
has to be placed in quotes, i.e\new Staff = "MyStaff 1" music-expression . The identifying
name is used to refer back to that particular instance of a context. We aw this in use in the
section on lyrics, see Section 4.2.3 [Voices and vocals], page 60.

See also
Notation Reference: Section \Creating and referencing contexts" inNotation Reference

4.3.3 Engravers explained

Every mark on the printed output of a score produced by LilyPond is produced by anEngraver.
Thus there is an engraver to print staves, one to print note heads, oe for stems, one for beams,
etc, etc. In total there are over 120 such engravers! Fortunately, for mast scores it is not
necessary to know about more than a few, and for simple scores you do notedto know about
any.

Engravers live and operate in Contexts. Engravers such as th&letronome_mark _engravet

whose action and output apply to the score as a whole, operate in the highesevel context {
the Score context.

The Clef_engraver and Key_engraver are to be found in everyStaff Context, as di erent
staves may require di erent clefs and keys.

The Note_heads_engraver and Stem_engraver live in every Voice context, the lowest level
context of all.

Each engraver processes the particular objects associated with it&inction, and maintains
the properties that relate to that function. These properties, like the properties associated with
contexts, may be modi ed to change the operation of the engraver or the apearance of those
elements in the printed score.

Engravers all have compound names formed from words which describe ¢fr function. Just
the rst word is capitalized, and the remainder are joined to it with u nderscores. Thus the
Staff_symbol_engraver is responsible for creating the lines of the sta, theClef_engraver
determines and sets the pitch reference point on the sta by drawng a clef symbol.

Here are some of the most common engravers together with their function. &u will see it is
usually easy to guess the function from the name, or vice versa.

Engraver Function

Accidental_engraver Makes accidentals, cautionary and suggested accidentals
Beam_engraver Engraves beams

Clef_engraver Engraves clefs

Completion_heads engraver Splits notes which cross bar lines

Dynamic_engraver Creates hairpins and dynamic texts

Forbid _line_break_engraver Prevents line breaks if a musical element is still actie
Key_engraver Creates the key signature

Metronome_mark_engraver Engraves metronome marking

Chapter 4: Fundamental concepts 67

Note_heads engraver Engraves note heads

Rest_engraver Engraves rests

Sta _symbol_engraver Engraves the ve (by default) lines of the sta
Stem_engraver Creates stems and single-stem tremolos
Time _signature_engraver Creates time signatures

We shall see later how the output of LilyPond can be changed by modifyinghe action of
Engravers.

See also
Internals reference: Section \Engravers and Performers" ininternals Reference

4.3.4 Modifying context properties

Contexts are responsible for holding the values of a number of contextroperties. Many of them
can be changed to in uence the interpretation of the input and so changahe appearance of the
output. They are changed by the\set command. This takes the form

\set ContextName propertyName = #value

Where the ContextName is usually Score, Staff or Voice. It may be omitted, in which case
the current context (typically Voice) is assumed.

The names of context properties consist of words joined together with ndwyphens or under-
scores, all except the rst having a capital letter. Here are a few eamples of some commonly
used ones. There are many more.

propertyName Type Function Example
Value

extraNatural Boolean If true, set extra natural signs before #t, #f
accidentals

currentBarNumber Integer Set the current bar number 50

doubleSlurs Boolean If true, print slurs both above and below #t, #f
notes

instrumentName Text Set the name to be placed at the start of "Cello I"
the sta

fontSize Real Increase or decrease the font size 2.4

stanza Text Set the text to print before the start of "2"
a verse

where a Boolean is either True £t) or False (#f), an Integer is a positive whole number, a Real
is a positive or negative decimal number, and text is enclosed in doublapostrophes. Note the
occurrence of hash signs,#), in two di erent places { as part of the Boolean value before thet

or f, and beforevalue in the \set statement. So when a Boolean is being entered you need to
code two hash signs, e.g##t.

Before we can set any of these properties we need to know in which cantt they operate.
Sometimes this is obvious, but occasionally it can be tricky. If the wong context is speci ed,
no error message is produced, but the expected action will not take pce. For example, the
clefGlyph clearly lives in the Staff context, since it is the sta's clef glyph that is to be
changed. In this example the rst sta 's clef is printed correctly, but not the second { which
prints the default treble clef instead of the expected bass (or F) ef { because we omitted the
context name.

<<
\ new Staff \relative {

Chapter 4: Fundamental concepts

\set Staff . clefGlyph = "clefs.C"
c2c
}
\ new Staff \relative {
\set clefGlyph = "clefs.F" % Wrong!

d2 d
}
>>
L S Y A
—
I I
a I I
NN

68

Remember the default context name isvVoice, so the secondset command set the property
clefGlyph inthe Voice contextto clefs.F , but as LilyPond does not look for any such property
in the Voice context, no further action took place. This is not an error, and no error message

is logged in the log le.

The clefGlyph property will take e ect only if it is set in the Staff context, but some

properties can be set in more than one context. For example, the propeyt extraNatural
by default set to ##t (true) for all staves. If it is set to ##f (fals

is

e) in one particular Staff

context it applies just to the accidentals on that sta . If it is set to false in the Score context

it applies to all staves.
So this turns o extra naturals in one sta:

<<
\ new Staff \relative {
aeses 2 aes
}
\ new Staff \relative {
\set Staff . extraNatural = ##f
aeses 2 aes
}
>>

[a | |
A NI N1
N IN
N—HN\
[a | |
A NT—/N
NN
N—HN\

and this turns them o in all staves:
<<

\ new Staff \relative {
aeses 2 aes

}

\ new Staff \relative {
\set Score. extraNatural = ##f
aeses 2 aes

Chapter 4: Fundamental concepts 69

>>

D
2

e
i

D
2

=a
=

As another example, if clefTransposition is set in the Score context this immediately
changes the value of the transposition in all current staves and sets aaw default value which
will be applied to all staves.

The opposite command,\unset , e ectively removes the property from the context, which
causes most properties to revert to their default value. Usually\unset is not required as a new
\set command will achieve what is wanted.

The \set and \unset commands can appear anywhere in the input le and will take e ect
from the time they are encountered until the end of the score or untilthe property is \set or
\unset again. Let's try changing the font size, which a ects the size of the noteheads (among
other things) several times. The change is from the default value, not he most recently set
value.

\relative {
c4d
% make note heads smaller
\set fontSize = #-4
ed f |
% make note heads larger
\set fontSize = #2.5
g4 a
% return to default size
\unset fontSize
b4 c |

[a [] |
L% M 11
P I] | I
1 | 2N N) !] |
| W1 A]]
1 |

’_

We have now seen how to set the values of several dierent types ofrpperty. Note that
integers and numbers are always preceded by a hash sig#, while a true or false value is
speci ed by ##t and ##f, with two hash signs. A text property should be enclosed in double
guotation signs, as above, although we shall see later that text can actually & specied in a
much more general way by using the very powerfukmarkup command.

Setting context properties with \with

The default value of context properties may be set at the time the conéxt is created. Sometimes
this is a clearer way of setting a property value if it is to remain xed for the duration of the

context. When a context is created with a\new command it may be followed immediately by
alwith { ... } block in which the default property values are set. For example, if ve wish to

suppress the printing of extra naturals for the duration of a sta we would write:

\new Staff \with { extraNatural = ##f }

Chapter 4: Fundamental concepts 70

like this:
<<
\ new Staff {
\relative {
gisis 4 gis aeses aes
}
}
\new Staff \with { extraNatural = ##f } {
\relative {
gisis 4 gis aeses aes
}
}
>>
T+t
nl m !I! | 0 |
T+t
nl m !I! | 0 |

Properties set in this way may still be changed dynamically using\set and returned to the
default value set in the \with block with \unset .

So if the fontSize property is set in a \with clause it sets the default value of the font
size. If it is later changed with \set , this new default value may be restored with the\unset
fontSize command.

Setting context properties with \context

The values of context properties may be set inall contexts of a particular type, such as all
Staff contexts, with a single command. The context type is identi ed by using its type name,
like Staff , pre xed by a back-slash: \Staff . The statement which sets the property value is
the same as that in a\with block, introduced above. It is placed in a\context block within
a\layout block. Each\context block will a ect all contexts of the type speci ed throughout
the \score or \book block in which the \layout block appears. Here is an example to show
the format:

\'score {
\ new Staff {
\relative {
cisis 4 e d cis
}

}
\layout {

\ context {
\ Staff
extraNatural = ##t

}
}
}

Chapter 4: Fundamental concepts 71

If the property override is to be applied to all staves within the score:

\score {
<<
\ new Staff {
\relative {
gisis 4 gis aeses aes
}
}
\ new Staff {
\relative {
gisis 4 gis aeses aes
}
}
>>
\layout {
\ context {
\ Score extraNatural = ##f
}
}
}
o , | |
o , | |

Context properties set in this way may be overridden for particular instances of contexts by
statements in a\with block, and by \set commands embedded in music statements.

See also

Notation Reference: Section \Changing context default settings" in Notation Reference
Section \The set command" in Notation Reference

Internals Reference: Section \Contexts" in Internals Reference Section \Tunable context
properties" in Internals Reference

4.3.5 Adding and removing engravers

We have seen that contexts each contain several engravers, each of whigs responsible for
producing a particular part of the output, like bar lines, staves, note heads, stems, etc. If an
engraver is removed from a context, it can no longer produce its outpu This is a crude way of
modifying the output, but it can sometimes be useful.

Changing a single context

To remove an engraver from a single context we use th&with command placed immediately
after the context creation command, as in the previous section.

Chapter 4: Fundamental concepts 72

As an illustration, let's repeat an example from the previous section wih the sta lines
removed. Remember that the sta lines are produced by theStaff_symbol_engraver .

\new Staff \with {
\ remove Staff_symbol_engraver

}
\relative {
c4d
\set fontSize = #-4 % make note heads smaller
ed f |
\set fontSize = #2.5 % make note heads larger
g4 a
\unset fontSize % return to default size
b4 c |
}

" phashhnf

Engravers can also be added to individual contexts. The command to dohis is
\consists Engraver_name

placed inside a\with block. Some vocal scores have an ambitus placed at the beginning of a
sta to indicate the range of notes in that sta { see Section \ambitus" in Music Glossary. The
ambitus is produced by the Ambitus_engraver , which is not normally included in any context.

If we add it to the Voice context, it calculates the range from that voice only:

\ new Staff <<
\ new Voice \with {
\ consists Ambitus_engraver
H
\relative {
\ voiceOne
cdabg
}
}

\ new Voice {
\relative {
\ voiceTwo
cdedf

}
}

>>

D

= gk

]
but if we add the ambitus engraver to the Staff context, it calculates the range from all the

notes in all the voices on that sta :

\ new Staff \with {
\ consists Ambitus_engraver

Chapter 4: Fundamental concepts 73

}

<<
\ new Voice {
\relative {
\ voiceOne
cdabg
}

}

\ new Voice {
\relative {
\ voiceTwo
cdedf

}
}

>>

D
=

o
=gk

]

Changing all contexts of the same type

The examples above show how to remove or add engravers to individualontexts. It is also
possible to remove or add engravers to every context of a speci ¢ typ by placing the commands

in the appropriate context in a \layout block. For example, if we wanted to show an ambitus
for every sta in a four-sta score, we could write

\score {
<<

\ new Staff {
\relative {

cd4dabg
}

}

\ new Staff {
\relative {

cdabg
}

}

\ new Staff {
\clef "G_8"
\relative {

cdabg
}

}

\new Staff {
\clef "bass"
\relative {

cdabg
}
}
>>

\layout {

Chapter 4: Fundamental concepts 74

\context {
\ Staff
\ consists Ambitus_engraver
}
}
}
a I~ |
A |HEZY Al
LELEN NI N)
| LI | 1 |
—
&
[M|
[| | 2.
&= —HHR
P ,
A | H N alIN
WL B a))
I L I | I |
! |
8
[a e)
K N T 1L)
| 12) B
L !I! 1T

The values of context properties may also be set for all contexts of a paitular type by including
the \set command in a\context block in the same way.

See also

Notation Reference: Section \Modifying context plug-ins" in Notation Reference Section
\Changing context default settings" in Notation Reference

Known issues and warnings

The Stem_engraver and Beam_engraver attach their objects to note heads. If the
Note_heads_engraver is removed no note heads are produced and therefore no stems or beams
are created either.

4.4 Extending the templates

You've read the tutorial, you know how to write music, you understand the fundamental con-
cepts. But how can you get the staves that you want? Well, you can nd lots of templates (see
Appendix A [Templates], page 155) which may give you a start. But what if you want something
that isn't covered there? Read on.

4.4.1 Soprano and cello

Start o with the template that seems closest to what you want to end up with. Let's say that
you want to write something for soprano and cello. In this case, we wouldtart with the "Notes
and lyrics' template (for the soprano part).

\version "2.24.2"

melody = \relative {
\clef "treble"
\key ¢ \major
\time 4/4
a4 bcd

}

Chapter 4: Fundamental concepts 75

text = \lyricmode {
Aaa Bee Cee Dee

}

\score {
<<
\new Voice = "one" {
\autoBeamOff
\melody
}
\new Lyrics \lyricsto "one" \text
>>
\layout { }
\midi { }
}

Now we want to add a cello part. Let's look at the "Notes only' example:
\version "2.24.2"

melody = \relative {
\clef "treble"
\key ¢ \major
\time 4/4
a4 bcd

}

\score {
\new Staff \melody
\layout { }
\midi { }
}
We don't need two \version commands. We'll need themelody section. We don't want two
\score sections { if we had two \score s, we'd get the two parts separately. We want them
together, as a duet. Within the \score section, we don't need two\layout or \midi .

If we simply cut and paste the melody section, we would end up with twomelody de nitions.
This would not generate an error, but the second one would be used for both etodies. So
let's rename them to make them distinct. We'll call the section for the soprano sopranoMusic
and the section for the cellocelloMusic . While we're doing this, let's rename text to be
sopranoLyrics . Remember to rename both instances of all these names { both the iniil
de nition (the melody = \relative { part) and the name's use (in the\score section).

While we're doing this, let's change the cello part's sta { celli normally use bass clef. We'll
also give the cello some di erent notes.

\version "2.24.2"

sopranoMusic = \relative {
\clef "treble"
\key ¢ \major
\time 4/4
a4 b cd

}

Chapter 4: Fundamental concepts 76

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

}

celloMusic = \relative {
\clef "bass"
\key ¢ \major
\time 4/4
d4 g fis8 e d4

}

\score {
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranoLyrics
>>
\layout { }
\midi { }
}
This is looking promising, but the cello part won't appear in the score{ we haven't used it
in the \score section. If we want the cello part to appear under the soprano part, we eed to
add

\new Staff \celloMusic

underneath the soprano stu. We also need to add<< and >> around the music { that tells
LilyPond that there's more than one thing (in this case, two Staves) happening at once. The
\score looks like this now:

\score {
<<
<<
\new Voice = "one" {
\autoBeamOff
\sopranoMusic
}
\new Lyrics \lyricsto "one" \sopranoLyrics
>>
\new Staff \celloMusic
>>
\layout { }
\midi { }
}
This looks a bit messy; the indentation is messed up now. That is edly xed. Here's the
complete soprano and cello template.

sopranoMusic = \relative {
\clef "treble"
\key c \ major
\time 4/4

Chapter 4: Fundamental concepts 77

a4 bcd
}

sopranoLyrics = \lyricmode {
Aaa Bee Cee Dee

}

celloMusic = \relative {
\clef "bass"
\ key ¢ \ major
\time 4/4
d4 g fis8 e d4

}

\'score {
<<
<<
\ new Voice = "one" {
\ autoBeamOff
\ sopranoMusic

}
\new Lyrics \lyricsto "one" \ sopranolLyrics
>>
\ new Staff \celloMusic
>>
\layout {}
\midi {}
}
a |
b——h—
n——H
Aaa Bﬁe Cee Dee
a—1 A al VW]
II ! I I Ill !I='1I
| | et |
| —
See also

The starting templates can be found in the "Templates' appendix, se Section A.2 [Single sta
templates], page 163.

4.4.2 Four-part SATB vocal score

Most vocal scores of music written for four-part mixed choir with orchestral accompaniment such
as Mendelssohn's Elijah or Handel's Messiah have the choral music and was on four staves,
one for each of SATB, with a piano reduction of the orchestral accompanimenunderneath.
Here's an example from Handel's Messiah:

Chapter 4: Fundamental concepts 78

Soprano SRS N) A B B
Worthy is the lamb that was slain
a | | U |
A e NI In | | N LL |)
Alto INHH-IPR—INI— R

Tenor I

oY — | | 2 1
A | | == N ! ! | @) |
Bass : — — ——
: ! ! ! :
Worthy us] lamb that was slain
s NN RN
—*INH N N
| H
pi
ano a1 ' h N | EN L N
HHN h N i Hi | | N
%0 8 B A Ay = S . B 41 B = w—_
HN Pl U H

Note: This layout can be achieved very easily using the built-in tem
plate: satb.ly , see Section A.1 [Built-in templates], page 155. But fo
ease of use this template deliberately hides the necessary contestruc-
ture, instead providing it automatically. So for purposes of learninglet
us see how to build this up from scratch. You may need to do this i
the built-in template does not meet your needs adequately.

The nearest copy-and-edit template to this layout is Section A.5.2 [&TB vocal score and
automatic piano reduction], page 174, { but we need to change the layout and add piano
accompaniment which is not derived automatically from the vocal parts. The variables holding
the music and words for the vocal parts are ne, but we shall need to add ariables for the piano
reduction.

The order in which the contexts appear in the ChoirSta of the template do not correspond
with the order in the vocal score shown above. We need to rearrange the so there are four
staves with the words written directly underneath the notes for each part. All the voices should
be \voiceOne , which is the default, so the \voiceXXX commands should be removed. We also
need to specify the tenor clef for the tenors. The way in which lyics are speci ed in the template
has not yet been encountered so we need to use the method with whiave are familiar. We
should also add the names of each sta .

Doing this gives for our ChoirSta :

\new ChoirStaff <<
\new Staff = "sopranos"
\with { instrumentName = "Soprano" }
<<
\new Voice = "sopranos" {
\global

Chapter 4: Fundamental concepts

\sopranoMusic

}

>>
\new Lyrics \lyricsto "sopranos" {

}

\sopranoWords

\new Staff = "altos"
\with { instrumentName = "Alto" }
<<

\new Voice = "altos" {
\global
\altoMusic

}

>>
\new Lyrics \lyricsto "altos" {

}

\altoWords

\new Staff = "tenors"
\with { instrumentName = "Tenor" }
<<

\new Voice = "tenors" {
\global
\tenorMusic

}

>>
\new Lyrics \lyricsto "tenors" {

}

\tenorWords

\new Staff = "basses"

\with { instrumentName = "Bass" }
<<

\new Voice = "basses" {
\global
\bassMusic

}

>>
\new Lyrics \lyricsto "basses" {

}

>>

\bassWords

% end ChoirStaff

79

Next we must work out the piano part. This is easy - we just pull out the piano part from
the "Solo piano’ template:

\new PianoStaff \with { instrumentName = "Piano " }

<<
\new Staff = "upper" \upper
\new Staff = "lower" \lower
>>

and add the variable de nitions for upper and lower .

The ChoirSta and PianoSta must be combined using angle brackets as we wahthem to
be stacked one above the other:

<<

% combine ChoirStaff and PianoStaff one above the other

Chapter 4: Fundamental concepts 80

\new ChoirStaff <<
\new Staff = "sopranos" <<
\new Voice = "sopranos" {
\global
\sopranoMusic

}

>>
\new Lyrics \lyricsto "sopranos" {
\sopranoWords
}
\new Staff = "altos" <<
\new Voice = "altos" {
\global
\altoMusic

}

>>

\new Lyrics \lyricsto "altos" {
\altoWords

}

\new Staff = "tenors" <<
\clef "G_8" % tenor clef
\new Voice = "tenors" {

\global
\tenorMusic

}

>>
\new Lyrics \lyricsto "tenors" {
\tenorWords
}
\new Staff = "basses" <<
\clef "bass"
\new Voice = "basses" {
\global
\bassMusic

}

>>
\new Lyrics \lyricsto "basses" {
\bassWords

}
>> 0 end ChoirStaff

\new PianoStaff \with { instrumentName = "Piano" }

<<
\new Staff = "upper" \upper
\new Staff = "lower" \lower
>>
>>

Combining all these together and adding the music for the three bars oftie example above
gives:

global = { \ key d \major \time 4/4 }
sopranoMusic = \relative {

Chapter 4: Fundamental concepts

\clef "treble"

rd d 2 a4 | d4. d8 a2 | cis4 d cis2 |
}
sopranoWords = \lyricmode {

Wor -- thy | is the lamb | that was slain |
}
altoMusic = \relative {

\clef "treble"

r4 a2 a4 | fis4. fis8 a2 | g4 fis fis2 |
}
altowords = \sopranoWords
tenorMusic = \relative {

\clef "G_8"

r4 fis2 e4 | d4. d8 d2 | e4 a, cis2 |
}
tenorWords = \sopranoWords
bassMusic = \relative {

\clef "bass"

r4 d2 cis4 | b4. b8 fis2 | e4 d a2 |
}
bassWords = \ sopranoWords
upper = \relative {

\clef "treble"

\ global

r4 <a d fis>2 <a e a>4 |

<d fis d>4. <d fis d>8 <a d a>2 |

<g cis g>4 <a d fis> <a cis e>2 |

}

lower = \relative {
\clef "bass"
\ global

<d, d>4 <d d>2 <cis cis >4 |
<b b>4. <b b>8 <fis fis>2 |
<e e>4 <d d> <a a>2 |

}

\score {
<< % combine ChoirStaff and PianoStaff in parallel
\ new ChoirStaff <<
\new Staff = "sopranos"
\with { instrumentName = "Soprano" }
<<
\ new Voice = "sopranos" {
\ global
\ sopranoMusic

}

>>

\ new Lyrics \lyricsto "sopranos" {
\ sopranoWords

}

\ new Staff = "altos"

\with { instrumentName = "Alto" }

81

Chapter 4: Fundamental concepts

<<
\ new Voice = "altos" {
\ global
\ altoMusic
}
>>
\new Lyrics \lyricsto "altos" {
\ altoWords
}
\ new Staff = "tenors"
\with { instrumentName = "Tenor" }
<<
\ new Voice = "tenors" {
\ global
\ tenorMusic

}

>>
\new Lyrics \lyricsto "tenors" {
\ tenorWords
}
\ new Staff = "basses"
\with { instrumentName = "Bass" }
<<
\ new Voice = "basses" {
\ global
\ bassMusic

}

>>
\'new Lyrics \lyricsto "basses" {
\ bassWords

}
>> 0 end ChoirStaff

\ new PianoStaff
\with { instrumentName = "Piano " }

<<
\new Staff = "upper" \ upper
\new Staff = "lower" \ lower
>>
>>

82

Chapter 4: Fundamental concepts 83

Soprano A N R I T
Worthy is the lamb that was slain
RN P RN | N S S
Alto N—H [,j‘! N ﬁ i‘l\j
Wporthy is the lamb that was slain
a I)Si h _th Neh o ng
o | 1 N N !\‘I
Tenor =
8 V\NHK is the lamb that was slain
n — hm | Ia 1 N
K | | == N |l | @)]
Bass : — — ——
: ! | :
Wor thy us:;@ lamb that was slain
oY IN T] Q] :
—*IN-H N N:
| | |
. ! .
Piano Al oAy h N [EN L N
= ! ! I \= r\! : 11 I \: E ! ! ! | AN
I 1 3 == | A\ | | Z0Y L
HH RBHP1T " T H

4.4.3 Building a score from scratch

After gaining some facility with writing LilyPond code, you may nd th at it is easier to build a
score from scratch rather than modifying one of the templates. You can als develop your own
style this way to suit the sort of music you like. Let's see how to pu together the score for an
organ prelude as an example.

We begin with a header section. Here go the title, name of composer, etthen come any
variable de nitions, and nally the score block. Let's start with the se in outline and Il in the
details later.

We'll use the rst two bars of Bach's prelude based onJesu, meine Freudewhich is written
for two manuals and pedal organ. You can see these two bars of music at the bottorof this
section. The top manual part has two voices, the lower and pedal organ one eaclso we need
four music de nitions and one to de ne the time signature and key:

\version "2.24.2"
\header {
titte = "Jesu, meine Freude"
composer = "J S Bach"
}
keyTime = { \key ¢ \minor \time 4/4 }
ManualOneVoiceOneMusic = { s1 }
ManualOneVoiceTwoMusic = { sl }
ManualTwoMusic = { s1 }
PedalOrganMusic = { s1 }

\score {

}

For now we've just used a spacer notesl, instead of the real music. We'll add that later.

Chapter 4: Fundamental concepts 84

Next let's see what should go in the score block. We simply mirror thesta structure we
want. Organ music is usually written on three staves, one for each manuahnd one for the
pedals. The manual staves should be bracketed together, so we need tise a PianoSta for
them. The rst manual part needs two voices and the second manual part jist one.

\new PianoStaff <<
\new Staff = "ManualOne" <<
\new Voice {
\ManualOneVoiceOneMusic
}
\new Voice {
\ManualOneVoiceTwoMusic
}
>> 9% end ManualOne Staff context
\new Staff = "ManualTwo" <<
\new Voice {
\ManualTwoMusic
}
>> 9% end ManualTwo Staff context
>> 9% end PianoStaff context

Next we need to add a sta for the pedal organ. This goes underneath the PiaoSta , but
it must be simultaneous with it, so we need angle brackets around thewo. Missing these out
would generate an error in the log le. It's a common mistake which you'll make sooner or
later! Try copying the nal example at the end of this section, remove these angle brackets, and
compile it to see what errors it generates.

<< % PianoStaff and Pedal Staff must be simultaneous
\new PianoStaff <<
\new Staff = "ManualOne" <<
\new Voice {
\ManualOneVoiceOneMusic
}
\new Voice {
\ManualOneVoiceTwoMusic
}
>> % end ManualOne Staff context
\new Staff = "ManualTwo" <<
\new Voice {
\ManualTwoMusic
}
>> 9% end ManualTwo Staff context
>> 9% end PianoStaff context
\new Staff = "PedalOrgan” <<
\new Voice {
\PedalOrganMusic
}
>>
>>

It is not necessary to use the simultaneous construck< ... >> for the manual two sta
and the pedal organ sta, since they contain only one music expression, kut does no harm,
and always using angle brackets afteinew Staff is a good habit to cultivate in case there are
multiple voices. The opposite is true for Voices: these should habitally be followed by braces
{...} incase your music is coded in several variables which need to run ceecutively.

Chapter 4: Fundamental concepts 85

Let's add this structure to the score block, and adjust the indenting. We also add the
appropriate clefs, ensure stems, ties and slurs in each voice on th@per sta point to the right
direction with \voiceOne and \voiceTwo, and enter the key and time signature to each sta
using our prede ned variable, \keyTime .

\score {
<< % PianoStaff and Pedal Staff must be simultaneous
\new PianoStaff <<
\new Staff = "ManualOne" <<
\keyTime % set key and time signature
\clef "treble"
\new Voice {
\voiceOne
\ManualOneVoiceOneMusic
}
\new Voice {
\voiceTwo
\ManualOneVoiceTwoMusic
}
>> 9% end ManualOne Staff context
\new Staff = "ManualTwo" <<
\keyTime
\clef "bass"
\new Voice {
\ManualTwoMusic
}
>> 0% end ManualTwo Staff context
>> O end PianoStaff context
\new Staff = "PedalOrgan” <<
\keyTime
\clef "bass"
\new Voice {
\PedalOrganMusic
}
>> 9% end PedalOrgan Staff
>>
} % end Score context

The above layout of the organ staves is almost perfect; however, theris a slight defect which
is not visible by looking at just a single system: The distance of thepedal sta to the left hand
sta should behave approximately the same as the right hand sta to the left hand sta. In
particular, the stretchability of staves in a PianoStaff context is limited (so that the distance
between the staves for the left and right hand can't become too large)and the pedal sta should
behave similarly.

Stretchability of staves can be controlled with the staff-staff-spacing property of the
VerticalAxisGroup “graphical object' (commonly called “grob's within the lilypond documen-
tation) { don't worry about the details right now; this is fully explain ed later. For the cu-
rious, have a look at Section \Overview of modifying properties" in Notation Reference In
this case, we want to modify the stretchability sub-property only. Any values not changed
will use the default value. Again, for the curious, you can nd the default values for the
staff-staff-spacing property in le scm/define-grobs.scm by looking up the de nition
of the default-staff-staff-spacing property of the VerticalAxisGroup grob. The value

Chapter 4: Fundamental concepts

for stretchability below is taken from the de nition of the StaffGrouper
scm/define-grobs.scm) so that the values are identical.

\score {
<< % PianoStaff and Pedal Staff must be simultaneous
\new PianoStaff <<
\new Staff = "ManualOne" <<
\keyTime % set key and time signature
\clef "treble"
\new Voice {
\voiceOne
\ManualOneVoiceOneMusic

}
\new Voice {
\voiceTwo
\ManualOneVoiceTwoMusic
}
>> % end ManualOne Staff context
\new Staff = "ManualTwo" \with {

\override VerticalAxisGroup.staff-staff-spacing.stretchability = 5
} <<

\keyTime
\clef "bass"
\new Voice {
\ManualTwoMusic
}
>> % end ManualTwo Staff context
>> 0 end PianoStaff context
\new Staff = "PedalOrgan" <<
\keyTime
\clef "bass"
\new Voice {
\PedalOrganMusic
}

>> 9% end PedalOrgan Staff
>>

} % end Score context

86

grob (in le

That completes the structure. Any three-sta organ music will have a similar structure,
although the number of voices may vary. All that remains now is to add the rrusic, and combine

all the parts together.

\ header {
titte = "Jesu, meine Freude"
composer = "J S Bach"

}

keyTime = { \ key ¢ \minor \time 4/4 }

ManualOneVoiceOneMusic= \relative {
g4 g f ees |
d2 c |

}

ManualOneVoiceTwoMusic= \relative {
ees 16 d ees8~ 16 f ees d ¢c8 d~ d c~ |
8 c4 b8 c8 gl6cbcd|

Chapter 4: Fundamental concepts

}

ManualTwoMusic= \relative {
c1l6 b c8~ 16 b c g a8 g~ 16 g aes ees |
f16 ees f d g aes g f ees d ees8~ 16 f ees d |
}
PedalOrganMusic = \relative {
r8 ¢16 d ees d ees8~ 16 a, b g c b c8 |
ri6 g ees f g f g8 c,2 |
}

\'score {

<< 9% PianoStaff and Pedal Staff must be simultaneous

\ new PianoStaff <<
\new Staff = "ManualOne" <<
\keyTime % set key and time signature
\clef "treble"
\ new Voice {
\ voiceOne
\ ManualOneVoiceOneMusic
}
\ new Voice {
\ voiceTwo
\ ManualOneVoiceTwoMusic
}
>> 9% end ManualOne Staff context
\new Staff = "ManualTwo" \with {
\ override VerticalAxisGroup . staff-staff-spacing
} <<
\ keyTime
\clef "bass"
\ new Voice {
\ ManualTwoMusic
}
>> 9% end ManualTwo Staff context
>> 9% end PianoStaff context
\new Staff = "PedalOrgan" <<
\ keyTime
\clef "bass"
\ new Voice {
\ PedalOrganMusic
}
>> % end PedalOrgan Staff context
>>

} % end Score context

Jesu, meine Freude

. stretchability

J S Bach

Chapter 4: Fundamental concepts

D
-
w

D

La L] =B I~ LA L —
L5 N1 = e 0] In
| N1 A AL | b LA %Y | 0l | | 0 |
L] |] | NI A L | |
- L
e

hik 1 1
II!IIIn" '||!!r1!/r—\|| | HEEA
i IIL | I | | | | |II
I — e | - 'ﬁ'
[] [= B i
n Minrn
| Il | IR ERIEN 1
A0 :l:N
See also

Music Glossary: Section \system" in Music Glossary.

4.4.4 Saving typing with variables and functions
By this point, you've seen this kind of thing:
hornNotes = \relative { c 4 b dis c }

\score {

{

\ hornNotes

You may even realize that this could be useful in minimalist music:

fragmentA = \relative { a4 a8. bl6 }
fragmentB = \relative { a8. gisl6 ees4 }

violin =\ new Staff {
\ fragmentA \ fragmentA |
\ fragmentB \ fragmentA |

}

\score {

{

Chapter 4: Fundamental concepts 89

\ violin
}
}

=
=
-
=

=

However, you can also use these variables (also known as macros, or userredd commands)
for tweaks:

dolce = \markup { \ italic \bold dolce }
centerText = { \ once \override TextScript .self-alignment-X = #CENTER }

fthenp =\ markup {
\dynamic f \ italic \small { 2nd } \ hspace #0.1 \ dynamic p

}

violin =\ relative {
\repeat volta 2 {
c 4. \dolce h8 a8 g a b |
\ centerText
c4.Mhi there!" d8 e f g d |
c4.\ fthenp b8 c4 c-. |
}
}

\score {

{
\ violin
}
}

+

hi there!
—a_hp |2 | if\'rlﬁter%hhhhh |
Idolc| | -

D
N
>

o

These variables are obviously useful for saving typing. But they'reworth considering even if
you only use them once { they reduce complexity. Let's look at the preious example without
any variables. It's a lot harder to read, especially the last line.

violin = \relative {
\repeat volta 2 {
¢ 4. \markup { \italic \bold dolce } b8 a8 g a b |
\once \override TextScript.self-alignment-X = #CENTER
c4.Mhi there!” d8 e f g d |
c4. \markup {
\dynamic f \italic \small { 2nd } \hspace #0.1 \dynamic p

}
b8 c4 c-. |

Chapter 4: Fundamental concepts 90

}

Remember “post-events'? Articulations, ngerings, anything that has to be addedafter a note
(see Section 4.1.4 [Structure of a note entry], page 49), often pre xewvith a dash or a direction
modi er. In fact, even these events can be stored in a variable { in vhich case the usual curly
braces are not wanted, since you wouldn't use them between a note andsitarticulations.

If such a de nition includes a pre x, then the variable can be used directly after the note {
unless you want to change its direction, in which case you can insert a odi er that will take
precedence:

articulationVar = -N
artEsprVar = \articulationVar M\ espressivo

\relative c {
c\ articulationVar d e2M articulationVar
d2\artEsprvVar c¢_\artEsprVar

}
U

So far we've seen static substitution { when LilyPond seedcenterText , it replaces it with
the stu that we've de ned it to be (ie the stu to the right of centerText=).
LilyPond can handle non-static substitution, too (you can think of these as functions).
padText =
#(define-music-function
(padding)
(number?)

#
\once \override TextScript .padding = #padding
#})

\relative {
c 4""piu mosso" b a b
\ padText #1.8
c4™'piu mosso" b a b
\ padText #2.6
c4™N'piu mosso” b a b

biu mosso Piumosso P MOSSO
| | |

n L1 Ih b .1 .
t | N N Y
L] O P O P I W
I I - H
1 | | | 1 |

+
+

Using variables is also a good way to reduce work if the LilyPond input gntax changes (see
Section \Updating les with convert-ly" in Application Usage). If you have a single de nition
(such as\dolce) for all your input les (see Section 5.7.3 [Style sheets], page 149), #n if
the syntax changes, you only need to update your singlédolce de nition, instead of making
changes throughout every.ly le.

Chapter 4: Fundamental concepts 91

4.4.5 Scores and parts

In orchestral music, all notes are printed twice. Once in a part for the musicians, and once in a
full score for the conductor. Variables can be used to avoid double workThe music is entered
once, and stored in a variable. The contents of that variable is then usedo generate both the
part and the full score.
It is convenient to de ne the notes in a special le. For example, sippose that the le
horn-music.ly contains the following part of a horn/bassoon duo
hornNotes = \relative {
\time 2/4
r4 f8 a | cis4 f | ed4 d |
}

Then, an individual part is made by putting the following in a le
\include "horn-music.ly"

\header {
instrument = "Horn in F"
}
{
\transpose f ¢ \hornNotes
}
The line

\include "horn-music.ly"
substitutes the contents of horn-music.ly at this position in the le, so hornNotes is de ned
afterwards. The command\transpose f ¢ indicates that the argument, being \hornNotes ,
should be transposed by a fth upwards. Soundingf is denoted by notatedc , which corresponds
with the tuning of a normal French Horn in F. The transposition can be sea in the following
output

I
=e A
L I

} | Il | | |
1 | |

In ensemble pieces, one of the voices often does not play for many meessi This is denoted
by a special rest, the multi-measure rest. It is entered with a apital Rfollowed by a duration
(1 for a whole note, 2 for a half note, etc.). By multiplying the duration, longer rests can be
constructed. For example, this rest takes 3 measures in 2/4 time

R2*3

When printing the part, multi-measure rests must be compressed There is a music function

available to do this:
\compressMMRests { ... }
Applying this to hornNotes gives:

e
N
| I |
1

+

=

SS— @ h 2N
i

Wil | |

11 —

+

=

The score is made by combining all of the music together. Assuming thattie other voice is
in bassoonNotes in the le bassoon-music.ly , a score is made with

\include "bassoon-music.ly"

Chapter 4: Fundamental concepts 92

\include "horn-music.ly"

<<
\new Staff \hornNotes
\new Staff \bassoonNotes

>>
leading to
— 1 1 o t———
18 B 4) ML AL i 1 1 1
| 1 | 10
i
whdhhhf h,. h
- @)1 L | | | | 11 v | @) LA M |
11 | | | | 5 | | | | |
| | | | | || | | | | |
| | | - | | | | |
- [
See also

Learning Manual: Section 3.4.1 [Organizing pieces with variables], page 39
Notation Reference: Section \Transpose" inNotation Reference Section \Writing parts”
in Notation Reference Section \Full measure rests" in Notation Reference Section \Including

LilyPond les" in Notation Reference

93

5 Tweaking output

This chapter discusses how to modify output. LilyPond is extreméy con gurable; virtually
every fragment of output may be changed.

5.1 Tweaking basics

5.1.1 Introduction to tweaks

"Tweaking' is a LilyPond term for the various methods available to the user for modifying the
actions taken during interpretation of the input le and modifying t he appearance of the printed
output. Some tweaks are very easy to use; others are more complex. But tak together the
methods available for tweaking permit almost any desired appearance ofhe printed music to
be achieved.

In this section we cover the basic concepts required to understahtweaking. Later we give a
variety of ready-made commands which can simply be copied to obtain theame e ect in your
own scores, and at the same time we show how these commands may be couasted so that you
may learn how to develop your own tweaks.

Before starting on this Chapter you may wish to review the section Setion 4.3 [Contexts
and engravers], page 63, as Contexts, Engravers, and the Properties camed within them are
fundamental to understanding and constructing Tweaks.

5.1.2 Objects and interfaces

Tweaking involves modifying the internal operation and structures of the LilyPond program, so
we must rst introduce some terms which are used to describe thos internal operations and
structures.

The term "Object' is a generic term used to refer to the multitude of internal structures built
by LilyPond during the processing of an input le. So when a command ike \new Staff is
encountered a new object of typeStaff is constructed. That Staff object then holds all the
properties associated with that particular sta, for example, its name and its key signature,
together with details of the engravers which have been assigned to opse within that sta 's
context. Similarly, there are objects to hold the properties of all other contexts, such asVoice
objects, Score objects, Lyrics objects, as well as objects to represent all notational elements
such as bar lines, note heads, ties, dynamics, etc. Every object hatsiown set of property
values.

Some types of object are given special names. Objects which represéems of notation on
the printed output such as note heads, stems, slurs, ties, ngerig, clefs, etc are called "Layout
objects’, often known as “Graphical Objects', or "Grobs' for short. These are still objects in
the generic sense above, and so they too all have properties assoeidtwith them, such as their
position, size, color, etc.

Some layout objects are still more specialized. Phrasing slurs, cseendo hairpins, ottava
marks, and many other grobs are not localized in a single place { they have starting point, an
ending point, and maybe other properties concerned with their shap. Objects with an extended
shape like these are called "Spanners'.

Spanners cannot be tweaked after their creation. This includes bothStaffSymbol and
LedgerLineSpanner which continue throughout the score, except if they are terminated ly
the \stopStaff command and then recreated usingstartStaff =~ command.

What is more, there are “abstract' grobs which do not print anything of their own, but rather
collect, position and manage other grobs. Common examples for this af@ynamicLineSpanner,
BreakAlignment , NoteColumn VerticalAxisGroup , NonMusicalPaperColumnand similar. We
will see how some of these are used later.

Chapter 5: Tweaking output 94

It remains to explain what “Interfaces' are. Many objects, even thoughthey are quite dif-
ferent, share common features which need to be processed in the samway. For example, all
grobs have a color, a size, a position, etc, and all these properties areqeessed in the same way
during LilyPond's interpretation of the input le. To simplify th ese internal operations these
common actions and properties are grouped together in an object called grob-interface
There are many other groupings of common properties like this, each one gimea hame ending
in interface . In total there are over 100 such interfaces. We shall see later why tkiis of
interest and use to the user.

These, then, are the main terms relating to objects which we shall se in this chapter.

5.1.3 Naming conventions of objects and properties

We met some object naming conventions previously, in Section 4.3 [Coakts and engravers],
page 63. Here for reference is a list of the most common object and propertypes together
with the conventions for naming them and a couple of examples of some realames. We have
used "A' to stand for any capitalized alphabetic character and "aaa' to standdr any number of
lower-case alphabetic characters. Other characters are used verbati

Object/property type Naming convention Examples

Contexts Aaaaor AaaaAaaaAaaa Staff GrandStaff

Layout Objects Aaaaor AaaaAaaaAaaa Slur NoteHead

Engravers Aaaa_aaa_engraver Clef_engraver ,
Note_heads_engraver

Interfaces aaa-aaa-interface grob-interface ,
break-aligned-interface

Context Properties aaa or aaaAaaaAaaa alignAboveContext,
skipBars

Layout Object Properties aaa or aaa-aaa-aaa direction , beam-thickness

As we shall see shortly, the properties of di erent types of object aremodi ed by di erent
commands, so it is useful to be able to recognize the types of objects @rmproperties from their
names.

See also

Notation Reference: Section \Naming conventions” inNotation Reference Section \Modifying
properties” in Notation Reference

5.1.4 Tweaking methods

The \override command

We have already met the commanddset and \with , used to change the properties otontexts
and to remove and addengravers in Section 4.3.4 [Modifying context properties], page 67, and
Section 4.3.5 [Adding and removing engravers], page 71. We must now itduce some more
important commands.

The command to change the properties ofayout objects is \override . Because this com-
mand has to modify internal properties deep within LilyPond its syntax is not as simple as the
commands you have used so far. It needs to know precisely which prepty of which object in
which context has to be modi ed, and what its new value is to be. Let'ssee how this is done.

The general syntax of this command is:

\override Context. LayoutObject . layout-property = #value

This will set the property with the name layout-property of the layout object with the name
LayoutObject, which is a member of theContext context, to the value value.

Chapter 5: Tweaking output 95

The Context may be omitted (and usually is) when the required context is unambguously
implied and is one of lowest level contexts, i.e.\Voice, ChordName®r Lyrics , and we shall omit
it in many of the following examples. We shall see later when it must le speci ed.

Later sections deal comprehensively with properties and their valug, see Section 5.2.3 [Types
of properties], page 105. But in this section we shall use just a few sipte properties and values
which are easily understood in order to illustrate the format and useof these commands.

LilyPond's primary expressions are musical items like notes and durabns, as well as strings
and markups. More speci ¢ expressions like numbers, symbols andslis are processed in “Scheme
mode’, which is invoked by pre xing the value with “#. For more information about Scheme
mode, see Section \LilyPond Scheme syntax" inExtending.

\override is the most common command used in tweaking, and most of the rest of this
chapter will be directed to presenting examples of how it is usedHere is a simple example to
change the color of the note head:

\relative {
c4 d
\override NoteHead color = "red"
ed f |
\override NoteHead color = "green"
g4 abc|
}
[a) [|
A | [IEE - AN N|
PR T oI ry
L In I |l | | |
| @) I 01 R | |
g 1

The \revert command

Once overridden, the property retains its new value until it is overridden again or a\revert
command is encountered. Thdrevert command has the following syntax and causes the value
of the property to revert to its original default value; note, not its pr evious value if several
\override commands have been issued.

\revert Context. LayoutObject . layout-property

Again, just like Context in the \override command, Context is often not needed. It will
be omitted in many of the following examples. Here we revert the color othe note head to the
default value for the nal two notes:

\relative {
c4d
\ override NoteHead color = "red"
ed f |
\override NoteHead color = "green"
g4 a
\revert NoteHead color
b4 c |
}
n I P 2N
A) | L I~ Y 11
| ZN Yo v ry "
[] In VOO 10 | i | | |
| 1 | |

Chapter 5: Tweaking output 96

The \once pre x

\override , \revert , \set , and \unset commands may be pre xed with \once. This causes
such a command to be e ective only during the current musical momeh before the property
reverts back to its previous value (this can be di erent from the default if another \override
is still in e ect). Using the same example, we can change the color of asgle note like this:

\relative {
c4d
\override NoteHead color = "red"
ed f |
\once \override NoteHead color = "green"
g4 a
\once \revert NoteHead color
b c|
\revert NoteHead color
f2 c |
}
A o s IN N
s W S 7 W 4) B] B 8 L Y E—
1L I~ VO IN | i | | | | |
Yy §[y oy " | | |
= [1 I

The \once pre x may also be used in front of many prede ned commands to limit their e ect
to one musical moment:

\relative {
c4(d
\ once \ slurDashed
ed(f) |
g4 a)
\ once \ hideNotes
b(c) |
}
o | |n
A) | L In /“!!
i |
H !I! | LI L I
DA

The \tweak command

The nal tweaking command which is available is \tweak . This should be used when several
objects occur at the same musical moment, but you only want to change the qoperties of
selected ones, such as a single note within a chord. Usingverride would a ect all the notes
within a chord, whereas\tweak a ects just the following item in the input stream.

Here's an example. Suppose we wish to change the size of the middle ndtead (the E) in a
C major chord. Let's rst see what \once \override would do:

\relative {
<c e g>4
\once \override NoteHead font-size = #-3
<c e g>4
<c e g>4

}

Chapter 5: Tweaking output 97

D

;
|=-=-=-,

We see the override a ectsall the note heads in the chord. This is because all the notes of a
chord occur at the samemusical moment and the action of\once is to apply the override to all
layout objects of the type speci ed which occur at the same musical mment as the\override
command itself.

The \tweak command operates in a di erent way. It acts on the immediately following item
in the input stream. In its simplest form, it is e ective only on obj ects which are created directly
from the following item, essentially note heads and articulations.

So to return to our example, the size of the middle note of a chord woulde changed in this
way:

\relative {
<c e g>4
<c \tweak font-size #-3 e g>4

i
0

[a]
A

J L NI

Note that the syntax of \tweak is dierent from that of the \override command. The
context should not be speci ed; in fact, it would generate an error to doso. Both context and
layout object are implied by the following item in the input stream. Note also that an equals
sign should not be present. So the simple form of th&tweak command is

\tweak layout-property #value
A \tweak command can also be used to modify just one in a series of articulationgs shown
here:
a 4""Black"
-\tweak color "red" ""Red"
-\tweak color "green" "Green"

Red
Bllack

| 2.Y
| 0l |
11

D

Green
Note that the \tweak command must be preceded by an articulation mark since the tweaked
expression needs to be applied as an articulation itself. In case of ntiple direction overrides
(® or _), the leftmost override wins since it is applied last.

Objects such as stems and accidentals are created later, and not dirdgtfrom the following
event. It is still possible to use\tweak on such indirectly created objects by explicitly naming
the layout object, provided that LilyPond can trace its origin back to th e original event:

<\tweak Accidental .color "red" cis 4
\tweak Accidental .color "green" es
g >

—a—

1=

Chapter 5: Tweaking output 98

This long form of the \tweak command can be described as

\tweak LayoutObject . layout-property #value

The \tweak command must also be used to change the appearance of one of a set of nested
tuplets which begin at the same musical moment. In the following exarple, the long tuplet
bracket and the rst of the three short brackets begin at the same musial moment, so any
\override command would apply to both of them. In the example,\tweak is used to distinguish
between them. The rst \tweak command speci es that the long tuplet bracket is to be placed
above the notes and the second one speci es that the tuplet number it be printed in red on

the rst short tuplet bracket.

\relative c¢ {
\tweak direction #up
\tuplet 3/4 {
\tweak color "red"
\tuplet 3/2 { c8[cc] }
\tuplet 3/2 { c8[cc] }
\tuplet 3/2 { c8[cc] }

}
}

3

[a
A HHHHHHH] 111111

If nested tuplets do not begin at the same moment, their appearance mabke modi ed in the
usual way with \override commands:

\relative {
\tuplet 3/2 {c8 [cc] }
\once \override TupletNumber. text = #uplet-number::calc-fraction-text
\tuplet 3/2 {
cg[c]
c8[c]
\once \override TupletNumber. transparent = ##t
\tuplet 3/2 { c8[cc] }
\tuplet 3/2 { c8[cc] }

See also
Notation Reference: Section \The tweak command" inNotation Reference

The \single prex
Suppose we wanted to emphasize particular note heads by coloring thermed and increasing
their size, and to make it easy suppose also we have de ned a functicio do this:

emphNoteHead= {
\ override NoteHead color = "red
\override NoteHead font-size = 2

Chapter 5: Tweaking output 99

}
\relative {
¢ 4 a \ once \emphNoteHead d |
}
[a | -
A 1 In L
L !II an)

I
I
|

The \once pre x works ne to emphasize single notes or complete chords, but it @annot be
used to emphasize a single notavithin a chord. Earlier we have seen howtweak can be used
to do this, see [The\tweak command], page 96. But\tweak cannot be used with a function;
that's where \single comes in:

emphNoteHead= {

\override NoteHead color = "red"
\override NoteHead font-size = 2
}
\relative {

<c a \ single \emphNoteHead d>4
}

=

In summary, \single converts overrides into tweaks so when there are several objects #ie
same point in musical time (like noteheads in a chord),\single will only a ect a single one,
the one generated by the immediately following music expressionnicontrast to \once which
will a ect all of those objects.

By using\single in this way any shorthand function containing just overrides may beapplied
to individual notes in a chord. However, \single does not convert\revert , \set or \unset
into tweaks.

See also

Learning Manual: [The \tweak command], page 96, Section 5.7.2 [Using variables for layout
adjustments], page 147.

5.2 The Internals Reference manual

5.2.1 Properties of layout objects

Suppose you have a slur in a score which, to your mind, appears too thiand you'd like to draw

it a little heavier. How do you go about doing this? You know from the statements earlier about
the exibility of LilyPond that such a thing should be possible, and y ou would probably guess
that an \override command would be needed. But is there a heaviness property for a siu
and if there is, how might it be modi ed? This is where the Internals Reference manual comes
in. It contains all the information you might need to construct this and al |l other \override
commands.

Before we look at the Internals Reference a word of warning. This is aeference document,
which means there is little or no explanation contained within it: its purpose is to present
information precisely and concisely. This means it might look dauntirg at rst sight. Don't

Chapter 5: Tweaking output 100

worry! The guidance and explanation presented here will enable you toxdract the information
from the Internals Reference for yourself with just a little practice.

Let's use a concrete example with a simple fragment of real music:

{
\ key es \major
\time 6/8
\relative {
r4 bes8 bes[(q]) g |
g8[(es]) esd[(f]) as |
as8 g
}
\addlyrics {
The man who | feels love s sweet e -- | mo -- tion
}
}
—_ u u u y
t‘:‘hh}Llﬁllrn T |'Lu. |||:ﬁFF’1__
T 1 I I N | M) N !I! LI L | Il |
I

-y

The man who feels love©sweet e-motion

Suppose now that we decide we would like the slurs to be a little havier. Is this possible?
The slur is certainly a layout object, so the question is, "Is thee a property belonging to a slur
which controls the heaviness?' To answer this we must look in therternals Reference, or IR
for short.

The IR for the version of LilyPond you are using may be found on the LilyPond website at
https://lilypond.org . Go to the documentation page and click on the Internals Reference
link. For learning purposes you should use the standard HTML version, ot the “one big page'
or the PDF. For the next few paragraphs to make sense you will need to actally do this as you
read.

Under the heading Top you will see ve links. Select the link to the Backend which is where
information about layout objects is to be found. There, under the heading Backend, select the
link to All layout objects. The page that appears lists all the layout objects used in your version
of LilyPond, in alphabetic order. Select the link to Slur, and the properties of Slurs are listed.

An alternative way of nding this page is from the Notation Reference. On ore of the pages
that deals with slurs you may nd a link to the Internals Reference. This link will take you
directly to this page, but if you have an idea about the name of the layoutobject to be tweaked,
it is easier to go straight to the IR and search there.

This Slur page in the IR tells us rst that Slur objects are created by the Slur_engraver.
Then it lists the standard settings. Browse through them looking for a property that might
control the heaviness of slurs, and you should nd

thickness (number)

1.2
Line thickness, generally measured in line-thickness

This looks a good bet to change the heaviness. It tells us that the vale of thickness is a
simple number, that the default value is 1.2, and that the units are in another property called
line-thickness

As we said earlier, there are few to no explanations in the IR, but we akady have enough
information to try changing the slur thickness. We see that the name ofthe layout object is

Chapter 5: Tweaking output 101

Slur , that the name of the property to change isthickness and that the new value should be
a number somewhat larger than 1.2 if we are to make slurs thicker.

We can now construct the\override command by simply substituting the values we have
found for the names, omitting the context. Let's use a very large value dr the thickness at rst,
SO we can be sure the command is working. We get:

\override Slur.thickness = #5.0
Don't forget the # preceding the new value!

The nal question is, "Where should this command be placed?' While pu are unsure and
learning, the best answer is, "Within the music, before the rst dur and close to it.' Let's do
that:

{
\ key es \major
\time 6/8
\relative {
% Increase thickness of all following slurs from 1.2 to 5.0
\ override Slur . thickness = #5.0
r4 bes8 bes[(qd]) g |
g8[(es]) es d(f]) as |
as8 g
}
\ addlyrics {
The man who | feels love s sweet e -- | mo -- tion
}
}
B b~ u LI u Y u
o 1 S ey 1 T
IT < 1 I I N A m If\l !I! LI L | Il |
| I N \' LI

- _
The man who feels love©sweet e-motion

and we see that the slur is indeed heavier.

So this is the basic way of constructing\override commands. There are a few more com-
plications that we shall meet in later sections, but you now know all the essentials required to
make up your own { but you will still need some practice. This is provided in the examples
which follow.

Finding the context

But rst, what if we had needed to specify the Context? What should it be? We could guess
that slurs are in the Voice context, as they are clearly closely associatl with individual lines of
music, but can we be sure? To nd out, go back to the top of the IR page destbing the Slur,
where it says "Slur objects are created by: Slur engraver'. So gl will be created in whichever
context the Slur_engraver is in. Follow the link to the Slur_engraver page. At the very
bottom it tells us that Slur_engraver is part of eight Voice contexts, including the standard
voice context, Voice, so our guess was correct. And becauséoice is one of the lowest level
contexts which is implied unambiguously by the fact that we are enteing notes, we can omit it
in this location.

Overriding once only

As you can seeall the slurs are thicker in the nal example above. But what if we wanted just the
rst slur to be thicker? This is achieved with the \once command. Placed immediately before

Chapter 5: Tweaking output 102

the \override command it causes it to change only the slur which begins on thémmediately

following note. If the immediately following note does not begin a slur the command has no
e ect at all { it is not remembered until a slur is encountered, it i s simply discarded. So the
command with \once must be repositioned as follows:

{
\ key es \'major
\time 6/8
\relative {
r4 bes 8
% Increase thickness of immediately following slur only
\once \override Slur . thickness = #5.0
besg[(d]) g |
g8[(es]) esd(f]) as |
as8 g
}
\addlyrics {
The man who | feels love s sweet e -- | mo -- tion
}
}
— IL] u u y
E.hth\h\Lllu |||:H
- 1 I m N] BLALE NLALE i
|

—

N
_—

(

_ _
The man who feels love©sweet e-motion

Now only the rst slur is made heavier.

The \once command can also be used before thesset command.

Reverting

Finally, what if we wanted just the rst two slurs to be heavier? W ell, we could use two
commands, each preceded byonce placed immediately before each of the notes where the slurs
begin:

{

\ key es \major

\time 6/8

\relative {
r4 bes 8
% Increase thickness of immediately following slur only
\once \override Slur .thickness = #5.0
bes[(d]) g |
% Increase thickness of immediately following slur only
\once \override Slur . thickness = #5.0
g8[(es]) esd(f]) as |
as8 g

}

\addlyrics {
The man who | feels loves sweet e -- | mo -- tion

}

}

Chapter 5: Tweaking output 103

e

) - o
I I M 1

| - i | m "N N1 BELALE BLALEN i |
N | I | Tt

— N— iz _
The man who feels love©sweet e-motion

+

vy
»

3

+

e

¥ lupp

or we could omit the \once command and use the\revert command to return the thickness
property to its default value after the second slur:

{

\ key es \'major

\time 6/8

\relative {
r4 bes 8
% Increase thickness of all following slurs from 1.2 to 5.0
\override Slur . thickness = #5.0
bes[(g]) g |
g8[(es]) es
% Revert thickness of all following slurs to default of 1.2
\revert Slur . thickness
dg[(f]) as |
as8 g

}

\ addlyrics {
The man who | feels love s sweet e -- | mo -- tion

}

}
u u u
B‘thlrlﬁlrn T |'Lu. |||:F‘FH:__J
iT < L I I N A B Irlnl If\l !I! LALE B |l |
N I N~— T

The man who feels love©sweet e-motion

The \revert command can be used to return any property changed withoverride back to
its default value. You may use whichever method best suits what youvant to do.

That concludes our introduction to the IR, and the basic method of tweaking. Several
examples follow in the later sections of this Chapter, partly to introduce you to some of the
additional features of the IR, and partly to give you more practice in extracting information
from it. These examples will contain progressively fewer words of gu@hce and explanation.

5.2.2 Properties found in interfaces

Suppose now that we wish to print the lyrics in italics. What form of \override command do
we need to do this? We rst look in the IR page listing "All layout objects’, as before, and look
for an object that might control lyrics. We nd LyricText , which looks right. Clicking on this

shows the settable properties for lyric text. These include thefont-series and font-size

but nothing that might give an italic shape. This is because the shape poperty is one that is

common to all font objects, so, rather than including it in every layout object, it is grouped

together with other similar common properties and placed in aninterface, the font-interface

So now we need to learn how to nd the properties of interfaces, andd discover what objects
use these interface properties.

Look again at the IR page which describes LyricText. At the bottom of the page 5 a
list of clickable interfaces which LyricText supports. The list has several items, including

Chapter 5: Tweaking output 104

font-interface . Clicking on this brings up the properties associated with this irterface, which
are also properties of all the objects which support it, including LyricText.

Now we see all the user-settable properties which control fonts, idading
font-shape(symbol) , where symbol can be set toupright , italics or caps.

You will notice that font-series and font-size are also listed there. This immediately
raises the question: Why are the common font propertiedont-series and font-size listed
under LyricText as well as under the interfacefont-interface but font-shape is not? The
answer is that font-series and font-size are changed from their global default values when
a LyricText object is created, butfont-shape is not. The entries in LyricText then tell you
the values for those two properties which apply toLyricText . Other objects which support
font-interface will set these properties di erently when they are created.

Let's see if we can now construct the\override command to change the lyrics to italics.
The object is LyricText , the property is font-shape and the value isitalic . As before, we'll
omit the context.

As an aside, although it is an important one, note that some properties take vales that
are symbols, likeitalic , and must be preceded by an apostrophe,. Symbols are then read
internally by LilyPond. Note the distinction from arbitrary text stri ngs, which would appear as
"a text string” ; for more details about symbols and strings, see Section \Scheme tutoriain
Extending.

So we see that theloverride command needed to print the lyrics in italics is:
\override LyricText.font-shape = # italic
This should be placed just in front of the lyrics we wish to a ect, like so:

{

\ key es \major

\time 6/8

\relative {
r4 bes8 bes|[(g]) g |
g8[(es]) esd(f]) as |

as8 g
}
\addlyrics {
\override LyricText .font-shape = #italic
The man who | feels loves sweet e -- | mo -- tion
}
}
— IlJ u u U
b.th%\}'ﬂlliu. i) |
iT LI I I N A m If\l !I! LALE B |l |
1 '

(

i]
The man who feelslove©sweete- motion

and the lyrics are all printed in italics.

Note: In lyrics always leave whitespace between the nal syllable an
the terminating brace.

See also
Extending: Section \Scheme tutorial” in Extending.

Chapter 5: Tweaking output 105

5.2.3 Types of properties

So far we have seen two types of propertynumberand symbol. To be valid, the value given to
a property must be of the correct type and obey the rules for that type. The type of property
is always shown in brackets after the property name in the IR. Here isa list of the types you
may need, together with the rules for that type, and some examples. Younust always add a
hash symbol,#, of course, to the front of these values when they are entered in theverride
command, even if the value itself already starts with#. We only give examples for constants
here: if you want to compute a value using Scheme, see Section \Calailons in Scheme" in
Extending.

Property type Rules Examples
Boolean Either True or False, represented by #t #t, #f
or #f

Dimension (insta A decimal number (in units of sta 2.5,0.34

space) space)

Direction A valid direction constant or its numer- LEFT CENTERJP 1, -1
ical equivalent (0 or CENTERhdicate a
neutral direction)

Integer A whole number 3, -1

List A sequence of constants or symbols sepa- (left-edge staff-bar) ,
rated by spaces, enclosed in parentheses(1) , () , (1.0 0.25 0.5)
and preceded by an apostrophe (quote

mark)
Markup Any valid markup \markup { \italic "cresc."
}, "bagpipe”
Moment A fraction of a whole note constructed (ly:make-moment 1/4) ,
with the make-moment function (ly:make-moment 3/8)
Number Any positive or negative, possibly deci- 3, -2.45
mal, value

Pair (of numbers) Two numbers separated by a ‘space . (2.3.5) , (0.1.-3.2)
space' and enclosed in brackets preceded
by an apostrophe

Symbol Any of the set of permitted sym- italic , inside
bols for that property, preceded by an
apostrophe
Unknown A procedure, or #f to cause no action bend::print
ly:text-interface::print ,
#f
Vector Constants enclosed in#(...). H(#t #t #f)
See also

Extending: Section \Scheme tutorial” in Extending.

5.3 Appearance of objects

Let us now put what we have learned into practice with a few examplesvhich show how tweaks
may be used to change the appearance of the printed music.

5.3.1 Visibility and color of objects

In the educational use of music we might wish to print a score with cetain elements omitted as
an exercise for the student, who is required to supply them. As aimple example, let us suppose

Chapter 5: Tweaking output 106

the exercise is to supply the missing bar lines in a piece of musi But the bar lines are normally
inserted automatically. How do we prevent them printing?

Before we tackle this, let us remember that object properties are groped in what are called
interfaces { see Section 5.2.2 [Properties found in interfaces], page 103. This igmply to group
together those properties that may be used together to tweak a graphical glect { if one of
them is allowed for an object, so are the others. Some objects then uské properties in some
interfaces, others use them from other interfaces. The interfacewhich contain the properties
used by a particular grob are listed in the IR at the bottom of the page descibing that grob,
and those properties may be viewed by looking at those interfaces.

We explained how to nd information about grobs in Section 5.2.1 [Properties of layout
objects], page 99. Using the same approach, we go to the IR to nd the layoubbject which
prints bar lines. Going via Backend and All layout objects we nd there is a layout object called
BarLine . Its properties include two that control its visibility: break-visibility and stencil
Barline also supports a number of interfaces, including thegrob-interface , where we nd the
transparent and the color properties. All of these can a ect the visibility of bar lines (and,
of course, by extension, many other layout objects too.) Let's consideeach of these in turn.

The stencil property

This property controls the appearance of the bar lines by specifying hte symbol (glyph) which
should be printed. In common with many other properties, it can be setto print nothing by
setting its value to #f. Let's try it, as before, omitting the implied Context, Voice:

\relative {
\time 12/16
\override BarLine. stencil = ##f
c 4 b8 c dl6é c d8 |
0,8 al6é b8 c d4 el6 |
e8

iy

h

h

cg'irn

The bar lines are still printed. What is wrong? Go back to the IR and look again at the page
giving the properties of BarLine. At the top of the page it says \Barline objects are created
by: Bar_engraver'. Go to the Bar_engraver page. At the bottom it gives a list of Contexts in
which the bar engraver operates. All of them are of the typeStaff , so the reason thdoverride
command failed to work as expected is becausBarline is not in the default Voice context.
If the context is specied incorrectly, the command simply does rot work. No error message
is produced, and nothing is logged in the log le. Let's try correcting it by adding the correct
context:

\relative {
\time 12/16
\override Staff . BarLine. stencil = ##f
c 4 b8 c d16 c d8 |
0,8 al6 b8 c d4 el6 |
e8

Chapter 5: Tweaking output 107

1 T — =
— I | AL I | 1 I |
[I - [[[[A |
I (T e '

Now the bar lines have vanished. Setting thestencil property to #f is such a frequent
operation that there is a shorthand for it called \omit :
\relative {
\time 12/16
\omit Staff . BarLine
c 4 b8 c d16 c d8 |
0,8 al6 b8 c d4 el6 |

e8

}

——=h -hhhhd
L = B e S S S] B . S S— HTE
LJI III I; | | ! A |

Note, though, that setting the stencil property to #f will cause errors when the dimensions
of the object are required for correct processing. For example, errorwill be generated if the
stencil property of the NoteHeadobject is set to #f. If this is the case, you can instead use
the point-stencil ~ function, which sets the stencil to an object with zero size:

\relative {
c4dc
\once \override NoteHead stencil = #point-stencil
c4 c

}

The break-visibility property

We see from theBarLine properties in the IR that the break-visibility property requires a
vector of three booleans. These control respectively whether bardes are printed at the end
of a line, in the middle of lines, and at the beginning of lines. For our gample we want all
bar lines to be suppressed, so the value we need#g#f #f #f) (also available under the name
all-invisible). Let's try that, remembering to include the Staff context. Note also that
in writing this value we have ## before the opening parenthesis. One# is required as part of
vector constant syntax, and the rst # is required, as always, to precede the value itself in the
\override command.
\relative {

\time 12/16

\override Staff . BarLine . break-visibility = #H(H #E #E)

c 4 b8 c dl6 c d8 |

0,8 al6 b8 c d4 el6 |

e8

Chapter 5: Tweaking output 108

And we see this too removes all the bar lines.

The transparent property

We see from the properties speci ed in thegrob-interface page in the IR that the transparent
property is a boolean. This should be set to#t to make the grob transparent. In this next
example let us make the time signature invisible rather than the bar Ines. To do this we
need to nd the grob name for the time signature. Back to the "All layout objects' page in
the IR to nd the properties of the TimeSignature layout object. This is produced by the
Time_signature_engraver which you can check also lives in theStaff context and also sup-
ports the grob-interface . So the command to make the time signature transparent is:

\relative {
\time 12/16
\override Staff . TimeSignature . transparent = ##t
c 4 b8 c d16 c d8 |
0,8 al6é b8 c d4 el6 |
e8

L hhk p—
I N W e . —
I I —— — I

e m—

h

h

Ho

Again, setting the transparent property is a rather frequent operation, so we have a shorthand
for it called \hide :

\relative {
\time 12/16
\ hide Staff . TimeSignature
c 4 b8 c d16 c d8 |
0,8 al6 b8 c d4 el6 |
e8

Ia hlﬁ\ p— 1 Ia

| I EEEEN [] Inry 11 11
-7 L iy " |
e
o m—

o

In either case, the time signature is gone, but this command leaves a gawhere the time
signature should be. Maybe this is what is wanted for an exercise for th student to Il it in,
but in other circumstances a gap might be undesirable. To remove itthe stencil for the time
signature should be set to#f instead:

\relative {
\time 12/16
\omit Staff . TimeSignature
c 4 b8 c dl6é c d8 |
0,8 al6é b8 c d4 el6 |
e8

|

HE)

o

Chapter 5: Tweaking output 109

and the di erence is obvious: setting the stencil to#f (possibly via \omit) removes the object
entirely; making the object transparent (which can be done usinghide) leaves it where it is,
but makes it invisible.

The color property

Finally let us try making the bar lines invisible by coloring them white. (There is a di culty
with this in that the white bar line may or may not blank out the sta lin es where they cross.
You may see in some of the examples below that this happens unpredaily. The details of
why this is so and how to control it are covered in Section \Painting objects white" in Notation
Reference But at the moment we are learning about color, so please just accept thiimitation
for now.)

The grob-interface speci es that the color property value is a list, but there is no exga-
nation of what that list should be. The list it requires is actually a li st of values in internal
units, but, to avoid having to know what these are, several ways arerovided to specify colors.
The rst way is to use one of the prede ned "CSS' colors listed in Setion \List of colors" in
Notation Reference To set the bar lines to white we write:

\relative {
\time 12/16
\override Staff . BarLine. color = "white"
c 4 b8 c d16 c d8 |
0,8 al6 b8 c d4 el6 |
e8

T
1 o
— I | 11 AL |
| D | I . | | | |
(T e '

and again, we see the bar lines are not visible. Note thaivhite is not preceded by an apostrophe
{ it is not a symbol, but a character string, mapped to a prede ned list of internal values. In
that regard, LilyPond's syntax mimics the CSS language bttps://www.w3.0rg/Style/CSS/

) commonly used in webpages; in addition to prede ned names, we can spiy a hexadecimal
color code:

\relative {
\time 12/16
\override Staff . BarLine.color = "#FFFFFF"
c 4 b8 c dl6 c d8 |
0,8 al6é b8 c d4 el6 |
e8

1
| I | 1y ="
— | 1 AL |
L) | 11 1 1 I I I
'

We could even de ne that color as a variable, and then use that variable as aqoperty de nition.
Since it is both a LilyPond variable and a Scheme object, it can be pre »ed with a backslash or
with a hash character without any di erence:

Whl'[eVar = "#FFFFFF"

\relative {

Chapter 5: Tweaking output 110

\time 12/16

\ override Staff . BarLine . color
c 4 b8 c dl6 c d8 |
\override Staff . BarLine. color = #whiteVar
0,8 al6é b8 c d4 el6 |

e8

\ whiteVar

1
| I | Ty =7
p— | 1 AL |
L) | 11 1 1 I I I
'

Another way of adding colors to your score is by using a function. There a two useful
functions in this regard; one is thex11-color function, which we'll get to use shortly. The
other one, the rgb-color function, closely demonstrates LilyPond's internal logic: it takes
three arguments giving the intensities of the red, green and blue cols. These take values in
the range 0 to 1. So to set the color to red the value should bégb-color 1 0 0) and to white
it should be (rgb-color 1 1 1)

\relative {
\time 12/16
\override Staff . BarLine . color = #(rgb-color 1 1 1)
c 4 b8 c dl6 c d8 |
0,8 al6é b8 c d4 el6 |
e8

1
| I | Iy =7
p— | 1 AL |
L) | 11 1 1 I I I
'

Note that in this case the whole function call has to be enclosed in parefteses. The same can
be said of thex11-color function which we just skipped over.

x11-color , again, maps prede ned color names to internal values { but o ers many more
choices than CSS names, as you can see in Section \List of colors" Motation Referenceg. For
example, the X11 set of colors includes an extensive grey scale, whose reswange from black,
grey0 , to white, greyl100 , in steps of 1. Let's illustrate this by setting all the layout objects
in our example to various shades of grey:

\relative {
\time 12/16
\override Staff . StaffSymbol . color = #(x11l-color grey30)
\override Staff . TimeSignature . color = #(x11-color grey60)
\override Staff . Clef.color = #(x11l-color grey60)
\override Voice. NoteHead color = #(x11-color grey85)
\override Voice. Stem color = #(x11l-color grey85)
\override Staff . BarLine.color = #(x11l-color greyl0)
c 4 b8 c d16 c d8 |
0,8 al6 b8 c d4 el6 |
e8d

Chapter 5: Tweaking output 111

Note the contexts associated with each of the layout objects. It is imporant to get these right,

or the commands will not work! Remember, the context is the one in whib the appropriate
engraver is placed. The default context for engravers can be found bytarting from the layout

object, going from there to the engraver which produces it, and on thesngraver page in the IR
it tells you in which context the engraver will normally be found.

5.3.2 Size of objects

Let us begin by looking again at the earlier example (see Section 4.1.3 [Nésy music expres-
sions], page 48) which showed how to introduce a new temporary sta, am an Section \ossia"
in Music Glossary.

\ new Staff ="main" {
\relative {
r4 g8 gcd4 c8 d |
e4 r8
<<
{f8cc}
\ new Staff \with {
alignAboveContext = "main" }
{f8 fc}
>>
r4 |
}
}

|-

|
[

Ossia are normally written without clef and time signature, and are ustally printed slightly
smaller than the main sta . We already know now how to remove the clefand time signature {
we simply set the stencil of each to#f, as follows:

\ new Staff ="main" {

\relative {

r4 g8 gcd4 c8 d |

ed 8

<<
{f8cc}
\ new Staff \with {

alignAboveContext = "main"

}
{

\omit Staff . Clef
\omit Staff . TimeSignature
{8 fc}

Chapter 5: Tweaking output 112

>>
r4 |

Illllll I
I _ ===

where the extra pair of braces after the\with clause are required to ensure the enclosed overrides
and music are applied to the ossia sta .

But what is the di erence between modifying the sta context by u sing\with and modifying
the stencils of the clef and the time signature with\override , or in this case\omit ? The main
di erence is that changes made in a\with clause are made at the time the context is created,
and remain in force as thedefault values for the duration of that context, whereas \set or
\override commands embedded in the music are dynamic { they make changes syndmized
with a particular point in the music. If changes are unset or revertedusing \unset or \revert
they return to their default values, which will be the ones set in the \with clause, or if none
have been set there, the normal default values.

Some context properties can be modi ed only in\with clauses. These are those properties
which cannot sensibly be changed after the context has been createdlignAboveContext and
its partner, alignBelowContext , are two such properties { once the sta has been created its
alignment is decided and it would make no sense to try to change it later

The default values of layout object properties can also be set inwith clauses. Simply use
the normal \override command leaving out the context name, since this is unambiguously
de ned as the context which the \with clause is modifying. If fact, an error will be generated
if a context is speci ed in this location.

So we could replace the example above with

\ new Staff ="main" {
\relative {
r4 g8 gcd4 c8 d |
e4 r8
<<
{f8cc}
\ new Staff \with {
alignAboveContext = "main"
% Dont print clefs in this staff
\override Clef.stencil = ##f
% Dont print time signatures in this staff
\override TimeSignature . stencil = ##f
}
{f8 fc}
>>
r4 |
}
}

Chapter 5: Tweaking output 113

i
~a.gphhhhe Bppe

B H———H
I ===

| |-

It turns out that we can also employ the shorthands \hide and \omit for setting the
transparent property and clearing the stencil here, leading to the result

\ new Staff ="main" {
\relative {
r4 g8 g c4 c8 d |
ed 8
<<
{f8cc}
\ new Staff \with {
alignAboveContext = "main"
% Dont print clefs in this staff
\omit Clef
% Dont print time signatures in this staff
\omit TimeSignature
}
{f8 fc}
>>
r4 |
}
}

| |-

|
|

Finally we come to changing the size of layout objects.

Some layout objects are created as glyphs selected from a typeface forfthese include note
heads, accidentals, markup, clefs, time signatures, dynamics andfigs. Their size is changed
by modifying the font-size property, as we shall shortly see. Other layout objects such as
slurs and ties { in general, spanner objects { are drawn individually so there is nofont-size
associated with them. These objects generally derive their sizeadm the objects to which they
are attached, so usually there is no need to change their size manuall\&till other properties
such as the length of stems and bar lines, thickness of beams and othendis, and the separation
of sta lines all need to be modi ed in special ways.

Returning to the ossia example, let us rst change the font-size. V& can do this in two ways.
We can either change the size of the fonts of each object type, likloteHead with commands
like

\override NoteHead.font-size = #-2

or we can change the size of all fonts by setting a special propert§pntSize , using\set , or
by including it in a \with clause (but without the \set).

\set fontSize = #-2

Chapter 5: Tweaking output 114

Both of these statements would cause the font size to be reduced by 2eps from its previous
value, where each step reduces or increases the size by approximgt&2%.

Let's try it in our ossia example:
\ new Staff ="main" {

\relative {
r4 g8 gcd c8 d |
e4 r8
<<
{f8 cc}
\new Staff \with {
alignAboveContext = "main"
\omit Clef

\omit TimeSignature
% Reduce all font sizes by ~24%
fontSize = #-2
}
{f8 fc}
>>
r4 |
}
}

|-

This is still not quite right. The note heads and ags are smaller, but the stems are too long
in proportion and the sta lines are spaced too widely apart. These needo be scaled down in
proportion to the font reduction. The next sub-section discusses bw this is done.

5.3.3 Length and thickness of objects

Distances and lengths in LilyPond are generally measured in sta -spaceshe distance between
adjacent lines in the sta, (or occasionally half sta spaces) while mostthickness properties
are measured in units of an internal property calledline-thickness. For example, by default,
the lines of hairpins are given a thickness of 1 unit ofine-thickness , while the thickness
of a note stem is 1.3. Note, though, that some thickness properties are dimnt; for example,
the thickness of beams is controlled by the value of thebeam-thickness property, which is
measured in sta -spaces.

So how are lengths to be scaled in proportion to the font size? This candodone with the help
of a special function calledmagstep provided for exactly this purpose. It takes one argument,
the change in font size (#-2 in the example above) and returns a scalig factor suitable for
reducing other objects in proportion. It is used like this:

\ new Staff ="main" {

\relative {
r4 g8 g c4 c8 d |
e4 r8
<<

{f8 c c}

Chapter 5: Tweaking output 115

\new Staff \with {
alignAboveContext = "main"
\omit Clef
\ omit TimeSignature
fontSize = #-2
% Reduce stem length and line spacing to match
\override StaffSymbol . staff-space = #(magstep -2)
}
{f8 fc}
>>
r4 |
}
}

| |-

Since the length of stems and many other length-related properties aralways calculated relative
to the value of the staff-space property these are automatically scaled down in length too.
Note that this a ects only the vertical scale of the ossia { the horizontal scale is determined by
the layout of the main music in order to remain synchronized with it, so it is not a ected by
any of these changes in size. Of course, if the scale of all the main musiere changed in this
way then the horizontal spacing would be a ected. This is discussedater in the layout section.

This, then, completes the creation of an ossia. The sizes and lengths ofl ather objects may
be modi ed in analogous ways.

For small changes in scale, as in the example above, the thickness of tharious drawn lines
such as bar lines, beams, hairpins, slurs, etc does not usually reige global adjustment. If
the thickness of any particular layout object needs to be adjusted tlis can be best achieved by
overriding its thickness property. An example of changing the thickness of slurs was shown
above in Section 5.2.1 [Properties of layout objects], page 99. The thickess of all drawn objects
(i.e., those not produced from a font) may be changed in the same way.

5.4 Placement of objects

5.4.1 Automatic behavior

There are some objects in musical notation that belong to the sta and there are other objects
that should be placed outside the sta. These are called within-sta objects and outside-sta
objects respectively.

Within-sta objects are those that are located on the sta { note heads, stems, accidentals,
etc. The positions of these are usually xed by the music itself { they are vertically positioned
on speci ¢ lines of the sta or are tied to other objects that are so positioned. Collisions of note
heads, stems and accidentals in closely set chords are normally avoideditomatically. There
are commands and overrides which can modify this automatic behavior, ase shall shortly see.

Objects belonging outside the sta include things such as rehearsal arks, text and dynamic
markings. LilyPond's rule for the vertical placement of outside-sta objects is to place them as
close to the sta as possible but not so close that they collide with any ober object. LilyPond

Chapter 5: Tweaking output 116

uses theoutside-staff-priority property to determine the order in which the objects should
be placed, as follows.

First, LilyPond places all the within-sta objects. Then it sorts th e outside-sta objects
according to their outside-staff-priority . The outside-sta objects are taken one by one,
beginning with the object with the lowest outside-staff-priority , and placed so that they
do not collide with any objects that have already been placed. That is, fi two outside-sta
grobs are competing for the same space, the one with the lowautside-staff-priority will
be placed closer to the sta. If two objects have the sameoutside-staff-priority the one
encountered rst will be placed closer to the sta.

In the following example all the markup texts have the same priority (since it is not explicitly
set). Note that "Text3'is automatically positioned close to the sta again, nestling under “Text2'.

c 2MTextl"
c 2N Text2" |
c 2MText3"
c 2N Text4" |

Text2 Text4
A RaXtA G REXTR
N—NTN—N
| | | |

Staves are also positioned, by default, as closely together as possibkupject to a minimum
separation). If notes project a long way towards an adjacent sta they wil force the staves
further apart only if an overlap of the notation would otherwise occur. The following example
demonstrates this “nestling' of the notes on adjacent staves:

<<
\ new Staff {
\relative {c4 a, }
}
\new Staff {
\relative {c 4 a,}

}

>>

D

.
J
|

h

D

5.4.2 Within-sta objects

We have already seen how the commandwoiceXXX a ect the direction of slurs, ties, ngering

and everything else which depends on the direction of the stems {e2 Section 4.2.2 [Explicitly
instantiating voices], page 56. These commands are essential when wnitj polyphonic music to

permit interweaving melodic lines to be distinguished. But accasionally it may be necessary to
override this automatic behavior. This can be done for whole sections ofusic or even for an
individual note. The property which controls this behavior is the direction property of each
layout object. We rst explain what this does, and then introduce a number of ready-made

Chapter 5: Tweaking output 117

commands which avoid your having to code explicit overrides for te more common modi ca-
tions.

Some layout objects like slurs and ties curve, bend or point either p or down; others like
stems and ags also move to right or left when they point up or down. Thisis controlled
automatically when direction is set.

The direction property

The following example shows the default positioning of slurs in therst bar, with slurs starting
on high notes positioned above the notes and those starting on low notes pdsined below,
followed by a bar with both slurs forced down, a bar with both slurs forced up, and nally a bar
with both slurs reverted back to the default behavior.
a4(g)c (a)]
\ override Slur . direction
a4(g)c (a)]
\override Slur . direction = #UP
a4(g)c (a)|
\revert Slur . direction
a4(g)c (a)]

#DOWN

. . A o
72 D N Y

L) | LI) B) DL] I |
H—+ b — 11—
I I I I
T T T T

| -
A
L i

| -

| |
| N N Y

|
11 1IN
T

=
i
=

i

Lo e |
L. Ih
H

~

3
=

Here we have used the constant®OWahd UR These have the valuesl and +1 respectively,
and these numerical values may be used instead. The valug may also be used in some cases.
It is simply treated as meaning UPfor slurs, but for some objects it means "center'. There is a
constant, CENTERhich has the valueO.

However, these explicit overrides are not usually used, as there arsimpler equivalent pre-
de ned commands available. Here is a table of the commonest. The meaningf each is stated
where it is not obvious.

Down/Left Up/Right Revert E ect

\arpeggioArrowDown\arpeggioArrowUp\arpeggioNormal Arrow is at bottom, at top, or
no arrow

\dotsDown \dotsUp \dotsNeutral Direction of movement to avoid
sta lines

\dynamicDown \dynamicUp \dynamicNeutral

\phrasingSlurDown \phrasingSlurUp \phrasingSlurNeutral Note: distinct from slur
commands

\slurDown \slurUp \slurNeutral

\stemDown \stemUp \stemNeutral

\textSpannerDown \textSpannerUp \textSpannerNeutral Text entered as spanner is be-
low/above sta

\tieDown \tieUp \tieNeutral

\tupletDown \tupletUp \tupletNeutral Tuplets are below/above notes

The neutral/normal variants of these commands are implemented usindrevert and these
may not be preceded bylonce. If you wish to limit the e ect of the other commands (which
are implemented using\override) to a single timestep, you can precede them withhonce like
you would do with explicit overrides.

Chapter 5: Tweaking output 118

Or, if just a single layout object needs to be forced up or down, the dection indicators, *
or _, may be used:

a4(g)c (a)
a4ah"(g)c_(a)|
A [~
“H‘.H,"‘",’f‘. I"'L!!!’f‘!

Fingering
The placement of ngering on single notes can also be controlled by tha&lirection property,
but changing direction has no e ect on chords. As we shall see, there are special commands
which allow the ngering of individual notes of chords to be controlled, with the ngering being
placed above, below, to the left or to the right of each note.

First, here's the e ect of direction on the ngering attached to single notes. The rst bar
shows the default behavior, and the following two bars shows the esct of specifyingDOWB&Nd
UP

\relative {
c 4-5 a3 f-1 ¢c-5 |
\override Fingering . direction = #DOWN
c4-5 a-3 f-1 ¢-5 |
\override Fingering . direction = #UP
c4-5 a-3 f-1 c¢-5 |
}
a h i/L | | | h itL 3 | | h itL | | |
Hhd P R, H

However, overriding the direction property is not the easiest way of manually setting the
ngering above or below the notes; using_ or » instead of - before the ngering number is
usually preferable. Here is the previous example using this mettth

\relative {

c 45 a3 f1c-5|

c4d5a3f 1c 5|

c4n5 ar3 A1 e 5|

}
A I | N Ih .l | Y
A 11 I | 11 11 I | 11 | 2 11

A A N A e

The direction property is ignored for chords, but the directional pre xes, _and * do work.
By default, the ngering is automatically placed both above and below the notes of a chord, as
shown:

\relative {
<c -5 g-3>4
<c-5 g-3 e-2>4
<c-5 g-3 e-2 c-1>4
}

Chapter 5: Tweaking output 119

D

but this may be overridden to manually force all or any of the individual ngering numbers
above or below:
\relative {
<c -5 g-3 e-2 c-1>4
<c"5g3e22c 1>
<chb gh"3 en2 c_1>4
}

D

Even greater control over the placement of ngering of the individual notes in a chord is
possible by using the\set fingeringOrientations command. The format of this command
is:

\set fingeringOrientations = # ([up] [left/right] [down])
\set is used becausdingeringOrientations is a property of the Voice context, created and
used by the New_fingering_engraver .

The property may be set to a list of one to three values. It controls wlether ngerings may
be placed above (ifup appears in the list), below (if downappears), to the left (if left appears,
or to the right (if right appears). Conversely, if a location is not listed, no ngering is plaed
there. LilyPond takes these constraints and works out the best placend for the ngering of
the notes of the following chords. Note thatleft and right are mutually exclusive { ngering
may be placed only on one side or the other, not both.

Note: To control the placement of the ngering of a single note using
this command it is necessary to write it as a single note chord by placig
angle brackets round it.

Here are a few examples:

\relative {
\ set fingeringOrientations = # (left)
<f-2>4
<c-1 e-2 g-3 b-5>4
\set fingeringOrientations = # (left)

<f-2>4

<c-1 e-2 g-3 b-5>4 |
\set fingeringOrientations
<f-2>4

<c-1 e-2 g-3 b-5>4

\set fingeringOrientations
<f-2>4

(up left down)

(up left)

Chapter 5: Tweaking output 120

<c-1 e-2 g-3 b-5>4 |

\set fingeringOrientations = # (right)
<f-2>4
<c-1 e-2 g-3 b-5>4
}
T AR e s Ee

If the ngering seems a little crowded the font-size could be reduced. The default value can
be seen from theFingering object in the IR to be -5, so let's try -7:

\relative {
\override Fingering . font-size = #-7
\set fingeringOrientations = # (left)
<f-2>4

<c-1 e-2 g-3 b-5>4

\set fingeringOrientations
<f-2>4

<c-1 e-2 g-3 b-5>4 |
\set fingeringOrientations
<f-2>4

<c-1 e-2 g-3 b-5>4

\set fingeringOrientations
<f-2>4

<c-1 e-2 g-3 b-5>4 |

\ set fingeringOrientations
<f-2>4

<c-1 e-2 g-3 b-5>4

(left)

(up left down)

(up left)

(right)

Lo
A

o o o

Ih | 2. Ih

1 1 1
1 1 1

-
-

5.4.3 Outside-sta objects

Outside-sta objects are automatically placed to avoid collisions. Theae are several ways to
override the automatic placement if the positioning is not optimum.

The outside-staff-priority property

Objects with the lower value of the outside-staff-priority property are placed nearer to
the sta, and other outside-sta objects are then raised as far as necessarto avoid collisions.
The outside-staff-priority is de ned in the grob-interface and so is a property of all
layout objects. By default it is set to #f for all within-sta objects, and to a numerical value

appropriate to each outside-sta object when the object is created. Se Section \Default values
for outside-sta -priority” in Notation Referencefor an exhaustive table.

Note the unusual names for some of the objects: spanner objects are automadity created
to control the vertical positioning of grobs which (might) start and end at di erent musical
moments, so changing theoutside-staff-priority of the underlying grob will have no e ect.
For example, changingoutside-staff-priority of the Hairpin object will have no e ect on the

Chapter 5: Tweaking output 121

vertical positioning of hairpins { you must change outside-staff-priority of the associated
DynamicLineSpanner object instead. This override must be placed at the start of the spaner,
which might include several linked hairpins and dynamics.

Here is an example showing the default placement of some of these.

% Set details for later Text Spanner

\override TextSpanner. bound-details .left .text
= \markup { \ small \bold Slower }

% Place dynamics above staff

\ dynamicUp

% Start Ottava Bracket

\ottava #1

c 4 \ startTextSpan

% Add Dynamic Text and hairpin

c A\pp\<

c4

% Add Text Script

Cc 4"Text |

cdc

% Add Dynamic Text and terminate hairpin

c 4\ff ¢ \ stopTextSpan |

% Stop Ottava Bracket

\ottava #0
c4dccc |
Text
_______________________ ;
Slower - _ _ _ _ _
o yy ————

1 [] 1 1
A andnr 1 _ 1o in 1w i in

This example also shows how to create Text Spanners { text with extnder lines above a sec-
tion of music. The spanner extends from thé\startTextSpan command to the \stopTextSpan
command, and the format of the text is de ned by the \override TextSpanner command. For
more details see Section \Text spanners" inNotation Reference

It also shows how ottava brackets are created.

If the default values of outside-staff-priority do not give you the placing you want, the
priority of any of the objects may be overridden. Suppose we would lig the ottava bracket to
be placed below the text spanner in the example above. All we need tdo is to look up the
priority of OttavaBracket in the table at Section \Default values for outside-sta -priority” in
Notation Referenceor in the IR, and reduce it to a value lower than that of a TextSpanner,
remembering that OttavaBracket is created in the Staff context:

% Set details for later Text Spanner

\override TextSpanner. bound-details .left .text
= \markup { \ small \bold Slower }

% Place dynamics above staff

\ dynamicUp
% Place following Ottava Bracket below Text Spanners
\once \override Staff . OttavaBracket . outside-staff-priority = #340

% Start Ottava Bracket
\ottava #1

Chapter 5: Tweaking output 122

c 4 \ startTextSpan

% Add Dynamic Text

c 4\pp

% Add Dynamic Line Spanner
c 4\<

% Add Text Script

c 4"\Text |

c4dc

% Add Dynamic Text

c 4\ff ¢ \ stopTextSpan |
% Stop Ottava Bracket

\ ottava #O0
c4dccc |
Text
Slower = _ _ _ _ _
R 1
gy, ———
a

N - | 1 L1 [N - |
AN I anr i _yunan i aw in

Note that some of these objects, in particular bar numbers, metronome mark and rehearsal
marks, live by default in the Score context, so be sure to use the correct context when these
are being overriden.

Slurs by default are classed as within-sta objects, but they often agpear above the sta if
the notes to which they are attached are high on the sta. This can push ouside-sta objects
such as articulations too high, as the slur will be placed rst. The avoid-slur property of the
articulation can be set to inside to bring the articulation inside the slur, but the avoid-slur
property is e ective only if the outside-staff-priority is also set to#f. Alternatively, the
outside-staff-priority of the slur can be set to a numerical value to cause it to be placed
along with other outside-sta objects according to that value. Here's an example showing the
e ect of the two methods:

\relative c {

c4(c™ markup { \ tiny \sharp } d4.) c8 |

c4(
\once \override TextScript .avoid-slur = #inside
\once \override TextScript . outside-staff-priority = ##f
cAM markup { \ tiny \sharp } d4.) c8 |

\once \override Slur . outside-staff-priority = #500
c4(c™ markup { \ tiny \sharp } d4.) c8 |

Changing the outside-staff-priority can also be used to control the vertical placement
of individual objects, although the results may not always be desiral®. Suppose we would
like \Text3" to be placed above \Text4" in the example under Automatic be havior, above (see
Section 5.4.1 [Automatic behavior], page 115). All we need to do is to look uphe priority of

Chapter 5: Tweaking output 123

TextScript in the IR or in the tables above, and increase the priority of \Text3" to a higher
value:

c 2MTextl"
c 2MText2" |
\once \override TextScript . outside-staff-priority = #500
c 2M'Text3"
c 2M'Textd" |
Text3
Text2
A RXtA g A4
S NCNFNEN

This certainly lifts \Text3" above \Text4" but it also lifts it above \T ext2", and \Text4"
now drops down. Perhaps this is not so good. What we would really liked do is to position all
the annotation at the same distance above the sta. To do this, we clearlywill need to space the
notes out horizontally to make more room for the text. This is done using he textLengthOn

command.

The \textLengthOn command

By default, text produced by markup takes up no horizontal space as far asaying out the music
is concerned. TheltextLengthOn command reverses this behavior, causing the notes to be
spaced out as far as is necessary to accommaodate the text:

\textLengthOn % Cause notes to space out to accommodate text
c 2MTextl"

c 2MText2" |

c 2"M'Text3"

c 2M'Text4" |

o ROXtL Rext2 Text3 Rextd
NN TN N

| | | |

| | | |

I I I I

The command to revert to the default behavior is \textLengthOff . Alternatively, \once
may be used with\textLengthOn if the e ect is to be limited to just a single musical moment.
The corresponding spacing behavior for rehearsal marks and tempo incktions is independently
controlled with the commands \markLengthOn and \markLengthOff .

Markup text will also avoid notes which project above the sta. If th is is not desired, the
automatic displacement upwards may be turned o by setting the priority to #f. Here's an
example to show how markup text interacts with such notes.

\relative {
% This markup is short enough to fit without collision
c 2MTex" ¢ |
R1 |

% This is too long to fit, so it is displaced upwards
C,,2N'Text" ¢ |
R1 |

% Turn off collision avoidance

Chapter 5: Tweaking output 124

\once \override TextScript . outside-staff-priority = ##f
c,2N'Long Text " ¢ |
R1 |
% Turn off collision avoidance
\once \override TextScript . outside-staff-priority = ##f
\ textLengthOn % and turn on textLengthOn
c,,2N'Long Text " % Spaces at end are honored
c 2|
}
N Text [\ N
. qexE NS aqndText
<N N N\
| | |
I I I
7 gng Text E
A

Dynamics placement

Dynamic markings will normally be positioned beneath the sta, but may be positioned above
with the \dynamicUp command. They will be positioned vertically relative to the note to which
they are attached, and will oat below (or above) all within-sta objects such as phrasing slurs
and bar numbers. This can give quite acceptable results, as this exanig shows:

\relative {
\clef "bass"
\ key aes \major
\time 9/8
\ dynamicUp
bes4.~\i< \ (bes4 bes8 desd\fi\> c16 bes\! |
ees,2.~\)\mf ees4 r8 |

BB hT

h
I I == | I | —] 1
: l
I
|

O

However, if the notes and attached dynamics are close together the automatiplacement will
avoid collisions by displacing later dynamic markings further away, but this may not be the
optimum placement, as this rather arti cial example shows:

\ dynamicUp
\relative { a4\f b\mf a\mp b\p }

7'

M|
2}
I
+H
| |
| |

+

a e
A I
II!

Chapter 5: Tweaking output 125

Should a similar situation arise in “real' music, it may be preferabé to space out the notes a
little further, so the dynamic markings can all t at the same vertical distance from the sta.
We were able to do this for markup text by using the \textLengthOn command, but there is
no equivalent command for dynamic marks. So we shall have to work out howo do this using
\override commands.

Grob sizing

First we must learn how grobs are sized. All grobs have a reference paide ned within them
which is used to position them relative to their parent object. This point in the grob is then
positioned at a horizontal distance, X-offset , and at a vertical distance, Y-offset , from its
parent. The horizontal extent of the object is given by a pair of numbers X-extent , which say
where the left and right edges are relative to the reference point. Tie vertical extent is similarly
de ned by a pair of numbers, Y-extent . These are properties of all grobs which support the
grob-interface

By default, outside-sta objects are given a width of zero so that they may overlap in
the horizontal direction. This is done by the trick of making the leftmost extent in nity
and the rightmost extent minus in nity by setting the extra-spacing-width to (+inf.0 .
-inf.0) . To ensure they do not overlap in the horizontal direction we must owerride this value
of extra-spacing-width ~ to give them a little extra spacing. The units are the space between
two sta lines, so moving the left edge half a unit to the left and the right edge half a unit to
the right should do it:

\override DynamicText.extra-spacing-width = # (-0.5 . 0.5)
Let's see if this works in our previous example:

\ dynamicUp

% Extend width by 1 staff space

\override DynamicText. extra-spacing-width = #(-0.5. 0.5
\relative { a4\f b\mf a\mp b\p }

:-\

D
-

=2

This looks better, but maybe we would prefer the dynamic marks to ke aligned along the
same baseline rather than going up and down with the notes. The propertyto do this is
staff-padding which is covered in the section on collisions (see Section 5.6 [Callons of ob-
jects], page 129).

5.5 Vertical spacing

As a rule, LilyPond's vertical spacing of musical objects is pretty goa. Let's see how it does
with a simple song, with 2 voices and piano accompaniment:

Chapter 5: Tweaking output 126

D
B
raf

NN
IN— NN

|
|
|
HN are somelyrics

|

N

] bl IN
1

N

D
"
z

D
<
2

—a NN
] I\l!\

There's nothing wrong with the default vertical spacing. However, kt's assume that you're
working with a publisher with some speci ¢ requirements for vetical spacing of staves and lyrics:
they want the lyrics spaced away from any notes, they want the piano acempaniment spaced
away from the vocal line and they want the two piano staves pushed togéer tightly. Let's start
with the lyrics.

Lyrics sit within a system, and therefore the commands to space thenare found in Section
\Flexible vertical spacing within systems" in Notation Reference It tells us that lyrics are
non-staff lines and therefore the command to change their spacing will refer to thenonstaff
property. Spacing them away from the sta to which they relate (the top line) will use the
relatedstaff property. Spacing them from the lower line will use theunrelatedstaff prop-
erty. The vocal parts are part of a VerticalAxisGroup , so we need to adjust its properties.
Let's try it and see if it works.

<<
\ new ChoirStaff
<<
\ new Staff {
\ new Voice = "music" {
b2c c c

}
}

\new Lyrics \with {
\ override VerticalAxisGroup
nonstaff-relatedstaff-spacing . padding = #5
\override VerticalAxisGroup
nonstaff-unrelatedstaff-spacing . padding = #5
}
\lyricsto "music" {
Here are some lyrics
}
\new Staff {
\clef bass e2 fec

}

>>

\ new PianoStaff
<<

Chapter 5: Tweaking output 127

\ new Staff {
g2c c a
}
\ new Staff {
\clef bass e2 f c e
}
>>
>>
I [a] Nl
i
! NN AV
[AN 1IN AN

Here are somelyrics

n L NI |
A 1N | AN | N1
I — N
)] | |
|
A N N NI N
- NN
| | |
I I
n l | | [N\
A | AN | 1N N1 | AN |
—— N——
| | |

I ! I

Well - yes it does, but perhaps too well. When we set thepadding to 5, LilyPond adds 5
sta spaces to the distance between objects, which is too much forsihere. We'll use 2.

Next, let's move the piano music away from the vocal parts. The vocamusic is aChoirStaff |,

so we need to increase the spacing between that group of staves and tpeno sta below. We'll
do this by changing the basic-distance of the StaffGrouper 's staffgroup-staff-spacing

<<
\ new ChoirStaff \with {
\override StaffGrouper .

staffgroup-staff-spacing . basic-distance = #15
}
<<
\ new Staff {
\ new Voice = "music" {
b2c c ¢
}
}

\new Lyrics \with {
\override VerticalAxisGroup

nonstaff-relatedstaff-spacing . padding = #2
\ override VerticalAxisGroup
nonstaff-unrelatedstaff-spacing . padding = #2

}
\lyricsto "music" {
Here are some lyrics

Chapter 5: Tweaking output 128

}
\new Staff {
\clef bass e2 fec
}
>>
\ new PianoStaff
<<
\ new Staff {
g2c c a
}
\new Staff {
\clef bass e2 f c e
}
>>
>>
I La N
—N
I NN N
| AN 1N AN
Here are somelyrics
2= NN |
A N I\l N1
] . !l\‘l
—H
a N N NI N
A | I\‘I !\‘I
I | |
I I
n l | | [\
A T\l N N | | A\ |
| ~ i ”\‘I I. ~
| | |

Excellent. Now just for the last requirement to make the piano stawes closer together. To
do this, we again alter the properties of theStaffGrouper , but this time we're going to reduce
both the basic-distance and the padding. We can do this as shown below.

<<
\ new ChoirStaff \with {
\override StaffGrouper .

staffgroup-staff-spacing . basic-distance = #15
}
<<
\ new Staff {
\ new Voice = "music" {
b2c c ¢
}
}

\ new Lyrics \with {
\ override VerticalAxisGroup
nonstaff-relatedstaff-spacing . padding = #2
\override VerticalAxisGroup

Chapter 5: Tweaking output

nonstaff-unrelatedstaff-spacing
}
\lyricsto "music" {
Here are some lyrics
}
\ new Staff {
\clef bass e2 fec

}

>>
\ new PianoStaff \with {

. padding = #2

\override StaffGrouper . staff-staff-spacing = #(
(basic-distance . 0)
(padding . 0))

}

<<
\ new Staff {
g2c c a

}
\ new Staff {

\clef bass e2 f c e

N 1
I\l I\l
AN AN

Heb
P-4

Here are somelyrics

= NN

A\
T

|
N
N
1

D
.

Z
>

D
)l
7w

¢ |

a N | |
A I\ N N
b | I'N
I [t
| | |
| ! |

129

That's put them really close together { but it's what the publisher w anted. They could be

moved further apart by altering the padding or basic-distance

if wanted.

There are many ways of altering vertical spacing. A key point to rememler is that the
spacing between objects in &taffGroup (like GrandStaff or PianoStaff groups) is controlled

by the spacing variables of the StaffGrouper .

and Staff) is controlled by the variables of the VerticalAxisGroup
vertical spacing paper variables" in Notation Reference and Section \Flexible vertical spacing
within systems" in Notation Referencefor more details.

5.6 Collisions of objects

Spacing from ungrouped staves (likeLyrics
. See the Section \Flexible

Chapter 5: Tweaking output 130

5.6.1 Moving objects

This may come as a surprise, but LilyPond is not perfect. Some notation lements can overlap.
This is unfortunate, but in fact rather rare. Usually the need to move objects is for clarity or
aesthetic reasons { they would look better with a little more or a litt le less space around them.

There are three main approaches to resolving overlapping notation. Thg should be consid-
ered in the following order:

1. The direction of one of the overlapping objects may be changed using the prede ned
commands listed above for within-sta objects (see Section 5.4.2 [Whin-sta objects],
page 116). Stems, slurs, beams, ties, dynamics, text and tuplets maye repositioned easily
in this way. The limitation is that you have a choice of only two positions, and neither may
be suitable.

2. The object properties, which LilyPond uses when positioning layout objects, may be mod-
i ed using \override . The advantages of making changes to this type of property are (a)
that some other objects will be moved automatically if necessary to makegoom and (b)
the single override can apply to all instances of the same type of objectSuch properties
include:

direction

This has already been covered in some detail { see Section 5.4.2 [Withsta objects],
page 116.

padding, right-padding , staff-padding

As an object is being positioned the value of itgpadding property speci es the gap that
must be left between itself and the nearest edge of the object againsthich it is being
positioned. Note that it is the padding value of the object being placedthat is used;

the padding value of the object which is already placed is ignored. Gaps speci ed by
padding can be applied to all objects which support theside-position-interface

Instead of padding, the placement of groups of accidentals is controlled by
right-padding . This property is to be found in the AccidentalPlacement object
which, note, lives in the Sta context. In the typesetting process the note heads are
typeset rst and then the accidentals, if any, are added to the left of the note heads
using the right-padding property to determine the separation from the note heads
and between individual accidentals. So only theright-padding property of the
AccidentalPlacement object has any e ect on the placement of the accidentals.

The staff-padding property is closely related to the padding property: padding
controls the minimum amount of space between any object which supportsthe
side-position-interface and the nearest other object (generally the note or the
sta lines); staff-padding applies only to those objects which are always set outside
the sta { it controls the minimum distance from the sta to the outsid e-sta object.
Note that staff-padding has no e ect on objects that are positioned relative to the
note rather than the sta, even though it may be overridden without er ror for such
objects { it is simply ignored.

To discover which padding property is required for the object you vish to reposition,
you need to return to the IR and look up the object's properties. Be avare that the
padding properties might not be located in the obvious object, so lookn objects that
appear to be related.

All padding values are measured in sta spaces. For most objects, this vale is set by
default to be around 1.0 or less (it varies with each object). It may be oerridden if a
larger (or smaller) gap is required.

self-alignment-X

Chapter 5: Tweaking output 131

This property can be used to align the object to the left, to the right, or to center it with
respect to the parent object's reference point. It may be used wh all objects which
support the self-alignment-interface . In general these are objects that contain
text. The values are LEFT RIGHTor CENTERAlternatively, a numerical value between
-1 and +1 may be speci ed, where-1 is left-aligned, +1 is right-aligned, and numbers
in between move the text progressively from left-aligned to rightaligned. Numerical
values greater than1 may be speci ed to move the text even further to the left, or
less than-1 to move the text even further to the right. A change of 1 in the value
corresponds to a movement of half the text's length.

extra-spacing-width

This property is available for all objects which support the item-interface . It takes
two numbers, the rst is added to the leftmost extent and the secord is added to the
rightmost extent. Negative numbers move the edge to the left, positve to the right, so
to widen an object the rst number must be negative, the second positve. Note that
not all objects honor both numbers. For example, theAccidental object only takes
notice of the rst (left edge) number.

staff-position

staff-position is a property of the staff-symbol-referencer-interface , Which is
supported by objects which are positioned relative to the sta. It speci es the vertical
position of the object relative to the center line of the sta in half sta-spaces. It is
useful in resolving collisions between layout objects like multimeasure rests, ties and
notes in di erent voices.

horizontal-shift

Within a voice, all the notes occuring at the same musical moment are groped into a
note column, and aNoteColumnobject is created to control the horizontal positioning
of that group of notes (see \Note columns" in Section 4.2.2 [Explicitly instantiating
voices], page 56). lfand only if two or more note columns within a single Sta context,
both with stems in the same direction, occur at the same musical momenthe values
of their horizontal-shift properties are used to rank them and the columns in the
higher ranks are progessively o set to avoid collisions of the noteheadsThis property
is set by the \voiceXXX commands and may be overridden directly with an\override
command or, more usually, by the\shiftOn commands. Note that this property is
used torank the note columns for o -setting - it does not specify the magnitude of the
o set, which is progressively increased in steps based on the note ad's width for each
rank. The steps are usually of half a note head's width, but may be a fulnote head's
width when a closely spaced group of notes is involved.

force-hshift

The force-hshift property is a property of a NoteColumn (actually of the
note-column-interface). Changing it permits a note column to be moved in
situations where the note columns overlap. Note that it has no e ect on noe columns
that do not overlap. It is specied in units appropriate to a note column, viz. the
note head width of the rst voice note. It should be used in complex siuations
where the normal \shiftOn commands (see Section 4.2.2 [Explicitly instantiating
voices], page 56) do not resolve the note con ict satisfactorily. It is peferable to the
extra-offset property for this purpose as there is no need to work out the distance
in sta -spaces, and moving the notes into or out of aNoteColumna ects other actions
such as merging note heads.

3. Finally, when all else fails, objects may be manually repositionedelative to the sta center
line vertically, or by displacing them by any distance to a new posiion. The disadvantages
are that the correct values for the repositioning have to be worked out,often by trial and

Chapter 5: Tweaking output 132

error, for every object individually, and, because the movement isdone after LilyPond has
placed all other objects, the user is responsible for avoiding any cadiions that might ensue.
But the main di culty with this approach is that the repositioning val ues may need to be
reworked if the music is later modi ed. The properties that can be used for this type of
manual repositioning are:

extra-offset
This property applies to any layout object supporting the grob-interface . It
takes a pair of numbers which specify the extra displacement in tb horizontal
and vertical directions. Negative numbers move the object to the lef or down.
The units are sta -spaces. The extra displacement is made after theypeset-
ting of objects is nished, so an object may be repositioned anywheravithout
a ecting anything else.

positions

This is most useful for manually adjusting the slope and height of beamsslurs,
and tuplets. It takes a pair of numbers giving the position of the left and right
ends of the beam, slur, etc., relative to the center line of the sta. Units are
sta -spaces. Note, though, that slurs and phrasing slurs cannot be reposbned
by arbitrarily large amounts. LilyPond rst generates a list of possible positions
for the slur and by default nds the slur that \looks best". If the positions
property has been overridden the slur that is closest to the requ&ed positions
is selected from the list.

A patrticular object may not have all of these properties. It is necesary to go to the IR to
look up which properties are available for the object in question.

Here is a list of the objects which are most likely to be involved in cdisions, together with
the name of the object which should be looked up in the IR in order to décover which properties
should be used to move them.

Object type Object name
Articulations Script

Beams Beam
Dynamics (vertically) DynamicLineSpanner
Dynamics (horizontally) DynamicText
Fingerings Fingering
Rehearsal / Text marks RehearsalMark
Slurs Slur

Text e.g. Mtext" TextScript

Ties Tie

Tuplets TupletBracket

5.6.2 Fixing overlapping notation
Let's now see how the properties in the previous section can help teesolve overlapping notation.

The padding property

The padding property can be set to increase (or decrease) the distance betweepnsbols that
are printed above or below notes.

c 2\ fermata
\override Script . padding = #3
b2\ fermata

Chapter 5: Tweaking output 133

A"

Lo
A

N3 I
NN
AN

% This will not work, see below

\override MetronomeMarkpadding = #3
\tempo 4 = 120

cl |

% This works

\ override Score. MetronomeMarkpadding = #3

\tempo 4 = 80
dil |
hz 80
B 126

Note in the second example how important it is to gure out what context handles a certain
object. Since the MetronomeMarkobject is handled in the Score context, property changes in
the Voice context will not be noticed. For more details, see Section \Modifying properties" in
Notation Reference

If the padding property of an object is increased when that object is in a stack of objec
being positioned according to theiroutside-staff-priority , then that object and all objects
outside it are moved.

The right-padding property
The right-padding property a ects the spacing between the accidental and the note to wich
it applies. It is not often required, but the default spacing may be wrong for certain special
accidental glyphs or combination of glyphs used in some microtonal music. fiese have to be
entered by overriding the accidental stencil with a markup contaning the desired symbol(s), like
this:

sesquisharp = \markup { \ sesquisharp }

\relative {
c4
% This prints a sesquisharp but the spacing is too small
\once \override Accidental .stencil = #y:text-interface::print
\once \override Accidental .text = #sesquisharp
cis4 ¢
% This improves the spacing
\once \override Score. AccidentalPlacement .right-padding = #0.6
\once \override Accidental .stencil = #y:text-interface::print
\once \override Accidental .text = #sesquisharp
cis4d |

}

Chapter 5: Tweaking output 134

This necessarily uses an override for the accidental stencil whicwill not be covered until later.
The stencil type must be a procedure, here changed to print the entents of the text property
of Accidental , which itself is set to be a sesquisharp sign. This sign is then nved further away
from the note head by overriding right-padding

The staff-padding property

staff-padding can be used to align objects such as dynamics along a baseline at a xed tisce
from the sta, when no other notation forces them further from the sta. It is not a property
of DynamicText but of DynamicLineSpanner. This is because the baseline should apply equally
to all dynamics, including those created as extended spanners. So this the way to align the
dynamic marks in the example taken from the previous section:

\override DynamicLineSpanner. staff-padding = #3
\relative { a4\f b\mf a\p b\mp }

The self-alignment-X property

The following example shows how to adjust the position of a string ngering object relative to
a note's stem by aligning the right edge with the reference point of tke parent note:

\ voiceOne

<a\ 2>

\once \override StringNumber. self-alignment-X = #RIGHT

<a\ 2>

®
%

Lo
A

The staff-position property

Multimeasure rests in one voice can collide with notes in another. Sice these rests are typeset
centered between the bar lines, it would require signi cant e ort for LilyPond to gure out
which other notes might collide with it, since all the current collision handling between notes
and between notes and rests is done only for notes and rests that occur até¢ same time. Here's
an example of a collision of this type:

<< \relatve {c4ccc}\{R1l} >

Lo
A

[] [| [] []
N A E L I

The best solution here is to move the multimeasure rest down, sice the rest is in voice two.

The default in \voiceTwo (i.e., in the second voice of a<<{...} \ {...}>> construct) is that
staff-position is set to -6 for MultiMeasureRest, so we need to move it, say, fouhalf-sta
spaces down to-10.

<<

\relative {c4ccc}

Chapter 5: Tweaking output 135

\\
\override MultiMeasureRest . staff-position = #-10
{R1}

>>

Lo
A

1 1 1
A0 J.J_I= L i}

This is better than using, for example, extra-offset , because the ledger line above the rest
is inserted automatically.

See Section \Engraving ties manually” in Notation Referencefor the di erence between exact
and inexact values.

The extra-offset property

The extra-offset property provides complete control over the positioning of an object th
horizontally and vertically.

In the following example, the second ngering is moved a little tothe left, and 1.8 sta space
downwards:
f4-5
\once \override Fingering . extra-offset = #(-0.3 . -1.8)
f4-5

[a
A | |

=

The positions property
The positions property allows the vertical position and hence the slope of tupletsslurs, phras-
ing slurs and beams to be controlled manually.
Here's an example in which the phrasing slur and slur collide:
\relative { a8\ ((alé) al\) }

Lo
A

11
— =
One possibility would be to move the two ends of the phrasing slur f[gher. We can try setting

the left end to 2.5 sta -spaces above the center line and the right ed to 4.5 above, and LilyPond
will select the phrasing slur from the candidates it has found with ts end points closest to these:

\once \override PhrasingSlur . positions = # (2.5 . 4.5)
a8\ ((ale)a \)

H
This is an improvement, but why not lower the right end of the slur a little? If you try it
you'll nd it can't be done in this way. That's because there are no candidate slurs lower than

Chapter 5: Tweaking output 136

the one already selected, and in this case thpositions property has no e ect. However, ties,
slurs and phrasing slurscan be positioned and shaped very precisely when necessary. To learn
how to do this, see Section \Modifying ties and slurs" in Notation Reference

Here's a further example. We see that the beams collide with the tis:

{
\time 4/2
<<
\relative {cl~ 2. e8f}
\\
\relative {
e8eee
eeee
f2 g
}
>>
<<
\relative {cl~ 2. e8 f}
\\
\relative {
e8eee
eeee
f2 g
}
>>
}
+hhhhhhhhN N _RQRhRhhhAN N
o V1 [N 41] S S] | | o £ 88 B 3 41
'-._‘ | ¢] ! ! | 1.‘.-' |] '-._1 | ' 3 . . | i.‘l" | I LA

This can be resolved by manually moving both ends of the beam up from thie position at 1.81
sta -spaces below the center line to, say, 1:

{
\time 4/2
<<
\relatve {cl~ 2. e8f}
\\
\relative {
\override Beampositions = #(-1 . -1)
e8eee
eeee
f2 g
}
>>
<<
\relatve {cl~ 2. e8f}
\\
\relative {
e8eee
eeee
f2 g

Chapter 5: Tweaking output 137

\revert Beampositions

}
>>
}
. hhhhhhhhN N _RRRRRRRAN N
l-._lllllll!:?-.j_)lm!l!l-._lllllll!:i-.‘plmlll

Note that the override continues to apply in the second voice of the seand measure of eighth
notes, but not to any of the beams in the rst voice, even those in the laer second measure. As
soon as the override should no longer apply it should be reverted, as svn.

The force-hshift property

We can now see how to apply the nal corrections to the Chopin examplentroduced at the end
of Section 4.2.1 [I'm hearing Voices], page 51, which was left looking kkthis:

\ new Staff \relative {
\ key aes \major
<<
{ c 2 aes4. bes8 }
\\
{ <ees, c>2 des }
\\
\
{ aes 2 f4 fes }
>> |
<c ees aes c>1 |

}

n .1 Ll
X D "I 4))

| '!'\‘I L :
BT =
The inner note of the rst chord (i.e., the A- at in the fourth Voice) n eed not be shifted away
from the note column of the higher note, so we usé&shiftOff

In the second chord we prefer the F to line up with the A- at and the lowest note to be
positioned slightly right to avoid a collision of stems. We achieve thg by setting force-hshift
in the NoteColumnof the low D- at to move it to the right by half a sta -space, and settin g
force-hshift for the F to zero. Note that we use\once to avoid the settings propagating
beyond the immediate musical moment, although in this small example tle \once and the
second\override in Voice four could be omitted. This would not be good practice.

Here's the nal result:

\new Staff \relative ({

\ key aes \major

<<
{ c 2 aes4. bes8 }
\\
{ <ees, ¢c>2 \ once \override NoteColumn force-hshift = 0.5 des }
\\
\\

Chapter 5: Tweaking output 138

{ \ once \shiftOff aes 2 \ once \shiftOff f4 fes }
>> |
<c ees aes c>1 |

}

D
=

5.6.3 Real music example

We end this section on Tweaks by showing the steps to be taken to dealith a tricky example
which needs several tweaks to produce the desired output. The exple has been deliberately
chosen to illustrate the use of the Notation Reference to resolve unusl problems with notation.
It is not representative of the more usual engraving process, so mse do not let these di culties
put you o ! Fortunately, di culties like these are not very common!

The example is from Chopin's Premere Ballade, Op. 23, bars 6 to 9, the tansition from the
opening Lento to Moderato. Here, rst, is what we want the output to look like, but to avoid
over-complicating the example too much we have left out the dynants, ngering and pedalling.

Moderato
I- A . y4 II‘ - %ZNQ:
| | R \||
. N = L
& N - — [) o _

p=d

We note rst that the right hand part in the third bar requires four voic es. These are the
ve beamed eighth notes, the tied C, the half-note D which is merged wth the eighth note D,
and the dotted quarter note F-sharp, which is also merged with the eigth note at the same
pitch. Everything else is in a single voice, so the easiest way i® introduce these extra three
voices temporarily at the time they are needed. If you have forgotten hw to do this, look at
Section 4.2.1 [I'm hearing Voices], page 51, and Section 4.2.2 [Explicitlinstantiating voices],
page 56. Here we choose to use explicitly instantiated voices for the pgihonic passage, as
LilyPond is better able to avoid collisions if all voices are instantiated explicitly in this way.

So let us begin by entering the notes as two variables, setting up th sta structure in a score
block, and seeing what LilyPond produces by default:

rhMusic = \relative {
\ new Voice {
r2 c 4. g8 |
besl~ |
\time 6/4
bes2. r8
% Start polyphonic section of four voices
<<
{c8 d fis bes a } % continuation of main voice
\ new Voice {
\ voiceTwo
c,8~ 2

Chapter 5: Tweaking output

}

\ new Voice {
\ voiceThree
s8 d2

}

\ new Voice {
\ voiceFour
s4 fis4.

}

>> |

g2. % continuation of main voice

}
}

IhMusic = \relative
r2 <c g ees>2 |
<d g, d>1 |
r2. d,4 rd r |
r4

}

\score {

\ new PianoStaff <<

{

\ new Staff = "RH"

\key g \'minor
\ rhMusic
>>

\ new Staff = "LH" <<

\key g \'minor

\clef "bass"
\ IhMusic
>>
>>
}
A A .u D s
[LL —

=

Bh

N
N\
1 N iE

T

:z%

D

0

In

H

139

All the notes are right, but the appearance is far from satisfactory. The tie collides with the
change in time signature, some notes are not merged together, and several atibn elements
are missing. Let's rst deal with the easier things. We can easily add tte left hand slur and the

right hand phrasing slur, since these were all covered in the Tutdal. Doing this gives:

rhMusic = \relative
\ new Voice {
r2 c4\ (g8 |
besl~ |
\time 6/4

{

Chapter 5: Tweaking output 140

bes2. r8
% Start polyphonic section of four voices
<<
{c8 d fis bes a } % continuation of main voice
\ new Voice {
\ voiceTwo
c,8~ 2
}
\ new Voice {
\ voiceThree
s8 d2
}
\ new Voice {
\ voiceFour
s4 fis4.
}
>> |
g2\) % continuation of main voice

}
}

IhMusic = \relative {
r2 <c g ees>2(|
<d g, d>1) |
r2. d,, 4 r4 r |
r4

}

\score {
\ new PianoStaff <<

\new Staff = "RH" <<
\key g \'minor
\ rhMusic

>>

\ new Staff = "LH" <<
\key g \'minor

\clef "bass"
\ IhMusic
>>
>>
}
a2 Py NP R
I i I
| | i |
—
A E .
Lo IR\ T =4 | [) [] o
: B
+H

The rst bar is now correct. The second bar contains an arpeggio and is terrmated by a
double bar line. How do we do these, as they have not been mentioned this Learning Manual?

Chapter 5: Tweaking output 141

This is where we need to turn to the Notation Reference. Looking up “greggio’ and “bar line'
in the index quickly shows us that an arpeggio is produced by appendig \arpeggio to a chord,
and a double bar line is produced by the\bar "||* command. That's easily done. We next
need to correct the collision of the tie with the time signature. This is best done by moving the
tie upwards. Moving objects was covered earlier in Section 5.6.1 [Ming objects], page 130,
which says that objects positioned relative to the sta can be moved ‘ertically by overriding
their staff-position property, which is speci ed in half sta spaces relative to the certer line
of the sta. So the following override placed just before the rst tied note would move the tie
up to 3.5 half sta spaces above the center line:

\once \override Tie.staff-position = #3.5
This completes bar two, giving:

rhMusic = \relative {
\ new Voice {
r2 c4\ (g8 |
\once \override Tie. staff-position = #3.5
besl~ |
\bar "||"
\time 6/4
bes2. r8
% Start polyphonic section of four voices
<<
{c8 d fis bes a } % continuation of main voice
\ new Voice {
\ voiceTwo
c,8~ 2
}
\ new Voice {
\ voiceThree
s8 d2
}
\ new Voice {
\ voiceFour
s4 fis4.
}
>> |
g2\) % continuation of main voice

}
}

IhMusic = \relative {
r2 <c g ees>2(|
<d g, d>1)\arpeggio |
r2. d,4 rd r |
r4

}

\score {
\ new PianoStaff <<
\new Staff = "RH" <<
\key g \'minor
\ rhMusic

Chapter 5: Tweaking output 142

>>
\new Staff = "LH" <<
\key g \'minor

\clef "bass"
\ IhMusic
>>
>>
}
2" PPyl BN P
1 4
| |] |
—r—
~ ~ 'N/; .._ ~ D ‘-I:/|
(2 A\ r e e [—
. g T
+H

On to bar three and the start of the Moderato section. The tutorial showed how to add a
tempo indication with the \tempo command, so adding \Moderato" is easy. But how do we
merge notes in di erent voices together? This is where we need to tun again to the Notation
Reference for help. A search for \merge" in the Notation Reference inde quickly leads us to
the commands for merging di erently headed and di erently dotted not es in Section \Collision
resolution” in Notation Reference In our example we need to merge both types of note for the
duration of the polyphonic section in bar 3, so using the information we nd in the Notation
Reference we add

\mergeDifferentlyHeadedOn
\mergeDifferentlyDottedOn

to the start of that section and

\mergeDifferentlyHeadedOff
\mergeDifferentlyDottedOff

to the end, giving:

Moderato
a—= W N —T P —
| | I | /[| 1 IF II Id
| | A '_||_$|
[
s N pp 1T
A ! L < r' [[o
: s
+

These overrides have merged the two F-sharp notes, but not the twon D. Why not? The
answer is there in the same section in the Notation Reference { notes by merged must have
stems in opposite directions and two notes cannot be merged succesgfiif there is a third note
in the same note column. Here the two D's both have upward stems and the is a third note {
the C. We know how to change the stem direction usingstemDown and the Notation Reference
also says how to move the C { apply a shift using one of thashift commands. But which
one? The C is in voice two which has shift o, and the two D's are in voices one and three,
which have shift o and shift on, respectively. So we have to shif the C a further level still
using \shiftOnn to avoid it interfering with the two D's. Applying these changes gives:

rhMusic = \relative {

Chapter 5: Tweaking output 143

\ new Voice {
r2 c4\ (g8 |
\once \override Tie. staff-position = #3.5
besl~ |
\bar "||"
\time 6/4
bes2.\ tempo "Moderato" r8
\ mergeDifferentlyHeadedOn
\ mergeDifferentlyDottedOn
% Start polyphonic section of four voices
<<
{c8 d fis bes a } % continuation of main voice
\ new Voice {
\ voiceTwo
% Move the c2 out of the main note column
% so the merge will work
c,8~ \ shiftOnn c¢2
}
\ new Voice {
\ voiceThree
% Stem on the d2 must be down to permit merging
s8 \ stemDownd?2
}
\ new Voice {
\ voiceFour
s4 fis4.
}
>> |
\ mergeDifferentlyHeadedOff
\ mergeDifferentlyDotted Off
g2\) % continuation of main voice

}
}

IhMusic = \relative {
r2 <c g ees>2(|
<d g, d>1)\arpeggio |
r2. d,4 rd r |
r4

}

\score {
\ new PianoStaff <<

\new Staff = "RH" <<
\key g \'minor
\ rhMusic

>>

\new Staff = "LH" <<
\key g \'minor
\clef "bass"
\ lhMusic

>>

Chapter 5:

>>

Tweaking output 144

Moderato
A~ AU
- Fﬂlp:rh . A 1 ‘WﬁE
| — TN
- T
o Nl lpop
[=.) N : = [) [[T
—Hh

Nearly there. Only two problems remain: The downward stem on the meged D should not
be there, and the C would be better positioned to the right of the D's. We know how to do
both of these from the earlier tweaks: we make the stem transparent, andnove the C with the
force-hshift property. Here's the nal result:

rhMusic = \relative {

\n

ew Voice {

r2 c4\ (g8 |

\once \override Tie. staff-position = #3.5

besl~ |

\bar "||"

\time 6/4

bes2.\ tempo "Moderato" r8

\ mergeDifferentlyHeadedOn

\ mergeDifferentlyDottedOn

% Start polyphonic section of four voices

<<
{c8 d fis bes a } % continuation of main voice
\ new Voice {

\ voiceTwo

c,8~

% Reposition the c2 to the right of the merged note
\once \override NoteColumn force-hshift = #1.0

% Move the c2 out of the main note column
% so the merge will work
\ shiftOnn
c2
}
\ new Voice {
\voiceThree
s8
% Stem on the d2 must be down to permit merging
\ stemDown
% Stem on the d2 should be invisible
\tweak Stem transparent ##t
d2
}
\ new Voice {
\ voiceFour
s4 fis4.

}

Chapter 5: Tweaking output 145

>> |

\ mergeDifferentlyHeadedOff

\ mergeDifferentlyDottedOff

g2.\') % continuation of main voice

}
}

IhMusic = \relative {
r2 <c g ees>2(|
<d g, d>1)\arpeggio |
r2. d,, 4 r4 r |
r4

}

\'score {
\ new PianoStaff <<
\new Staff = "RH" <<
\key g \'minor

\ rhMusic
>>
\new Staff = "LH" <<
\key g \'minor
\clef "bass"
\ IhMusic
>>
>>
}
Moderato
a= Fp '
A [
I m 7 i|\| I‘ %:N":

o))
>
h>
U
0
o C
r

5.7 Further tweaking
5.7.1 Other uses for tweaks

Tying notes across voices

The following example demonstrates how to connect notes in di erehvoices using ties. Nor-
mally, only notes in the same voice can be connected with ties. By usmtwo voices, with the
tied notes in one of them

“ .

=

and removing the rst up-stem and its ag in that voice, the tie appear s to cross voices:
<<

Chapter 5: Tweaking output 146

\once \omit Stem
\once \omit Flag
b 8~ 8\ noBeam

}
\

{b8[g]}
>>

-

=

See also
Learning Manual: [The \once pre X], page 96, [The stencil property], page 106.

Simulating a fermata in MIDI

For outside-sta objects it is usually better to override the object's stencil property rather
than its transparent property when you wish to remove it from the printed output. Setti ng the
stencil property of an object to #f will remove that object entirely from the printed output.
This means it has no e ect on the placement of other objects placed relave to it.

For example, if we wished to change the metronome setting in order toiswlate a fermata in
the MIDI output we would not want the metronome markings to appear in the printed output,
and we would not want it to in uence the spacing between the two sysems or the positions of
adjacent annotations on the sta. So setting its stencil property to #f would be the best way.
We show here the e ect of the two methods:

\'score {
\relative {

% Visible tempo marking
\tempo 4=120
a4 aa
\once \ hide Score. MetronomeMark
% Invisible tempo marking to lengthen fermata in MIDI
\ tempo 4=80
ad\fermata |
% New tempo for next section
\tempo 4=100

a4 a a a |

}

\layout {}

\midi {}
}

H1:100
h:1lzol | \I.N | | | |

\score {

\relative {

Chapter 5: Tweaking output 147

% Visible tempo marking

\ tempo 4=120

a4 aa

\once \omit Score. MetronomeMark

% Invisible tempo marking to lengthen fermata in MIDI
\tempo 4=80

ad\fermata |

% New tempo for next section

\ tempo 4=100

ad a a a |

}

\layout {}

\midi {}

}
M- 120 W = 100
e SYERE T

Both methods remove the metronome mark which lengthens the fermatérom the printed output,
and both a ect the MIDI timing as required, but the transparent metr onome mark in the rst
line forces the following tempo indication too high while the secod (with the stencil removed)
does not.

See also
Music Glossary: Section \system" in Music Glossary.

5.7.2 Using variables for layout adjustments

Override commands are often long and tedious to type, and they have to & absolutely correct.
If the same overrides are to be used many times it may be worth de mg variables to hold them.

Suppose we wish to emphasize certain words in lyrics by printinghtem in bold italics. The
\italic ~ and\bold commands only work within lyrics if they are embedded, together withthe
word or words to be modi ed, within a \markup block, which makes them tedious to enter. The
need to embed the words themselves prevents their use in simghariables. As an alternative
can we use\override and \revert commands?

\override Lyrics.LyricText.font-shape = # italic
\override Lyrics.LyricText.font-series = # bold

\revert Lyrics.LyricText.font-shape
\revert Lyrics.LyricText.font-series

These would also be extremely tedious to enter if there were many evds requiring emphasis.
But we can de ne these as two variables and use those to bracket the words to be grhasized.
Another advantage of using variables for these overrides is that the spasearound the dot are
not necessary, since they are not being interpreted inlyricmode directly. Here's an example of
this, although in practice we would choose shorter names for the variabketo make them quicker
to type:

emphasize = {
\override Lyrics . LyricText .font-shape = # italic
\override Lyrics . LyricText .font-series = # bold

}

Chapter 5: Tweaking output 148

normal = {
\revert Lyrics . LyricText .font-shape
\revert Lyrics . LyricText .font-series

}

global = { \ key c \major \time 4/4 \ partial 4}

SopranoMusic = \relative {c4 | e4. e8 g4 ¢ |a4 a g }
AltoMusic = \relative {c4 | cd. c8 ed e | f4 f e }

TenorMusic = \relative {ed | g4. g8 c4. b8 | a8 b cded}
BassMusic = \relative {cd|cd c8cdc | 8 gabcd}

VerseOne = \lyricmode {
E -- | ter -- nal \ emphasize Fa -- ther, | \ normal strong to save,

}

VerseTwo = \lyricmode {
O | \once \ emphasize Christ, whose voice the | wa -- ters heard,

}

VerseThree = \lyricmode {
O | \emphasize Ho -- ly Spi -- rit, | \ normal who didst brood
}

VerseFour = \lyricmode {
O | \emphasize Tri -- ni - ty \ normal of | love and pow r

}

\'score {
\ new ChoirStaff <<
\ new Staff <<
\clef "treble"
\ new Voice = "Soprano" { \ voiceOne \global \ SopranoMusic }
\ new Voice = "Alto" { \ voiceTwo \ AltoMusic }
\new Lyrics \lyricsto "Soprano" { \ VerseOne}
\new Lyrics \lyricsto "Soprano" { \ VerseTwo}
\new Lyrics \lyricsto "Soprano" { \ VerseThree }
\new Lyrics \lyricsto "Soprano" { \ VerseFour }
>>
\ new Staff <<
\clef "bass"
\ new Voice = "Tenor" { \ voiceOne \ TenorMusic }
\ new Voice = "Bass" { \ voiceTwo \BassMusic }
>>
>>

Chapter 5: Tweaking output 149

u . . | .
-ﬁi I)] I 1 | | ! b 1
] m] |

E - ter - nal Fa-ther, strong to save,
O Christ, whosevoicethe wa -ters heard,
O Ho - ly Spi-rit, whodidst brood
O Tri - ni -ty of love and pow®i

+U Qpiﬂhu fm‘a

D
-
-
w

D

1 |
11] I I
Wl I | —

1
I I [I
'

5.7.3 Style sheets

The output that LilyPond produces can be heavily modi ed; see Chapter 5 [Tweaking output],
page 93, for details. But what if you have many input les that you want to app ly your tweaks
to? Or what if you simply want to separate your tweaks from the actual music¢? This is quite
easy to do.

Let's look at an example. Don't worry if you don't understand the parts wit h all the #() .
This is explained in Section 5.7.5 [Advanced tweaks with Scheme], padkb4.
mpdolce =
\tweak self-alignment-X #-0.6
#(make-dynamic-script
#{ \ markup { \ dynamic mp \normal-text \italic \bold dolce } #})

inst =
#(define-music-function
(string)
(string?)
#{ <>™ markup \ bold \box #string #})

\relative {
\tempo 4=50
a 4.\ mpdolce d8 cis4--\ glissando a |
b4 bes a2 |
\inst "Clarinet"
cis4\< d8 e4 fis |
g8(\! fis)-. e(d)-. cis2 |

3
3
.4

h— Clarine
a_SIOFh |=EI| | h h_“:l]I\
I 111 LI | | LELE B B AN
Hr—H A\ S I — e
!! | | | | ! ! ‘LI I

| |
—_—

{ ; dolce

Let's do something about the mpdolce and inst de nitions. They produce the output we
desire, but we might want to use them in another piece. We could simly copy-and-paste them
at the top of every le, but that's an annoyance. It also leaves those denitions in our input
les, and | personally nd all the #() somewhat ugly. Let's hide them in another le:

%%% save this to a file called "definitions.ily"

Chapter 5: Tweaking output 150

mpdolce =
\tweak self-alignment-X #-0.6
#(make-dynamic-script
#{ \markup { \dynamic mp \normal-text \italic \bold dolce } #})

inst =
#(define-music-function
(string)
(string?)

#{ <>Mmarkup \bold \box #string #})
We will refer to this le using the \include command near the top of the music le. (The
extension .ily is used to distinguish this included le, which is not meant to be compiled on
its own, from the main le.) Now let's modify our music (let's save this le as music.ly).

\include "definitions.ily"

\relative {
\tempo 4=50
a 4.\mpdolce d8 cis4--\glissando a |
b4 bes a2 |
\inst "Clarinet"
cis4\< d8 e4 fis |
g8(\! fis)-. e(d)-. cis2 |

5
5
.2

_ Clarine
‘Q;éﬁ?ij-h_@u\ h | I |h |] h—lu;;]l\\
e N

{ ; dolce r L

That looks better, but let's make a few changes. The glissando is harda see, so let's make it
thicker and closer to the note heads. Let's put the metronome marking abve the clef, instead
of over the rst note. And nally, my composition professor hates "C' tim e signatures, so we'd
better make that “4/4' instead.

Don't change music.ly , though. Replace ourdefinitions.ily with this:

%%% definitions.ily
mpdolce =
\tweak self-alignment-X #-0.6
#(make-dynamic-script
#{ \markup { \dynamic mp \normal-text \italic \bold dolce } #})

inst =
#(define-music-function
(string)
(string?)

#{ <>Mmarkup \bold \box #string #})

\layout{
\context {
\Score
\override MetronomeMark.extra-offset = # (-5 . 0)
\override MetronomeMark.padding = # 3

Chapter 5: Tweaking output 151

}

\context {
\Staff
\override TimeSignature.style = # numbered
}
\context {
\Voice
\override Glissando.thickness = #3
\override Glissando.gap = #0.1

T

Clarine
N | LO h i Ililh“lnll\l
I | A) N | I | 1 LI |] LA B B AN |
] Lial S A | 11 | | I\\ Ll P | | | | |] L
| -y L | I | | | |

That looks nicer! But now suppose that | want to publish this piece. My composition
professor doesn't like "C' time signatures, but I'm somewhat fond of hem. Let's copy the
current definitions.ily to web-publish.ily and modify that. Since this music is aimed at
producing a pdf which will be displayed on the screen, we'll als increase the overall size of the
output.

%%% web-publish.ily
mpdolce =
\tweak self-alignment-X #-0.6
#(make-dynamic-script
#{ \markup { \dynamic mp \normal-text \italic \bold dolce } #})

inst =
#(define-music-function
(string)
(string?)

#{ <>Mmarkup \bold \box #string #})
#(set-global-staff-size 23)

\layout{
\context {
\Score
\override MetronomeMark.extra-offset = # (-5 . 0)
\override MetronomeMark.padding = # 3
}
\context {
\Staff
}
\context {
\Voice
\override Glissando.thickness = #3
\override Glissando.gap = #0.1

}
}

Chapter 5: Tweaking output 152

- 50 [Clarine]
a—+)h I'E) | £} h—h | I’]P ql ' h
I]I'_"LII T 17T N b
L] = - n N L} - =
{; dolce e ——
4 AUl 1NN
i' 11 !\‘I
Now in our music, | simply replace \include "definitions.ily" with \include
"web-publish.ily" . Of course, we could make this even more convenient. We could
make a definitions.ily le which contains only the de nitions of mpdolce and inst ,
a web-publish.ily le which contains only the \layout section listed above, and a
university.ily le which contains only the tweaks to produce the output that my profe ssor

prefers. The top of music.ly would then look like this:
\include "definitions.ily"

%%% Only uncomment one of these two lines!
\include "web-publish.ily"
%\include "university.ily"

This approach can be useful even if you are only producing one set of partsl use half
a dozen dierent “style sheet' les for my projects. | begin evey music le with \include
"../global.ily" , which contains
%%% global.ily
\version "2.24.2"

#(ly:set-option point-and-click #f)

\include "../init/init-defs.ly"
\include "../init/init-layout.ly"
\include "../init/init-headers.ly"
\include "../init/init-paper.ly"

5.7.4 Other sources of information

The Internals Reference documentation contains a lot of information abot LilyPond, but even
more information can be gathered by looking at the internal LilyPond les. To explore these, you
must rst nd the directory appropriate to your system. The location of this directory depends
(a) on whether you obtained LilyPond by downloading a precompiled binaryfrom lilypond.org or
whether you installed it from a package manager (i.e. distributed with GNU/Linux, or installed
under nk or cygwin) or compiled it from source, and (b) on which operating system it is being
used:

Downloaded from lilypond.org
GNU/Linux
Navigate to
INSTALLDIRilypond/usr/share/lilypond/current/

Chapter 5: Tweaking output 153

MacOS X
Navigate to
INSTALLDIRLilyPond.app/Contents/Resources/share/lilypond/current/

by either cd-ing into this directory from the Terminal, or control-clicking on t he LilyPond
application and selecting "Show Package Contents'.

Windows
Using Windows Explorer, navigate to
INSTALLDIRLilyPond/usr/share/lilypond/current/

Installed from a package manager or compiled from source

Navigate to PREFIXshare/lilypond/ X.Y.Z/, where PREFIX is set by your package manager
or configure script, and X.Y.Z is the LilyPond version number.

Within this directory the two interesting subdirectories are
ly/ - contains les in LilyPond format
scm/ - contains les in Scheme format

Let's begin by looking at some les inly/ . Open ly/property-init.ly in a text editor.
The one you normally use for.ly les will be ne. This le contains the de nitions of all the
standard LilyPond prede ned commands, such asitieUp and \slurDotted . You will see that
these are nothing more than de nitions of variables containing one or a groupof \override
commands. For example\tieDotted is de ned to be:

tieDotted = {

\override Tie.dash-period = #0.75
\override Tie.dash-fraction = #0.1

}
If you do not like the default values these prede ned commands can beede ned easily, just
like any other variable, at the head of your input le.

The following are the most useful les to be found inly/ :

Filename Contents

ly/engraver-init.ly De nitions of engraver Contexts
ly/paper-defaults-init.ly Speci cations of paper-related defaults
ly/performer-init.ly De nitions of performer Contexts

ly/property-init.ly De nitions of all common prede ned commands
ly/spanner-init.ly De nitions of spanner-related prede ned commands

Other settings (such as the de nitions of markup commands) are stored asscm (Scheme)
les. The Scheme programming language is used to provide a programmableiterface into
LilyPond internal operation. Further explanation of these les is curr ently outside the scope of
this manual, as a knowledge of the Scheme language is required. Users shiblbie warned that a
substantial amount of technical knowledge or time is required to undestand Scheme and these
les (see Section \Scheme tutorial" in Extending).

If you have this knowledge, the Scheme les which may be of interst are:

Filename Contents
scm/auto-beam.scm Sub-beaming defaults
scm/define-grobs.scm Default settings for grob properties

scm/define-markup-commands.scm Specify all markup commands
scm/midi.scm Default settings for MIDI output

Chapter 5: Tweaking output 154

scm/output-lib.scm Settings that a ect appearance of frets, colors, acciden-
tals, bar lines, etc

scm/parser-clef.scm De nitions of supported clefs

scm/script.scm Default settings for articulations

5.7.5 Advanced tweaks with Scheme

Although many things are possible with the \override and \tweak commands, an even more
powerful way of modifying the action of LilyPond is available through a programmable interface
to the LilyPond internal operation. Code written in the Scheme programming language can be
incorporated directly in the internal operation of LilyPond. Of course, at least a basic knowledge
of programming in Scheme is required to do this, and an introduction $ provided in the Section
\Scheme tutorial" in Extending.

As an illustration of one of the many possibilities, instead of setting a poperty to a constant
it can be set to a Scheme procedure which is then called whenevérat property is accessed by
LilyPond. The property can then be set dynamically to a value determined by the procedure at
the time it is called. In this example we color the note head in accordane with its position on
the sta .

#(define (color-notehead grob)
"Color the notehead according to its position on the staff."
(let ((mod-position (modulo (ly:grob-property grob staff-position)
7))
(case mod-position
;7 Return rainbow colors

((1) (x11-color red) ; for C
((2) (x1l-color orange)) ; for D
((3) (x1ll-color yellow)) ; for E
((4) (x1l-color green)) ; for F
((5) (x1l-color blue) ; for G
((6) (x1l-color purple)) ; for A
((0) (x1l-color Vviolet)) ; for B
)
\relative {

% Arrange to obtain color from color-notehead procedure
\override NoteHead color = #color-notehead
a2 b|lc2d|e2f| g2 al]|

}

-+
|
|
|
E L
=5

D
7]
wd

=

N3 _": N
A

Further examples showing the use of these programmable interfacesai be found in Section
\Callback functions" in Extending.

155

Appendix A Templates

This section of the manual contains templates with the LilyPond score aleady set up for you.
Just add notes, run LilyPond, and enjoy beautiful printed scores!

A.1 Built-in templates

Some templates, suitable for a range of choral music, are built into Lily@nd. These may be
used to create simple choral music, with or without piano accompanimety in two, four or eight
staves. Unlike other templates, these templates are “built-in' which means they do not need to
be copied and edited: instead they are simplyinclude 'd in the input le.

Note: Unlike most included les, these built-in templates must be
\include 'd at the end of the input le.

The required music expressions are entered by de ning values faspeci c variables. These
de nitions must come before the\include 'd le.

A.1.1 SATB template

The music may be set out with one or two voices per sta by setting TwoVoicesPerStaff to
##f or ##t respectively.

Here's the complete input le for producing a full four-part SATB ar rangement with indi-
vidual lyrics and piano accompaniment:

SopranoMusic = \relative { a4\f a8 a a4 a }
SopranoLyrics = \lyricmode { Sop -- ra -- no ly -- rics }
AltoMusic = \relative {d4\fd d d}

AltoLyrics = \lyricmode { Al -- to ly -- rics }
TenorMusic = \relative { ad4\p a a a}
TenorLyrics = \lyricmode { Te -- nor ly -- rics }
BassMusic = \relative { c2\p ¢4 c }

BassLyrics = \lyricmode { Bass ly -- rics }
PianoRHMusic = \relative {c e g c }
PianoDynamics = { s2\mp s4 s4 }

PianoLHMusic = \relative {ce gc}

\include "satb.ly"

Appendix A: Templates

SOPRANO i'! !'!!'!i'! i'!
Sopranoly-rics
a
ALTO W — -
!I! | 0l | !I! 1
Al-to ly-rics
B
TENOR 5 m— -
8 Te-nor ly-rics
N
BASS N 5] i
Bass ly-rics
& . —1
—
| 1l | |
\ ll' !
PiaNO y
a—y N h
H— !
| |

156

The same input can be used to produce a score with two voices per stgust by setting

TwoVoicesPerStaff to ##t. Again, each voice has individual lyrics.

SopranoMusic = \relative { a4\f a8 a a4 a }

SopranoLyrics = \lyricmode { Sop -- ra -- no ly -- rics }

AltoMusic = \relative {d4\fd d d}
AltoLyrics = \lyricmode { Al -- to ly -- rics }
TenorMusic = \relative { ad4\p a a a}
TenorLyrics = \lyricmode { Te -- nor ly -- rics }
BassMusic = \relative { c2\p ¢4 c }
BassLyrics = \lyricmode { Bass ly -- rics }
PianoRHMusic = \relative {c e g c }
PianoDynamics = { s2\mp s4 s4 }
PianoLHMusic = \relative {c e g c}
TwoVoicesPerStaff = ##t

\include "satb.ly"

Appendix A: Templates 157

Sopranoly-rics

SOPRANO - :
ALTO i i
I
Al-to ly-rics
Tenor ly-rics
TENOR & hl M fo
N —A
BAss |]
b)
Bass ly-rics
a -
A) LL 11
L n L
[M) | LI |
n | |l | I
PIANO (
oY .I’ I h h
A n 11 -7
Hi—r !
| I

When TwoVoicesPerStaff is set to false or allowed to default, any of the music variables
may be omitted to produce arrangements with fewer voices. Here, fon@mple, is how the input
le for a Soprano/Bass duet might be written:

SopranoMusic = \relative {c ccc}
SopranoLyrics = \lyricmode { High voice ly -- rics }
BassMusic = \relative {a a a a}
BassLyrics = \lyricmode { Low voice ly -- rics }
\include "satb.ly"

[2N h h K

La}
L. 11 11 111
L 1 1

aHiP\h voﬁe IhriF]s

Low voicelyrics

SOPRANO

BAss ,

A second verse or alternative lyrics may be added to each of the parts:

SopranoMusic = \relative { a4 a a a }

SopranoLyricsOne = \lyricmode {
\set stanza = "1."
Words to verse one

}

SopranoLyricsTwo = \lyricmode {
\set stanza = "2."
Words to verse two

}

\include "satb.ly"

Appendix A: Templates 158

o Fh hh

1. Words to verse one
2. Words to verse two

When the lyrics and rhythms are the same for every part, the vocal mui is best arranged on
two staves with two voices in each. Up to nine verses may be provietl. Here's an unaccompanied
example with just three verses.

SopranoMusic = \relatve {a a a a}
AltoMusic = \relative {f fff}
VerseOne = \lyricmode {

\set stanza = "1."

Words to verse one
}
VerseTwo = \lyricmode {

\set stanza = "2."

Words to verse two
}
VerseThree = \lyricmode {

\set stanza = "3."

Words to verse three
}
TenorMusic = \relative {a a a a}
BassMusic = \relative {ffff}
TwoVoicesPerStaff = ##t
\include "satb.ly"

I ~ | |
SOPRANO X
ALTO |] |] |] |]
1. Words to verse one
2. Words to verse two
3. Words to verse three
TENOR & a a Iqu a
BAss 1 |

Other variables may be given values. The key signature and the time gnhature may be
changed from the default:

Key = \key a \'major
Time = {
\time 5/4
\tempo "Allegro" 4 = 144
}
SopranoMusic = \relative { gis gis gis gis gis }
AltoMusic = \relative { cis cis cis cis cis }
VerseOne = \lyricmode { Words to this du -- et }

Appendix A: Templates 159

TwoVoicesPerStaff = ##t
\include "satb.ly"

Allegro (h: 144)

SOPRANO
ALTO

N

1T T1
Words to this du-et

The instrument names and/or the short instrument names may be changed

SopranoMusic = \relative {c ccc}
SopranoLyrics = \lyricmode { High voice ly -- rics }
SopranolnstrumentName = "Soprano 1"
SopranoShortinstrumentName = "S1"
AltoMusic = \relative {a a a a}
AltoLyrics = \lyricmode { Low voice ly -- rics }
AltolnstrumentName = "Soprano 2"
AltoShortInstrumentName = "S2"
\include "satb.ly"

{ P N h s

< — 01 H
SOPRANO 1 i ! —
| | |

High voicelyrics
o 2| e | 2

X In In In

SOPRANO 2 Hi H—HIH]

)]

Low voicelyrics

although rather than do this it might be easier to use the ssaattbb.ly template, see
Section A.1.2 [SSAATTBB template], page 160.

A descant may be added by de ning values for the variableDescantMusic and descant lyrics
may be provided by de ning values for DescantLyrics . In a similar way a solo part may be
added above the grouped choir staves by de ning values foSoloMusic and SoloLyrics .

\header and \paper blocks may be added as normal. Alayout block may be provided as
usual at top level, and the contents will be combined with (but will not override) the default
settings provided in the template. Alternatively, all the default settings provided by the template
can be discarded by de ning aLayout variable containing all the required settings:

Layout = \layout { ... }

The complete set of variables which may be changed can be seen by exaimip the le
ly/satb.ly , see Section 5.7.4 [Other sources of information], page 152.

See also

Learning Manual: Section 3.4.1 [Organizing pieces with variables], page 3%ection A.5 [Vocal
ensembles templates], page 172, Section 4.4 [Extending the templale page 74, Section 5.7.4
[Other sources of information], page 152.

Appendix A: Templates 160

Known issues and warnings

The setting of the TwoVoicesPerStaff variable applies for the entire duration of the score: it
cannot be given di erent values at di erent times.

More complex arrangements of SATB choral music are not possible with thisimple built-in
template.

A.1.2 SSAATTBB template

All the variables de ned for the SATB template, with the exception of the VerseXxx variables,
are also available for the SSAATTBB template, see Section A.1.1 [SATB tenplate], page 155.
In addition, music and lyrics for rst and second voices in any or all of the four parts may
be specied by providing values for SopranoOneMusi¢ SopranoTwoMusi¢ etc, with lyrics in
SopranoOneLyrics and SopranoTwolyrics, etc. Up to four additional stanzas may be de ned
for all the voice parts by using the variablesSopranoOnelLyricsOne with the others de ned in
an analogous way.

Setting TwoVoicesPerStaff to ##t will cause all voice parts to be placed on single staves
as divisi voices. If TwoVoicesPerStaff is left to default or set to ##f then individual voice
parts may be set on one or two staves according to the setting dbopranoTwoVoicesPerStaff ,
MenTwoVoicesPerStaff, etc.

As an example, suppose we have a piece for soprano and alto which beginghwall voices
in unison, progresses to a section with two parts, soprano and alto, and els with a four-part
section. This would be coded like this:

Time = { s1 \ break sl \break }

WomenMusic \relative { a4 a a a}

WomenLyrics = \lyricmode { Wo -- men ly -- rics }
SopranoMusic = \relative {sl | c4ccc8c}
SopranoLyrics = \lyricmode { So -- pra -- no ly -- rics }
AltoMusic = \relative {sl1|g4g9gg9g9g}

AltoLyrics = \lyricmode { Al -- to ly -- rics }
SopranoOneMusic= \relative {sl|sl|led4 e e e}
SopranoOneLyrics = \lyricmode { Sop One ly -- rics }
SopranoTwoMusic= \relative {sl|sl|c4d4ccc}
SopranoTwoLyrics = \lyricmode { Sop Two ly -- rics }
AltoOneMusic = \relative { sl |sl|g499gg8g}
AltoOneLyrics = \lyricmode { Al -- to One ly -- rics }
AltoTwoMusic = \relative { sl |sl|ed4deee8e}
AltoTwolLyrics = \lyricmode { Al -- to Two ly -- rics }
\layout { ragged-right = ##t }

\include "ssaattbb.ly"

W T h M hh

Women ly-rics

Appendix A: Templates 161

{ I T P
| I | !I !! I! | |
S R
| I I]
Sopra-no lyrics
Y R D
AR &) i]] -
Al -to ly-rics
" h hhh
==
SopOne ly-rics
h-h Kh h
H—H—HaH
82 | | | |
I ——
SopTwo ly-rics
B | R (B A 1
Al -
Al - to Onelyrics

Al - to Two lyrics

Male voices may be added in an analogous way.

To change the layout so that the divisi soprano voices use a shared sta we simply set
SopranoTwoVoicesPerStaff to ##t, leaving all other variables unchanged, like this:

SopranoTwoVoicesPerStaff = ##t

Time = { sl \ break sl \break }

WomenMusic \relative { a4 a a a}

WomenLyrics = \lyricmode { Wo -- men ly -- rics }
SopranoMusic = \relative {sl | c4ccc8c}
SopranoLyrics = \lyricmode { So -- pra -- no ly -- rics }
AltoMusic = \relative {sl | g4g9ggg}

AltoLyrics = \lyricmode { Al -- to ly -- rics }
SopranoOneMusic= \relative {sl | sl |led4 e e e}
SopranoOneLyrics = \lyricmode { Sop One ly -- rics }
SopranoTwoMusic= \relative {sl|sl|c4ccc}
SopranoTwolLyrics = \lyricmode { Sop Two ly -- rics }
AltoOneMusic = \relative { sl |sl|g499gg8g}
AltoOneLyrics = \lyricmode { Al -- to One ly -- rics }
AltoTwoMusic = \relative {sl|sl|ed4deeeBe}
AltoTwoLyrics = \lyricmode { Al -- to Two ly -- rics }
\layout { ragged-right = ##t }

\include "ssaattbb.ly"

W S h M hh

Women ly-rics

Appendix A: Templates

1 I h -
| I | !I !! I! | |
S ———
| I I H
Sopra-no lyrics
Y D
AR H—i

Al -to ly-rics

SopOne ly-rics

Sl?] a_h_h

s2 o
SopTwo ly-rics
L T
Al i
Al - to Onelyrics
I T

Al - to Two lyrics

or, to make all paired voices share a single sta , sefwoVoicesPerStaff to ##t:

TwoVoicesPerStaff = ##t

Time = { s1 \ break s1 \break }

WomenMusic \relative { a4 a a a}

WomenLyrics = \lyricmode { Wo -- men ly -- rics }
SopranoMusic = \relative {sl | c4ccc8c}
SopranoLyrics = \lyricmode { So -- pra -- no ly -- rics }
AltoMusic = \relative {sl | g4g9ggg}

AltoLyrics = \lyricmode { Al -- to ly -- rics }
SopranoOneMusic= \relative { sl |sl|ledee e}
SopranoOnelyrics = \lyricmode { Sop One ly -- rics }
SopranoTwoMusic= \relative {sl |sl|c4ccc}
SopranoTwolLyrics = \lyricmode { Sop Two ly -- rics }
AltoOneMusic = \relative {sl|sl|g49g9gg8g}
AltoOneLyrics = \lyricmode { Al -- to One ly -- rics }
AltoTwoMusic = \relative {sl | sl | ed4eeeBe}
AltoTwoLyrics = \lyricmode { Al -- to Two ly -- rics }
\layout { ragged-right = ##t }

\include "ssaattbb.ly"

w2 hhhh

Women ly-rics

Sopra-no lyrics
=t
S il

A A I
T

Al -to ly-rics

162

Appendix A: Templates 163

SopOne ly-rics

Sl?] a_h_h_

2 R
SopTwo ly-rics
Al - to One lyrics
A1l 1 1 1
A2k

1 1 1 1 1
I
Al - to Two lyrics

The complete set of variables which may be changed can be seen by exaimip the le
ly/ssaattbb.ly , see Section 5.7.4 [Other sources of information], page 152.

See also

Learning Manual: Section 3.4.1 [Organizing pieces with variables], page 3%ection A.5 [Vocal
ensembles templates], page 172, Section 4.4 [Extending the templale page 74, Section 5.7.4
[Other sources of information], page 152.

Known iss