
LilyPond
The music typesetter

Contributor’s Guide

The LilyPond development team

☛ ✟

This manual documents contributing to LilyPond version 2.24.3. It discusses technical issues
and policies that contributors should follow.

This manual is not intended to be read sequentially; new contributors should only read the
sections which are relevant to them. For more information about different jobs, see Section
“Help us” in Contributor’s Guide.
✡ ✠

☛ ✟

For more information about how this manual fits with the other documentation, or to read this
manual in other formats, see Section “Manuals” in General Information.

If you are missing any manuals, the complete documentation can be found at
https://lilypond.org/.
✡ ✠

Copyright c⃝ 2007–2022 by the authors.

Permission is granted to copy, distribute and/or modify this document under the
terms of the GNU Free Documentation License, Version 1.1 or any later version
published by the Free Software Foundation; with no Invariant Sections. A copy of
the license is included in the section entitled “GNU Free Documentation License”.

For LilyPond version 2.24.3

https://lilypond.org/

i

Table of Contents

1 Introduction to contributing . 1
1.1 Help us . 1
1.2 Overview of work flow . 2
1.3 Summary for experienced developers . 2
1.4 Mentors . 3

2 Quick start . 5
2.1 LilyDev . 5

Installing LilyDev in VirtualBox . 5
Configuring LilyDev in VirtualBox . 7

2.2 Compiling with LilyDev . 7
2.3 Now start work! . 8

3 Working with source code . 10
3.1 Setting up . 10

3.1.1 Installing Git . 10
3.1.2 Creating a GitLab account and setting up SSH . 10
3.1.3 Cloning and forking the repository . 11
3.1.4 Configuring Git . 11

3.2 Git cheat sheet . 11
Pulling recent changes . 12
Viewing the history . 12
Switching branches . 12
Listing branches . 12
Staging and committing files . 12
Amending and reverting changes . 13
Uploading your branch for review . 13
Deleting branches . 14

3.3 Lifecycle of a merge request . 14
3.3.1 Uploading a patch for review . 14
3.3.2 Automated testing . 14
3.3.3 Patch countdown . 15
3.3.4 Merging to master . 15
3.3.5 Abandoned patches . 16

3.4 Writing good commit messages . 16
3.5 Commit access . 17
3.6 Further Git documentation resources . 17
3.7 Repository directory structure . 17

4 Compiling . 21
4.1 Overview of compiling . 21
4.2 Requirements . 21

4.2.1 Requirements for running LilyPond . 21
4.2.2 Requirements for compiling LilyPond . 22

Fedora . 22
Linux Mint . 23
OpenSUSE . 23

ii

Ubuntu . 24
Other . 24

4.2.3 Requirements for building documentation . 25
4.3 Getting the source code . 26
4.4 Configuring make . 27

4.4.1 Build modes . 27
4.4.2 Running autogen.sh . 27
4.4.3 Running configure . 28

Configuration options . 28
Checking build dependencies . 28
Configuring target directories . 28

4.5 Compiling LilyPond . 29
4.5.1 Using make . 29
4.5.2 Saving time with the -j option . 29
4.5.3 Useful make variables . 29

4.6 Post-compilation options . 29
4.6.1 Installing LilyPond from a local build . 30
4.6.2 Generating documentation . 30

Documentation editor’s edit/compile cycle . 30
Building documentation . 30
Building a single document . 31
Saving time with CPU_COUNT . 31
Installing documentation . 31
Building documentation without compiling . 32

4.6.3 Testing LilyPond binary . 32
4.7 Problems . 33

Compiling on MacOS X . 33
FreeBSD . 33
International fonts . 33
Using lilypond python libraries . 34

4.8 Concurrent stable and development versions . 34
4.9 Build system . 34

5 Documentation work . 35
5.1 Introduction to documentation work . 35
5.2 \version in documentation files . 35
5.3 Documentation suggestions . 36
5.4 Texinfo introduction and usage policy . 37

5.4.1 Texinfo introduction . 37
5.4.2 Documentation files . 37
5.4.3 Sectioning commands . 38
5.4.4 LilyPond formatting . 39
5.4.5 Text formatting . 41
5.4.6 Syntax survey . 41

Comments . 41
Cross references . 41
External links . 42
Fixed-width font . 42
Indexing . 43
Lists . 43
Special characters . 44
Miscellany . 44

5.4.7 Other text concerns . 45
5.5 Documentation policy . 45

iii

5.5.1 Books . 45
5.5.2 Section organization . 46
5.5.3 Checking cross-references . 47
5.5.4 General writing . 47
5.5.5 Technical writing style . 48

5.6 Tips for writing docs . 48
5.7 Scripts to ease doc work . 49

5.7.1 Scripts to test the documentation . 49
Building only one section of the documentation . 49

5.7.2 Scripts to create documentation . 50
Regenerating menus . 50
Updating doc with convert-ly . 50

5.8 Docstrings in scheme . 50
5.9 Translating the documentation . 50

5.9.1 Getting started with documentation translation . 50
Translation requirements . 50
Which documentation can be translated . 51
Starting translation in a new language . 51

5.9.2 Documentation translation details . 51
Files to be translated . 51
Translating the Web site and other Texinfo documentation . 52
Adding a Texinfo manual . 54

5.9.3 Documentation translation maintenance . 54
Check state of translation . 54
Updating documentation translation . 55
Updating translation committishes . 56
Maintaining without updating translations . 56

5.9.4 Technical background . 58

6 Website work . 59
6.1 Introduction to website work . 59
6.2 Uploading website . 59
6.3 Debugging website and docs locally . 60
6.4 Translating the website . 60

7 LSR work . 61
7.1 Introduction to LSR . 61
7.2 Adding and editing snippets . 61
7.3 Approving snippets . 62
7.4 The makelsr.pl script . 63
7.5 LSR to Git . 64
7.6 Renaming a snippet . 65
7.7 Updating the LSR to a new version . 65

8 Issues . 68
8.1 Introduction to issues . 68
8.2 Triaging bugs . 68
8.3 Issue classification . 70
8.4 Adding issues to the tracker . 71

iv

9 Regression tests . 72
9.1 Introduction to regression tests . 72
9.2 Precompiled regression tests . 72
9.3 Compiling regression tests . 72
9.4 Regtest comparison . 73
9.5 Pixel-based regtest comparison . 73
9.6 Finding the cause of a regression . 74
9.7 MusicXML tests . 75

10 Programming work . 76
10.1 Overview of LilyPond architecture . 76
10.2 LilyPond programming languages . 77

10.2.1 C++ . 78
10.2.2 Flex . 78
10.2.3 GNU Bison . 78
10.2.4 GNU Make . 78
10.2.5 GUILE or Scheme . 78
10.2.6 MetaFont . 78
10.2.7 PostScript . 78
10.2.8 Python . 78
10.2.9 Scalable Vector Graphics (SVG) . 79

10.3 Programming without compiling . 79
10.3.1 Modifying distribution files . 79
10.3.2 Desired file formatting . 79

10.4 Finding functions . 79
10.4.1 Using the ROADMAP . 79
10.4.2 Using grep to search . 80
10.4.3 Using git grep to search . 80
10.4.4 Using TAGS support . 80
10.4.5 Searching on the git repository at GitLab and Savannah . 80

10.5 Code style . 80
10.5.1 Languages . 80
10.5.2 Filenames . 81
10.5.3 Code formatting . 81
10.5.4 Naming Conventions . 83
10.5.5 Broken code . 83
10.5.6 Code comments . 83
10.5.7 Handling errors . 84
10.5.8 Localization . 84

10.6 Warnings, Errors, Progress and Debug Output . 85
Available log levels . 86
Functions for debug and log output . 86
All logging functions at a glance . 86

10.7 Debugging LilyPond . 87
10.7.1 Debugging overview . 88
10.7.2 Debugging C++ code . 88
10.7.3 Debugging Scheme code . 89
10.7.4 Debugging scoring algorithms . 91
10.7.5 Debugging skylines . 92

10.8 Tracing object relationships . 92
10.9 Adding or modifying features . 93

10.9.1 Write the code . 93
10.9.2 Write regression tests . 93

v

10.9.3 Write convert-ly rule . 94
10.9.4 Automatically update documentation . 94
10.9.5 Manually update documentation . 94
10.9.6 Edit changes.tely . 95
10.9.7 Verify successful build . 95
10.9.8 Verify regression tests . 95
10.9.9 Post patch for comments . 96
10.9.10 Push patch . 96
10.9.11 Closing the issues . 96

10.10 Iterator tutorial . 96
10.11 Engraver tutorial . 96

10.11.1 Useful methods for information processing . 96
10.11.2 Translation process . 97
10.11.3 Listening to music events . 97
10.11.4 Acknowledging grobs . 97
10.11.5 Engraver declaration/documentation . 98

10.12 Callback tutorial . 98
10.13 Understanding pure properties . 99

10.13.1 Purity in LilyPond . 99
10.13.2 Writing a pure function . 100
10.13.3 How purity is defined and stored . 100
10.13.4 Where purity is used . 100
10.13.5 Case studies . 100
10.13.6 Debugging tips . 101

10.14 LilyPond scoping . 101
10.15 Scheme->C interface . 102

10.15.1 Comparison . 102
10.15.2 Conversion . 103

10.16 Garbage collection for dummies . 103
10.17 LilyPond miscellany . 107

10.17.1 Spacing algorithms . 107
10.17.2 Info from Han-Wen email . 107
10.17.3 Music functions and GUILE debugging . 111
10.17.4 Articulations on EventChord . 112

11 Release work . 113
11.1 Development phases . 113
11.2 Release checklist . 113
11.3 Major release checklist . 116

12 Modifying the Emmentaler font . 118
12.1 Overview of the Emmentaler font . 118
12.2 Font creation tools . 118
12.3 Adding a new font section . 118
12.4 Adding a new glyph . 118
12.5 Building the changed font . 119
12.6 METAFONT formatting rules . 119

13 Administrative policies . 120
13.1 LilyPond is GNU Software . 120
13.2 Environment variables . 120
13.3 Performing yearly copyright update (“grand-replace”) . 120

vi

Appendix A GNU Free Documentation License 121

1

1 Introduction to contributing

This chapter presents a quick overview of ways that people can help LilyPond.

1.1 Help us

We need you!

Thank you for your interest in helping us — we would love to see you get involved! Your
contribution will help a large group of users make beautifully typeset music.

Even working on small tasks can have a big impact: taking care of them allows experienced
developers work on advanced tasks, instead of spending time on those simple tasks.

For a multi-faceted project like LilyPond, sometimes it’s tough to know where to begin. In

addition to the avenues proposed below, you can send an e-mail to the lilypond-devel@gnu.org

(https://lists.gnu.org/mailman/listinfo/lilypond-devel) mailing list, and we’ll help

you to get started.

Simple tasks

No programming skills required!

• Mailing list support: answer questions from fellow users. (This may entail helping them
navigate the online documentation; in such cases it may sometimes be appropriate to
point them to version-agnostic URL paths such as /latest/ (https://lilypond.org/doc/

latest/Documentation/notation/) or /stable/ (https://lilypond.org/doc/stable/

Documentation/notation/), which are automatically redirected.)

• Bug reporting: help users create proper Section “Bug reports” in General Information,
and/or join the Bug Squad to organize Section “Issues” in Contributor’s Guide.

• Documentation: small changes can be proposed by following the guidelines for Section
“Documentation suggestions” in Contributor’s Guide.

• LilyPond Snippet Repository (LSR): create and fix snippets following the guidelines in
Section “Adding and editing snippets” in Contributor’s Guide.

• Discussions, reviews, and testing: the developers often ask for feedback about new docu-
mentation, potential syntax changes, and testing new features. Please contribute to these
discussions!

Advanced tasks

These jobs generally require that you have the source code and can compile LilyPond.
☛ ✟

Note: We suggest that contributors using Windows or MacOS X do
not attempt to set up their own development environment; instead, use
Lilydev as discussed in Section “Quick start” in Contributor’s Guide.
✡ ✠

Contributors using Linux or FreeBSD may also use Lilydev, but if they prefer their own
development environment, they should read Section “Working with source code” in Contributor’s

Guide, and Section “Compiling” in Contributor’s Guide.

Begin by reading Section “Summary for experienced developers” in Contributor’s Guide.

• Documentation: for large changes, see Section “Documentation work” in Contributor’s

Guide.

• Website: the website is built from the normal documentation source. See the info about
documentation, and also Section “Website work” in Contributor’s Guide.

https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://lilypond.org/doc/latest/Documentation/notation/
https://lilypond.org/doc/latest/Documentation/notation/
https://lilypond.org/doc/stable/Documentation/notation/
https://lilypond.org/doc/stable/Documentation/notation/

Chapter 1: Introduction to contributing 2

• Translations: see Section “Translating the documentation” in Contributor’s Guide, and
Section “Translating the website” in Contributor’s Guide.

• Bugfixes or new features: read Section “Programming work” in Contributor’s Guide.

1.2 Overview of work flow

Advanced note: Experienced developers should skip to Section 1.3 [Summary for
experienced developers], page 2.

Git is a version control system that tracks the history of a program’s source code. The
LilyPond source code is maintained as a Git repository, which contains:

• all of the source files needed to build LilyPond, and

• a record of the entire history of every change made to every file since the program was born.

The ‘official’ LilyPond Git repository is hosted by the GNU Savannah software forge at
https://git.sv.gnu.org. The server provides two separate interfaces for viewing the Lily-
Pond Git repository online: cgit (https://git.sv.gnu.org/cgit/lilypond.git/) and gitweb
(https://git.sv.gnu.org/gitweb/?p=lilypond.git).

However, the main development takes place at https://gitlab.com/lilypond/lilypond/

, which also hosts the project’s issues. Automatic mirroring ensures that ‘important’ branches
(such as master and stable/*) are up-to-date on the ‘official’ repository at GNU Savannah, so
you can also base your development on a clone from there.

Compiling (‘building’) LilyPond allows developers to see how changes to the source code
affect the program itself. Compiling is also needed to package the program for specific operating
systems or distributions. LilyPond can be compiled from a local Git repository (for developers),
or from a downloaded tarball (for packagers). Compiling LilyPond is a rather involved process,
and most contributor tasks do not require it.

Contributors can contact the developers through the ‘lilypond-devel’ mailing list. The mail-
ing list archive is located at https://lists.gnu.org/archive/html/lilypond-devel/. If you
have a question for the developers, search the archives first to see if the issue has already been
discussed. Otherwise, send an email to lilypond-devel@gnu.org. You can subscribe to the
developers’ mailing list here: https://lists.gnu.org/mailman/listinfo/lilypond-devel.

☛ ✟

Note: Contributors on Windows or MacOS X wishing to compile code
or documentation are strongly advised to use our Debian LilyPond De-
veloper Remix, as discussed in Chapter 2 [Quick start], page 5.
✡ ✠

1.3 Summary for experienced developers

If you are already familiar with typical open-source tools, here’s what you need to know:

• ‘official’ source repository: hosted by GNU Savannah

https://git.savannah.gnu.org/gitweb/?p=lilypond.git

• development platform: hosted by GitLab; also includes the issue tracker (see Chapter 8
[Issues], page 68)

https://gitlab.com/lilypond/lilypond/

• environment variables: many maintenance scripts, and many instructions in this guide rely
on predefined Section 13.2 [Environment variables], page 120.

• mailing lists: given on Section “Contact” in General Information.

• Git branches:

• master: always base your work from this branch, but never push directly to it. Instead,
use GitLab to merge changes after they have passed automatic testing (see below).

https://git.sv.gnu.org
https://git.sv.gnu.org/cgit/lilypond.git/
https://git.sv.gnu.org/gitweb/?p=lilypond.git
https://git.sv.gnu.org/gitweb/?p=lilypond.git
https://gitlab.com/lilypond/lilypond/
https://lists.gnu.org/archive/html/lilypond-devel/
mailto:lilypond-devel@gnu.org
https://lists.gnu.org/mailman/listinfo/lilypond-devel
https://git.savannah.gnu.org/gitweb/?p=lilypond.git
https://gitlab.com/lilypond/lilypond/

Chapter 1: Introduction to contributing 3

• translation: Translators should base their work on this branch only and push any
translation patches directly to it as well.

• dev/foo: feel free to push any new branch name under dev/.

• regression tests: also known as “regtests”. A collection of more than a thousand .ly files
that are used to track LilyPond’s engraving output between released stable and unstable
versions as well as checked for all patches submitted for testing.

If a patch introduces any unintentional changes to any of the regtests it is very likely it will
be rejected (to be fixed) – always make sure that, if you expect any regression test changes,
that they are explained clearly as part of the patch description when submitting for testing.
For more information see Chapter 9 [Regression tests], page 72.

• reviews: after finishing work on a patch or branch:

1. Commit the changes and create a merge request. More information on this can be
found in the section Section 3.3.1 [Uploading a patch for review], page 14.

2. Patches are generally tested within 24 hours of submission. Once it has passed the
basic tests – make check, make, make doc – the tracker will be updated and the patch’s
status will change to Patch::review for other developers to examine.

3. Every third day, the “Patch Meister” will examine all merge requests currently un-
der review, looking for any comments by other developers. Depending on what
has been posted, the patch will be either; “moved on” to the next patch status
(Patch::countdown); set back to Patch::needs_work; or if more discussion is needed,
left at Patch::review. In all cases the merge request will be updated by the Patch
Meister accordingly.

4. Once another three days have passed, any patch that has been given Patch::countdown

status will be changed to Patch::push, the merge request is updated, and the developer
can now rebase and merge to the master branch (or ask one of the other developers to
merge it for you).

Advanced note: This process does means that most patches will take about
a week before finally being merged into master. With the limited resources
for reviewing patches available and a history of unintended breakages in the
master branch (from patches that have not had time to be reviewed properly),
this is the best compromise we have found.

1.4 Mentors

We have a semi-formal system of mentorship, similar to the medieval “journeyman/master”
training system. New contributors will have a dedicated mentor to help them “learn the ropes”.

☛ ✟

Note: This is subject to the availability of mentors; certain jobs have
more potential mentors than others.
✡ ✠

Contributor responsibilities

1. Ask your mentor which sections of the CG you should read.

2. If you get stuck for longer than 10 minutes, ask your mentor. They might not be able to help
you with all problems, but we find that new contributors often get stuck with something
that could be solved/explained with 2 or 3 sentences from a mentor.

3. If you have been working on a task much longer than was originally estimated, stop and ask
your mentor. There may have been a miscommunication, or there may be some time-saving
tips that could vastly simply your task.

4. Send patches to your mentor for initial comments.

Chapter 1: Introduction to contributing 4

5. Inform your mentor if you’re going to be away for a month, or if you leave entirely. Con-
tributing to lilypond isn’t for everybody; just let your mentor know so that we can reassign
that work to somebody else.

6. Inform your mentor if you’re willing to do more work – we always have way more work
than we have helpers available. We try to avoid overwhelming new contributors, so you’ll
be given less work than we think you can handle.

Mentor responsibilities

1. Respond to questions from your contributor(s) promptly, even if the response is just “sorry,
I don’t know” or “sorry, I’m very busy for the next 3 days; I’ll get back to you then”. Make
sure they feel valued.

2. Inform your contributor(s) about the expected turnaround for your emails – do you work
on lilypond every day, or every weekend, or what? Also, if you’ll be unavailable for longer
than usual (say, if you normally reply within 24 hours, but you’ll be at a conference for a
week), let your contributors know. Again, make sure they feel valued, and that your silence
(if they ask a question during that period) isn’t their fault.

3. Inform your contributor(s) if they need to do anything unusual for the builds, such as doing
a “make clean / doc-clean” or switching git branches (not expected, but just in case...)

4. You don’t need to be able to completely approve patches. Make sure the patch meets
whatever you know of the guidelines (for doc style, code indentation, whatever), and then
send it on to -devel for more comments. If you feel confident about the patch, you can push
it directly (this is mainly intended for docs and translations; code patches should almost
always go to -devel before being pushed).

5. Keep track of patches from your contributor. Either open merge requests yourself, or help
and encourage them to upload the patches themselves.

6. Encourage your contributor to review patches, particularly your own! It doesn’t matter if
they’re not familiar with C++ / scheme / build system / doc stuff – simply going through
the process is valuable. Besides, anybody can find a typo!

7. Contact your contributor at least once a week. The goal is just to get a conversation started
– there’s nothing wrong with simply copy&pasting this into an email:

Hey there,

How are things going? If you sent a patch and got a review, do

you know what you need to fix? If you sent a patch but have no

reviews yet, do you know when you will get reviews? If you are

working on a patch, what step(s) are you working on?

5

2 Quick start

Want to submit a patch for LilyPond? Great! Never created a patch before? Never compiled
software before? No problem! This chapter is for you and will help you do this as quickly and
easily as possible.

2.1 LilyDev
☛ ✟

Note: The following sections are based on LilyDev v2 and are not nec-
essarily correct for different releases.
✡ ✠

“LilyDev” is a custom GNU/Linux operating system which includes all the necessary software
and tools to compile LilyPond, the documentation and the website (also see Chapter 6 [Website
work], page 59).

While compiling LilyPond on Mac OS and Windows is possible, both environments are
complex to set up. LilyDev can be easily run inside a ‘virtual machine’ on either of these
operating systems relatively easily using readily available virtualization software. We recommend
using VirtualBox as it is available for all major operating systems and is very easy to install &
configure.

LilyDev comes in two ‘flavours’: containers and a standard disk image. Windows or Mac
OS users should choose the Debian disk image (to be run in a virtual machine), that is the file
named LilyDev-VERSION-debian-vm.zip. GNU/Linux users are recommended to choose one
of the containers (currently Debian or Fedora), which are smaller in size, lightweight and easier
to manage. The Fedora disk image has currently not been released, you can create it from the
sources located in the /mkosi subdirectory of the LilyDev repository, however.

Download the appropriate file from here:

https://github.com/fedelibre/LilyDev/releases/latest
☛ ✟

Note: Apart from installing and configuring LilyDev in VirtualBox,
the rest of the chapter assumes that you are comfortable using the
command-line and is intended for users who may have never created
a patch or compiled software before. More experienced developers (who
prefer to use their own development environment) may still find it in-
structive to skim over the following information.
✡ ✠

If you are not familiar with GNU/Linux, it may be beneficial to read a few “introduction to
Linux” type web pages.

Installing LilyDev in VirtualBox

This section discusses how to install and use LilyDev with VirtualBox.
☛ ✟

Note: If you already know how to install a virtual machine using a disc
image inside VirtualBox (or your own virtualization software) then you
can skip this section.
✡ ✠

1. Download VirtualBox from here:

https://www.virtualbox.org/wiki/Downloads

https://github.com/fedelibre/LilyDev/releases/latest
https://www.virtualbox.org/wiki/Downloads

Chapter 2: Quick start 6

☛ ✟

Note: In virtualization terminology, the operating system where
VirtualBox is installed is known as the host. LilyDev will be in-
stalled ‘inside’ VirtualBox as a guest.
✡ ✠

2. The zip archive you downloaded contains the raw disk image and its SHA256 checksum.
You can verify the integrity of the downloaded archive with any hashing tool your OS does
support. On Linux, run the following command in the directory where you have extracted
the files (this may take some time):

sha256sum -c SHA256SUMS

For Windows, look for the tools FCIV or certutil to compute the archive’s hash.

3. As VirtualBox does not support the raw format, you have to extract it and then convert it to
VDI format. Make sure that ‘VBoxManage’ is in your PATH or call it from your VirtualBox
installation directory:

VBoxManage convertfromraw LilyDev-VERSION-debian-vm.img \

LilyDev-VERSION-debian-vm.vdi
☛ ✟

Note: You need a fair amount of disk space (around 30GB) to
extract the raw image. After converting to a dynamic VirtualBox
image it will take up much less space (only the amount of space
that is actually allocated by the guest filesystem)
✡ ✠

4. Start the VirtualBox software and click ‘New’ to create a new “virtual machine”.

The ‘New Virtual Machine Wizard’ walks you through setting up your guest virtual machine.
Choose an appropriate name for your LilyDev installation and select the ‘Linux’ operating
system. When selecting the ‘version’ choose ‘Debian (64-bit)’. If you do not have that
specific option choose ‘Linux 2.6/3.x/4.x (64-bit)’.

5. Select the amount of RAM you allow the LilyDev guest to use from your host operating
system when it is running. If possible, use at least 1GB of RAM; the more RAM you can
spare from your host the better

6. In the ‘Hard Disk’ step, you use the VDI file you have previously created. You may move
it within the virtual machine’s folder already created by the wizard (in GNU/Linux the
default should be ~/VirtualBox VMs/NAME). Click on ‘Use an existing virtual hard disk
file’ and browse to the VDI file.

7. Verify the summary details and click ‘Create’ as soon as you are satisfied. Your new guest
shall be displayed in the VirtualBox window now.

8. Enable EFI within the virtual machine’s settings – click on System → Motherboard and
select ‘Extended features: Enable EFI’. Otherwise, you won’t be able to boot the image.

9. VirtualBox ‘guest additions’, which are installed by default in the debian image, provide
some additional features such as being able to dynamically resize the LilyDev window,
allow seamless interaction with your mouse pointer on both the host and guest, and let you
copy/paste between your host and guest if needed. It seems that dynamic window resizing
works only with the ‘VBoxVGA’ graphics controller, which you can choose in Display →
Graphics Controller. To enable clipboard sharing between guest and host, choose General
→ Advanced → Shared Clipboard → Bidirectional.

10. Click the ‘Start’ button and wait until the login screen appears. Log in as dev user then;
type the password lilypond. Before starting any work, be sure to complete the next steps.

☛ ✟

Note: Since the default keyboard layout is US (American), you
may have to type the password differently if you are using another
layout, like ‘lilzpond’ on a German keyboard, for example.
✡ ✠

Chapter 2: Quick start 7

11. Open a terminal by clicking Applications → Terminal at the upper left of the screen. You
may want to change the password of user ‘dev’ before doing further work with the command
passwd.

12. You might need to change the keyboard layout from default US (American) to your national
layout. Therefore open a terminal and run

sudo dpkg-reconfigure keyboard-configuration
☛ ✟

Note: You need superuser rights to change certain aspects of the
system configuration. The sudo tool allows to gain superuser rights
temporarily. It does show you a warning message on its first use
that reminds you to use your extended rights carefully.
✡ ✠

At first, you are prompted for the model of your keyboard. Press Enter to show further
models. In most cases, it is sufficient to choose ‘Generic, 105 keys’. After that, choose
your keyboard layout. Now, you can customize the function of your AltGr key. Normally,
the default layout settings fit well, so take number 1. The same holds for the question
of whether you want to configure a ‘compose’ key. At last, you are asked if you want to
configure Ctrl+Alt+Backspace as a shortcut to terminate the X server. Presumably, you
do not need this, so you can safely type ‘no’.

13. To set up your system language (charset, localized messages etc.), continue with

sudo dpkg-reconfigure locales
☛ ✟

Note: Restarting is required in order to take the changes into effect.
✡ ✠

14.

Finally, you should run a setup script. If you are on the command line already, simply
type ./setup.sh to run the interactive script that does set up git and downloads all the
repositories needed to build LilyPond.

Configuring LilyDev in VirtualBox

• In the settings for the virtual machine, set the network to Bridged mode to allow you to
access shared folders when using Windows hosts.

• Set up any additional features, such as ‘Shared Folders’ between your main operating system
and LilyDev. This is distinct from the networked share folders in Windows. Consult the
external documentation for this.

Some longtime contributors have reported that ‘shared folders’ are rarely useful and not
worth the fuss, particularly since files can be shared over a network instead.

• Pasting into a terminal is done with Ctrl+Shift+v.

• Right-click allows you to edit a file with the text editor (default is Leafpad).

Known issues and warnings

Not all hardware is supported in all virtualization tools. In particular, some contributors have
reported problems with USB network adapters. If you have problems with network connection
(for example Internet connection in the host system is lost when you launch virtual system), try
installing and running LilyDev with your computer’s built-in network adapter used to connect
to the network. Refer to the help documentation that comes with your virtualization software.

2.2 Compiling with LilyDev

LilyDev is our custom GNU/Linux which contains all the necessary dependencies to do LilyPond
development; for more information, see Section 2.1 [LilyDev], page 5.

Chapter 2: Quick start 8

Preparing the build

To prepare the build directory, enter (or copy&paste) the below text. This should take less than
a minute.

cd $LILYPOND_GIT

sh autogen.sh --noconfigure

mkdir -p build/

cd build/

../configure

Building lilypond

Compiling LilyPond will take anywhere between 1 and 15 minutes on most ‘modern’ computers
– depending on CPU and available RAM. We also recommend that you minimize the terminal
window while it is building; this can help speed up on compilation times.

cd $LILYPOND_GIT/build/

make

It is possible to run make with the -j option to help speed up compilation times even more. See
Section 4.5 [Compiling LilyPond], page 29,

You may run the compiled lilypond with:

cd $LILYPOND_GIT/build/

out/bin/lilypond my-file.ly

Building the documentation

Compiling the documentation is a much more involved process, and will likely take 2 to 10 hours.

cd $LILYPOND_GIT/build/

make

make doc

The documentation is put in out-www/offline-root/. You may view the html files by
entering the below text; we recommend that you bookmark the resulting page:

firefox $LILYPOND_GIT/build/out-www/offline-root/index.html

Installing

Don’t. There is no reason to install LilyPond within LilyDev. All development work can (and
should) stay within the $LILYPOND_GIT directory, and any personal composition or typesetting
work should be done with an official release.

Problems and other options

To select different build options, or isolate certain parts of the build, or to use multiple CPUs
while building, read Chapter 4 [Compiling], page 21.

In particular, contributors working on the documentation should be aware of some bugs in
the build system, and should read the workarounds in Section 4.6.2 [Generating documentation],
page 30.

2.3 Now start work!

LilyDev users may now skip to the chapter which is aimed at their intended contributions:

• Chapter 5 [Documentation work], page 35,

• Section 5.9 [Translating the documentation], page 50,

• Chapter 6 [Website work], page 59,

Chapter 2: Quick start 9

• Chapter 9 [Regression tests], page 72,

• Chapter 10 [Programming work], page 76,

These chapters are mainly intended for people not using LilyDev, but they contain extra
information about the “behind-the-scenes” activities. We recommend that you read these at
your leisure, a few weeks after beginning work with LilyDev.

• Chapter 3 [Working with source code], page 10,

• Chapter 4 [Compiling], page 21,

10

3 Working with source code

The LilyPond project uses Git (https://git-scm.com/) as a version control system. This sec-
tion is intended at getting new contributors started with Git, and helping senior developers with
less frequently used procedures.

3.1 Setting up

3.1.1 Installing Git

On UNIX systems (such as GNU/Linux, macOS, FreeBSD), the easiest way to download and
install Git is through a package manager. Alternatively, you can visit the Git website (https://

git-scm.com/) for downloadable installers.

For convenience, you may also install a graphical front-end to Git. Packaged in the installers
come gitk (for browsing the history) and git-gui (for committing). Git’s official website pro-
vides a list of GUI clients (https://git-scm.com/downloads/guis/), including free software
for various platforms.

3.1.2 Creating a GitLab account and setting up SSH

First of all, since the patch review happens on GitLab, you need to create an account there if
you do not already have one. Visit https://gitlab.com and register.

Second, you have to configure SSH keys for your GitLab account. The GitLab documenta-
tion has a dedicated page (https://docs.gitlab.com/ee/user/ssh.html) explaining the full
steps. (Although this initial setup may look a little tedious, it ensures that you will not need to
log in with your GitLab credentials every time you need to create or modify a merge request.)

Note that on the first Git operation you perform that involves connecting with GitLab
(namely git clone if you follow the rest of this section in order), SSH will issue the follow-
ing warning:

The authenticity of host 'gitlab.com' can't be established.

ECDSA key fingerprint is SHA256:HbW3g8zUjNSksFbqTiUWPWg2Bq1x8xdGUrliXFzSnUw.

Are you sure you want to continue connecting (yes/no/[fingerprint])?

When you see this, make sure the key fingerprint displayed matches the one above or one
of the others published by GitLab (https://docs.gitlab.com/ee/user/gitlab_com/index.

html#ssh-host-keys-fingerprints). If it doesn’t, respond “no” and check that you config-
ured Git properly in the previous step. If it does match, respond “yes”. SSH should then issue
another warning:

Warning: Permanently added 'gitlab.com' (ECDSA) to the list of known hosts.

The list of known hosts is stored in the file ~/.ssh/known_hosts.

You might see error messages like these:

Permission denied (publickey).

fatal: The remote end hung up unexpectedly

If you get the above error, you may have made a mistake when registering your SSH key. If
the key is properly registered and it still doesn’t work after an hour, ask for help on the mailing
list.

If you would like to work on LilyPond from several machines, you may simply copy the .ssh

folder contents from one to the other.

https://git-scm.com/
https://git-scm.com/
https://git-scm.com/
https://git-scm.com/downloads/guis/
https://gitlab.com
https://docs.gitlab.com/ee/user/ssh.html
https://docs.gitlab.com/ee/user/gitlab_com/index.html#ssh-host-keys-fingerprints
https://docs.gitlab.com/ee/user/gitlab_com/index.html#ssh-host-keys-fingerprints

Chapter 3: Working with source code 11

3.1.3 Cloning and forking the repository

Clone the LilyPond repository (https://gitlab.com/lilypond/lilypond) to get the source
code and its history:

git clone git@gitlab.com:lilypond/lilypond.git

New contributors need to fork it in order to push branches. Using a fork is no longer nec-
essary (but may be convenient) when you are given developer access. Visit https://gitlab.

com/lilypond/lilypond and press “Fork” on the top right. After the fork is created, set up a
new remote:

cd lilypond

git remote add fork git@gitlab.com:your-username/lilypond.git

To list remote repositories that are configured, along with their URLs:

git remote -v

You should have origin pointing to the official LilyPond repository, and fork pointing to
your your private fork.

3.1.4 Configuring Git

Settings apply to any repository on your computer, unless you leave out the --global option.

You first need configure some basic settings required for keeping track of commit authors:

git config --global user.name "John Smith"

git config --global user.email john@example.com

It is also recommended to enable colored output:

git config --global color.ui auto

If none of your editor-related environment variables are set, the default text editor used for
writing commit messages, etc., is usually vim. If your are not familiar with it, change it to an
editor that you are comfortable with; for example, Gedit:

git config --global core.editor gedit

Finally, and in some ways most importantly, let’s make sure that we can easily see the state
of our working copy. If you are not using LilyDev or Windows, add the following lines to your
~/.bashrc:

export PS1="\u@\h \w\$(__git_ps1)$ "

export GIT_PS1_SHOWDIRTYSTATE=true

export GIT_PS1_SHOWUNTRACKEDFILES=true

export GIT_PS1_SHOWUPSTREAM=auto

After starting a new terminal, your prompt will show the current branch (this term and
others are explained below). Additionally, some symbols next to the branch name indicate
certain states. A star “*” means that there are unstaged changes. With a plus “+”, the changes
are staged. If there are untracked files, a percent “%” will appear. Finally, we can also see the
state of the local repository compared to upstream: “=” means up to date, “<” is behind, “>”
is ahead, “<>” means they have diverged.

You may need to install the additional bash-completion package.

3.2 Git cheat sheet

The intent of this section is to get you working on LilyPond quickly. If you want to learn about
Git, go read Section 3.6 [Further Git documentation resources], page 17.

Also, these instructions are designed to eliminate the most common problems we have found
in using Git. If you already know Git and have a different way of working, great! Feel free to
ignore this advice.

https://gitlab.com/lilypond/lilypond
https://gitlab.com/lilypond/lilypond
https://gitlab.com/lilypond/lilypond

Chapter 3: Working with source code 12

Pulling recent changes

As LilyPond’s source code is continously improved, it is wise to integrate recent changes into
your local copy whenever you start a working session. On the master branch (this term is
explained below), run:

git pull

Viewing the history

Each change is contained in a commit with an explanatory message. To list commits starting
from the latest:

git log

Press Enter to see more or Q to exit.

Start work: make a new branch

The Git workflow is based on branches, which can be viewed as different copies of the source
code with concurrent changes that are eventually merged. You start a contribution by creating a
branch, freezing the initial state of the source code you will base your work onto. Ultimately, your
branch will be merged in master. This latter special branch centralizes all features developed
simultaneously and is the source for unstable releases.

☛ ✟

Note: Remember, never directly commit to master.
✡ ✠

Let’s pretend you want to add a section to the Contributor’s Guide about using branches.
To create a new branch for this:

git branch cg-add-branches

Switching branches

Switching branches is somehow like “loading a file”, although in this case it is really “loading a
directory and subdirectories full of files”. The command to use is git switch1

git switch master

git switch cg-add-branches

git switch origin/release/unstable

Branches that begin with origin/ are part of the remote repository, rather than your local
repository, so when you check them out you get a temporary local branch. Therefore, do not
commit to these either. Always work in a local branch.

Listing branches

To list local branches:

git branch

If you want remote branches too:

git branch -a

In the output, the current branch is prefixed with a star.

Staging and committing files

Now edit files. To show a summary of your edits:

git status

1 If you are using an outdated version of Git (older than 2.23), you need to use git checkout instead.

Chapter 3: Working with source code 13

For every file that you modified or added, first preview your changes:

git diff file

If everything looks right:

git add file

Then commit your changes:

git commit

A text editor window appears for you to write a commit message. See Section 3.4 [Writing
good commit messages], page 16.

Amending and reverting changes

To add some more changes to the latest commit, stage them using git add, then run:

git commit --amend

This also works for rephrasing the commit message.

To revert changes to a file that has not been committed yet, use git restore2:

git restore filename

To get back to the last commit, discarding all changes :

git reset --hard HEAD

If the commit to edit is not the top one, you need to perform an interactive rebase with git

rebase -i $(git merge-base master HEAD). The full functionality of git rebase -i is not
covered here; please try it and follow Git’s instructions or read any tutorial on the Web.

Uploading your branch for review

To upload the current branch on the remote repository:

git push -u fork cg-add-branches

This sets the remote branch so subsequent pushes are simpler:

git push

The next section covers how to create a merge request from your branch.

In response to review comments, you may need to amend your changes. Do not close your
merge request and open a new one; instead, amend your commits, which can be done with git

commit --amend or git rebase -i as explained above. Note that Git will by default refuse a
push when you have amended your commits. This is because this kind of push is a destructive
operation: once it is done, the old commits are no longer available on the remote branch. Git
prevents this as a safety measure against deleting commits added by someone else without you
realizing it. Do not follow Git’s advice to do git pull (which would try to integrate the remote
changes into the local ones); instead, just force it with

git push --force-with-lease

Also note that due to the way GitLab compares successive revisions of a merge request,
it is preferable if you do not mix catching up with master and changing your commits. In
other words, use git rebase -i $(git merge-base master HEAD) rather than git rebase -i

master. Alternatively, first rebase on master and push, then do the interactive rebase and push
again.

2 If you are using an outdated version of Git (older than 2.23), you need to use git checkout instead.

Chapter 3: Working with source code 14

Deleting branches

After the merge request has passed testing and was merged to master, or after a failed experi-
ment, you can delete your local branch.

git switch master

git branch -d cg-add-branches

As a safety measure, this will fail if the commits of cg-add-branches are not present in
master. This can be because you used GitLab to rebase your branch, which modifies the
commit data and changes the hash. If you are sure that the branch is not needed anymore,
replace the -d on the final line with a -D instead.

Over time, remote branches of accepted merge requests may accumulate in your local repos-
itory. If you want to delete these and get back to the state of the official repository, run

git fetch -p origin

(short for --prune) once in a while.

3.3 Lifecycle of a merge request

3.3.1 Uploading a patch for review

Any non-trivial change should be reviewed as a merge request:

https://gitlab.com/lilypond/lilypond/-/merge_requests

Ensure your branch differs from latest master by just the changes to be uploaded.

Make sure that make, make test and make doc succeed. Even if the individual commits
contain incomplete features, they must all pass these tests.

Branches pushed on the main repository should start with dev/.

After pushing, create a merge request to start the review cycle. There are multiple options
for this as outlined in GitLab’s documentation (https://docs.gitlab.com/ee/user/project/

merge_requests/). This will also ask you for a message that will accompany your patch.

If you are not a member of the team and create the merge request from a fork, consider
enabling the box to “Allow commits from members who can merge to the target branch”. This
makes it possible for somebody with permissions to rebase your changes and merge them for
you. Please refer to Section 3.3.4 [Merging to master], page 15, for more details.

☛ ✟

Note: When commenting on GitLab, be careful if you talk about Texinfo
markup. An ‘@’ sign is taken as introducing a mention. If you leave it
without special markup, ‘@foo’ makes the person who has foo as a Git-
Lab username receive unsolicited notifications. To avoid this, enclose
the markup in backticks: `@lilypond`. For code suggestions, there
is also a dedicated feature, see the GitLab documentation (https://

docs.gitlab.com/ee/user/project/merge_requests/reviews/

suggestions.html) for information.
✡ ✠

3.3.2 Automated testing

When a merge request is opened, a bot automatically adds the Patch::new label to it, and it
enters the countdown cycle. GitLab triggers automated testing which ensures that the patch
completes make, make check, and make doc. After testing succeeds, the patch author or a
reviewer should check regression test results. To find these, first view the log for the make check

step. Currently, this can be reached by clicking the second of the three check marks next to the
text “Detached merge request pipeline passed . . . ”. You will find a link to the regression test

https://gitlab.com/lilypond/lilypond/-/merge_requests
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/merge_requests/
https://docs.gitlab.com/ee/user/project/merge_requests/reviews/suggestions.html
https://docs.gitlab.com/ee/user/project/merge_requests/reviews/suggestions.html
https://docs.gitlab.com/ee/user/project/merge_requests/reviews/suggestions.html

Chapter 3: Working with source code 15

visual comparison at the very end of the log. If tests display no obviously bad differences, the
patch can be advanced to Patch::review. If the size of the regression test visual differences
allows it, please paste screenshots of them on the merge request for easier review. Otherwise,
simply paste a link to the full HTML diff. Also, for changes which are by nature not expected
to yield regression test differences, such as documentation improvements, it is not necessary
to leave a comment at all. In case any of the testing steps fails, the patch should be set to
Patch::needs_work. When revisions are made, this process repeats (if the regression test diff
is not changed by the latest iteration, a comment stating so can replace posting screenshots
again).

3.3.3 Patch countdown

The Patch Meister is the person who advances patches in the countdown process based on review
comments.

☛ ✟

Note: The Patch Meister’s role is a purely administrative one and no
programming skill or judgement is assumed or required.
✡ ✠

The current Patch Meister is Colin Campbell cpkc.music@shaw.ca.

The Patch Meister reviews the tracker periodically, to list patches which have been on review
for at least 24 hours. For each patch, the Handler reviews any discussion on the merge request,
to determine whether the patch can go forward. If there is any indication that a developer
thinks the patch is not ready, the Handler marks it Patch::needs_work and makes a comment
regarding the reason, referring to the comment if needed.

Patches with explicit approval, or at least no negative comment, are updated to
Patch::countdown. The countdown is a 48-hour waiting period in which any final reviews or
complaints should be made.

The Patch Meister sends an email to the developer list. The subject line has a fixed format-
ting, to enable filtering by email clients, like so:

PATCHES: Countdown for February 30th

The text of the email sets the deadline for this countdown batch. At present, batches are
done on Tuesday, Thursday and Sunday evenings.

At the next countdown, if no problems were found, the patch will be set to Patch::push.
New contributors should ask for it to be merged. Developers merge their patches themselves,
see Section 3.3.4 [Merging to master], page 15, and Section 3.5 [Commit access], page 17.

Alternately, your patch may be set to Patch::needs_work, indicating that you should fix
something (or at least discuss why the patch needs no modification). It also happens that
patches waiting for minor fixes are put on countdown a second time.

Successive revisions are made in response to comments are uploaded by pushing to the same
branch. GitLab automatically keeps track of all pushed commits and allows to compare revisions
with each other.

As in most organisations of unpaid volunteers, fixed procedures are useful in as much as they
get the job done. In our community, there is room for senior developers to bypass normal patch
handling flows, particularly now that the testing of patches is largely automated. Similarly, the
minimum age of 24 hours can reasonably be waived if the patch is minor and from an experienced
developer.

3.3.4 Merging to master

Before allowing a merge request to be merged, GitLab ensures the following:

mailto:cpkc.music@shaw.ca

Chapter 3: Working with source code 16

1. The merge must be fast-forward. In most cases, this can be achieved by ‘rebasing’ the
branch with the most recent commits from master. This can be handled via GitLab, if no
conflicts arise. Otherwise, or if preferred, the operation can be performed locally.

2. The (possibly rebased) changes must have passed automatic testing. This ensures that the
master branch is always clean and ready for development and translation.

After rebasing, GitLab will immediately start the automatic testing pipeline. At the moment,
all steps may take up to one hour to complete. If you are confident about the rebased result of
your changes, you may click “Merge when pipeline succeeds” to avoid waiting for the tests. On
failure, the merge will be aborted and no harm is done to the master branch.

Because GitLab enforces fast-forward merges, this means only one set of changes can be
rebased and merged at once. A second merge request would be rejected later on because it does
not contain the commit(s) merged first. To avoid wasting testing resources, please avoid this
situation and check first if a pipeline with a scheduled merge is already running. View the list
of merge requests (https://gitlab.com/lilypond/lilypond/-/merge_requests) and verify
that no merge request with Patch::push status has a blue “timer” icon.

How to merge a branch without rebasing

It is generally recommended to rebase commits before merging to get a linear history. However,
this is not always possible or wanted. This particularly holds for the translation branch and
release/unstable which cannot be force-pushed. For these cases, use the following procedure:

1. Merge the branch manually using the command line. The example assumes no pending
changes in the local master branch and merges the translation branch:

git switch master

git pull

git merge translation

git push origin HEAD:translation

2. Open a merge request at GitLab. This will immediately trigger automatic testing as de-
scribed above.

3. Accept the merge request once the testing finishes, or use the button to “Merge when
pipeline succeeds”.

3.3.5 Abandoned patches

Roughly at six month intervals, the Patch Meister can list the patches which have been set
to Patch::needs_work and send the results to the developer list for review. In most cases,
these patches should be marked Patch::abandoned but this should come from the developer if
possible.

3.4 Writing good commit messages

Your commit message should begin with a one-line summary describing the change (no more than
50 characters long), and if necessary a blank line followed by more explanatory text (wrapped
at 72 characters). Here is how a good commit message looks like:

Doc: add Baerenreiter and Henle solo cello suites

Added comparison of solo cello suite engravings to new essay with

high-resolution images. Fixed cropping on Finale example.

Closes #1234.

https://gitlab.com/lilypond/lilypond/-/merge_requests
https://gitlab.com/lilypond/lilypond/-/merge_requests

Chapter 3: Working with source code 17

The “Closes” part is specially recognized by GitLab. See the documentation for closing issues
automatically (https://docs.gitlab.com/ee/user/project/issues/managing_issues.

html#closing-issues-automatically).

Commit messages often start with a short prefix describing the general location of the changes.
Commit affecting the documentation in English (or in several languages simultaneously) should
be prefixed with “Doc:”. When the commit affects only one of the translations, use “Doc-**:”,
where ** is the two-letter language code. For the website, this is “Web:” or “Web-**”. Commits
that change CSS files should use “Web: CSS” or “Doc: CSS:”. Finally, changes to a single file
are often prefixed with the name of the file involved.

The imperative form, e.g. “Include this in that”, is strongly preferred over the descriptive
form “That is now included in this”.

See also this blog post (https://chris.beams.io/posts/git-commit/) for details on how
to write good commit messages.

3.5 Commit access

New contributors are not able to push branches directly to the main repository – only members
of the LilyPond development team have commit access. If you are a contributor and are inter-
ested in joining the development team, contact the Project Manager through the mailing list
(lilypond-devel@gnu.org). Generally, only contributors who have already provided a number
of patches which have been merged to the main repository will be considered for membership.

If you have been approved by the Project Manager, navigate to https://gitlab.com/

lilypond and ‘Request access’ to the group. Make sure that your account can be related
to your activity on the mailing list. If in doubt, please post the user name after requesting
access.

Note that you will not have commit access until the Project Manager activates your member-
ship. Once your membership is activated, LilyPond should appear under the heading “Groups”
on your profile page. When this is done, you can test your commit access with a dry run:

git push --dry-run --verbose

3.6 Further Git documentation resources

The following page on the Git website provides links to the Pro Git book and a variety of
tutorials, as well as the official man pages (also available with man git ...).

https://git-scm.com/doc

The GitLab user documentation contains tutorials on using Git and GitLab:

https://docs.gitlab.com/ee/tutorials/#use-git

3.7 Repository directory structure

Prebuilt Documentation and packages are available from:

http://www.lilypond.org

LilyPond development is hosted at:

http://savannah.gnu.org/projects/lilypond

Here is a simple explanation of the directory layout for

LilyPond's source files.

https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically
https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically
https://docs.gitlab.com/ee/user/project/issues/managing_issues.html#closing-issues-automatically
https://chris.beams.io/posts/git-commit/
mailto:lilypond-devel@gnu.org
https://gitlab.com/lilypond
https://gitlab.com/lilypond
https://git-scm.com/doc
https://docs.gitlab.com/ee/tutorials/#use-git

Chapter 3: Working with source code 18

. Toplevel READMEs, files for

| configuration and building, etc.

|

|-- Documentation/ Top sources for most of the manuals

| |

| |

| | INDIVIDUAL CHAPTERS FOR EACH MANUAL:

| | Note: "Snippets" and "Internals Reference" are

| | auto-generated during the Documentation Build process.

| |

| |

| |-- en/contributor/ Contributor's Guide

| |-- en/essay/ Essay on automated music engraving

| |-- en/extending/ Extending the functionality of LilyPond

| |-- en/included/ Doc files that are used more than once

| |-- en/learning/ Learning Manual

| |-- en/notation/ Notation Reference

| |-- en/usage/ How to run the programs that come with LilyPond

| |-- en/web/ Website files

| |

| |

| | TRANSLATED MANUALS:

| | Each language's directory can contain...

| | 1) translated versions of:

| | * "en/*" sources for manuals

| | * individual chapters for each manual

| | 2) a texidocs/ directory for snippet translations

| |

| |-- ca/ Catalan

| |-- cs/ Czech

| |-- de/ German

| |-- es/ Spanish

| |-- fr/ French

| |-- hu/ Hungarian

| |-- it/ Italian

| |-- ja/ Japanese

| |-- nl/ Dutch

| |-- pt/ Portuguese

| |-- zh/ Chinese

| |

| |

| | MISCELLANEOUS DOC STUFF:

| |

| |-- bib/ Bibliography files for documentation

| |-- css/ CSS files for HTML docs

| |-- logo/ Web logo and "note" icon

| |-- ly-examples/ .ly files for the "Examples" webpage

| |-- misc/ Old announcements, ChangeLogs and NEWS

| |-- pictures/ Images used (eps/jpg/png/svg)

| | `-- pdf/ (pdf)

| |-- po/ Translated build/maintenance scripts

Chapter 3: Working with source code 19

| |-- snippets/ Auto-generated from the LSR and from ./new/

| | `-- new/ Snippets too new for the LSR

| |-- topdocs/ AUTHORS, INSTALL

| `-- tex/ TeX and texinfo library files

|

|

| C++ SOURCES:

|

|-- flower/ A simple C++ library

| `-- include/ C++ header files for basic LilyPond structures

|-- lily/ C++ sources for the LilyPond binary

| `-- include/ C++ header files for higher-level stuff

|

|

| LIBRARIES:

|

|-- ly/ .ly \include files

|-- mf/ MetaFont sources for Emmentaler fonts

|-- ps/ PostScript library files

|-- scm/ Scheme sources for LilyPond and subroutine files

|

|

| SCRIPTS:

|

|-- config/ Autoconf helpers for configure script

|-- python/ Python modules, MIDI module

| `-- auxiliar/ Python modules for build/maintenance

|-- scripts/ End-user scripts (--> lilypond/usr/bin/)

| |-- auxiliar/ Maintenance and non-essential build scripts

| `-- build/ Essential build scripts

|

|

| BUILD PROCESS:

| (also see SCRIPTS section above)

|

|-- make/ Specific make subroutine files

|

|

| REGRESSION TESTS:

|

|-- input/

| `-- regression/ .ly regression tests

| |-- abc2ly/ .abc regression tests

| |-- lilypond-book/

| | lilypond-book regression tests

| |-- midi/ midi2ly regression tests

| |-- musicxml/ .xml and .itexi regression tests

| `-- other/ regression tests without graphical output

|

|

| MISCELLANEOUS:

|

Chapter 3: Working with source code 20

|-- elisp/ Emacs LilyPond mode and syntax coloring

|-- vim/ Vi(M) LilyPond mode and syntax coloring

|-- po/ Translations for binaries and end-user scripts

`-- docker/

`-- ci/ Support for continuous integration (CI) on gitlab

21

4 Compiling

This chapter describes the process of compiling the LilyPond program from source files.

4.1 Overview of compiling

Compiling LilyPond from source is an involved process, and is only recommended for developers
and packagers. Typical program users are instead encouraged to obtain the program from a
package manager (on Unix) or by downloading a precompiled binary configured for a specific
operating system. Pre-compiled binaries are available on the Section “Download” in General

Information page.

Compiling LilyPond from source is necessary if you want to build, install, or test your own
version of the program.

A successful compile can also be used to generate and install the documentation, incorpo-
rating any changes you may have made. However, a successful compile is not a requirement
for generating the documentation. The documentation can be built using a Git repository in
conjunction with a locally installed copy of the program. For more information, see [Building
documentation without compiling], page 32.

Attempts to compile LilyPond natively on Windows have been unsuccessful, though a
workaround is available (see Section “LilyDev” in Contributor’s Guide).

4.2 Requirements

4.2.1 Requirements for running LilyPond

This section contains the list of software packages that are required to run LilyPond (this is, to
successfully execute the lilypond binary and its subprograms to output a PDF, and to execute
other programs like lilypond-book that are installed, too).

Additional software packages are necessary to compile LilyPond from its sources; this gets
handled in a later section.

• FontConfig (https://www.fontconfig.org)
Use version 2.4.0 or newer.

• FreeType (https://www.freetype.org)
Use version 2.3.9 or newer.

• Ghostscript (https://www.ghostscript.com)
Use version 9.03 or newer.

• Guile (https://www.gnu.org/software/guile/guile.html)
Use version 2.2 or 3.0.

• Pango (https://www.pango.org)
Use version 1.40 or newer.

• Python (https://www.python.org)
Use version 3.6 or newer.

• Text fonts
By default, LilyPond attempts to use the following text fonts, in descending order:

• The families C059, Nimbus Mono PS, and Nimbus Sans of the URW++ package.

• The families Cursor, Heros, and Schola of the TeX Gyre package.

LilyPond requires the OTF files, which some distributions do not provide. If they are
missing, download and manually extract the OTF files to your local ~/.fonts/ directory.

For more details on text fonts, please see Section “Fonts” in Notation Reference.

https://www.fontconfig.org
https://www.freetype.org
https://www.ghostscript.com
https://www.gnu.org/software/guile/guile.html
https://www.pango.org
https://www.python.org

Chapter 4: Compiling 22

4.2.2 Requirements for compiling LilyPond

This section contains instructions on how to quickly and easily get all the software packages
required to build LilyPond.

Most of the more popular Linux distributions only require a few simple commands to down-
load all the software needed. For others, there is an explicit list of all the individual packages
(as well as where to get them from) for those that are not already included in your distributions’
own repositories.

Additional software packages are necessary to compile LilyPond’s documentation from its
sources; this gets handled in a later section.

Fedora

The following instructions were tested on ‘Fedora’ versions 22 & 23 and will download all the
software required to both compile LilyPond and build the documentation.

• Download and install all the LilyPond build-dependencies (approximately 700MB);

sudo dnf builddep lilypond --nogpgcheck

• Download and install additional ‘build’ tools required for compiling;

sudo dnf install autoconf gcc-c++

• Download texi2html 1.82 directly from: http://download.savannah.gnu.org/

releases/texi2html/texi2html-1.82.tar.gz;

texi2html is only required if you intend to compile LilyPond’s own documentation (e.g.,
to help with any document writing). The version available in the Fedora repositories is too
new and will not work. Extract the files into an appropriate location and then run the
commands;

./configure

make

sudo make install

This should install texi2html 1.82 into /usr/local/bin, which will normally take prior-
ity over /usr/bin where the later, pre-installed versions gets put. Now verify that your
operating system is able to see the correct version of texi2html.

texi2html --version

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo dnf install git

Also see Section “Working with source code” in Contributor’s Guide.

☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTEX is
used. However ligatures (fi, fl, ff, etc.) may not be printed in the PDF
output. In this case XeTEX can be used instead. Download and install
the texlive-xetex package.

sudo dnf install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTEX
instead of pdfTEX to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠

http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz

Chapter 4: Compiling 23

Linux Mint

The following instructions were tested on ‘Linux Mint 17.1’ and ‘LMDE - Betsy’ and will down-
load all the software required to both compile LilyPond and build the documentation..

• Enable the sources repository;

1. Using the Software Sources GUI (located under Administration).

2. Select Official Repositories.

3. Check the Enable source code repositories box under the Source Code section.

4. Click the Update the cache button and when it has completed, close the Software

Sources GUI.

• Download and install all the LilyPond build-dependencies (approximately 200MB);

sudo apt-get build-dep lilypond

• Download and install additional ‘build’ tools required for compiling;

sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo apt-get install git

Also see Section “Working with source code” in Contributor’s Guide.

☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTEX is
used. However ligatures (fi, fl, ff, etc.) may not be printed in the PDF
output. In this case XeTEX can be used instead. Download and install
the texlive-xetex package.

sudo apt-get install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTEX
instead of pdfTEX to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠

OpenSUSE

The following instructions were tested on ‘OpenSUSE 13.2’ and will download all the software
required to both compile LilyPond and build the documentation.

• Add the sources repository;

sudo zypper addrepo -f \
"http://download.opensuse.org/source/distribution/13.2/repo/oss/" sources

• Download and install all the LilyPond build-dependencies (approximately 680MB);

sudo zypper source-install lilypond

• Download and install additional ‘build’ tools required for compiling;

sudo zypper install make

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo zypper install git

Also see Section “Working with source code” in Contributor’s Guide.

Chapter 4: Compiling 24

☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTEX is
used. However ligatures (fi, fl, ff, etc.) may not be printed in the PDF
output. In this case XeTEX can be used instead. Download and install
the texlive-xetex package.

sudo zypper install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTEX
instead of pdfTEX to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠

Ubuntu

The following commands were tested on Ubuntu versions 14.04 LTS, 14.10 and 15.04 and will
download all the software required to both compile LilyPond and build the documentation.

• Download and install all the LilyPond build-dependencies (approximately 200MB);

sudo apt-get build-dep lilypond

• Download and install additional ‘build’ tools required for compiling;

sudo apt-get install autoconf fonts-texgyre texlive-lang-cyrillic

• Although not ‘required’ to compile LilyPond, if you intend to contribute to LilyPond (code-
base or help improve the documentation) then it is recommended that you also need to
install git.

sudo apt-get install git

Also see Section “Working with source code” in Contributor’s Guide.
☛ ✟

Note: By default, when building LilyPond’s documentation, pdfTEX is
used. However ligatures (fi, fl, ff, etc.) may not be printed in the PDF
output. In this case XeTEX can be used instead. Download and install
the texlive-xetex package.

sudo apt-get install texlive-xetex

The scripts used to build the LilyPond documentation will use XeTEX
instead of pdfTEX to generate the PDF documents if it is available. No
additional configuration is required.
✡ ✠

Other

The following software packages are required to compile LilyPond, in addition to the run-time
packages (see Section 4.2.1 [Requirements for running LilyPond], page 21).

• GNU Autoconf (https://www.gnu.org/software/autoconf)

• pkg-config (https://www.freedesktop.org/wiki/Software/pkg-config)

• GNU Bison (https://www.gnu.org/software/bison)
Use version 2.4.1 or newer.

• Compiler with support for C++14
Version 5 or newer of the GNU Compiler Collection (https://gcc.gnu.org) and version
3.5 or newer of Clang (https://clang.llvm.org) should work.

• Flex (https://github.com/westes/flex)
Use version 2.5.29 or newer.

• FontForge (https://fontforge.org)
Use version 20120731 or newer with enabled Python 3 scripting; it must also be compiled
with the --enable-double switch, else this can lead to inaccurate intersection calculations,
which in turn cause poorly-rendered glyphs in the output.

https://www.gnu.org/software/autoconf
https://www.freedesktop.org/wiki/Software/pkg-config
https://www.gnu.org/software/bison
https://gcc.gnu.org
https://clang.llvm.org
https://github.com/westes/flex
https://fontforge.org

Chapter 4: Compiling 25

• GNU gettext (https://www.gnu.org/software/gettext/gettext.html)
Use version 0.17 or newer.

• GNU Make (https://www.gnu.org/software/make)
Use version 3.78 or newer.

• MetaFont (http://metafont.tutorial.free.fr)
The MetaFont binary (usually called mf-nowin, mf, mfw, or mfont) and its support files are
normally packaged along with TEX. Most GNU/Linux and other free software distributions
already provide packages for TEX Live (https://tug.org/texlive), see above. TEX Live
can can also be installed separately; it contains stand-alone binaries for most platforms.

• MetaPost (https://www.tug.org/metapost.html)
The mpost binary is also usually packaged with TEX (https://tug.org/texlive).

• Perl (https://www.perl.org)
Use version 5.6.1 or newer.

• Texinfo (https://www.gnu.org/software/texinfo)
Use version 6.1 or newer.

• Type 1 utilities (https://www.lcdf.org/~eddietwo/type/#t1utils)
We need t1asm. Use version 1.33 or newer.

4.2.3 Requirements for building documentation

The entire set of documentation for the most current build of LilyPond is available online
at https://lilypond.org/doc/latest/Documentation/web/development, but you can also
build them locally from the source code. This process requires the following tools and packages,
in addition to the build and run-time packages (see Section 4.2.2 [Requirements for compiling
LilyPond], page 22, and Section 4.2.2 [Requirements for compiling LilyPond], page 22).

☛ ✟

Note: If the instructions for one of the GNU/Linux distributions
listed earlier (see Section 4.2.2 [Requirements for compiling LilyPond],
page 22) have been used, the following can be ignored, as the necessary
software packages should already be installed.
✡ ✠

• ImageMagick (https://www.imagemagick.org)
We need the convert tool.

• gzip (https://gzip.org)

• rsync (https://rsync.samba.org)

• Texi2HTML (https://www.nongnu.org/texi2html)
Use version 1.82. Later versions might work, but produce suboptimal results.

It is probably easiest to download texi2html directly from http://download.savannah.

gnu.org/releases/texi2html/texi2html-1.82.tar.gz; then extract the files into an ap-
propriate location and run the commands

./configure

make

sudo make install

Now verify that your operating system is able to see the correct version of texi2html by
entering

texi2html --version

on the command line.

• To get reproducible documentation builds (this is, PDF documentation files contain the
same fonts regardless of the build platform), the following font families should be installed.

URW++ and TeX Gyre, as described before

https://www.gnu.org/software/gettext/gettext.html
https://www.gnu.org/software/make
http://metafont.tutorial.free.fr
https://tug.org/texlive
https://www.tug.org/metapost.html
https://tug.org/texlive
https://www.perl.org
https://www.gnu.org/software/texinfo
https://www.lcdf.org/~eddietwo/type/#t1utils
https://lilypond.org/doc/latest/Documentation/web/development
https://www.imagemagick.org
https://gzip.org
https://rsync.samba.org
https://www.nongnu.org/texi2html
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz
http://download.savannah.gnu.org/releases/texi2html/texi2html-1.82.tar.gz

Chapter 4: Compiling 26

Bitstream Vera Sans

Bitstream Charter

DejaVu Sans

DejaVu Serif

DejaVu Sans Mono

Linux Libertine O

Noto Serif CJK JP/Noto Serif JP

It is recommended to install the standard Roman (or Regular), Italic, Bold, and Bold Italic
styles for all listed families; for the large Japanese fonts of the ‘Noto Serif CJK JP’ or ‘Noto
Serif JP’ family, Regular and Bold styles are sufficient.

• extractpdfmark (https://github.com/trueroad/extractpdfmark)
This is an optional component. However, it is highly recommended due to the large number
of included PDF snippets. While making the compilation process much slower, it helps re-
duce the PDF output size by large amounts: for example, the size of the Notation Reference
shrinks from approx. 30MB to 7MB.

• Finally, to convert LilyPond’s documentation (in texinfo format) to PDF files, including
more than thousand PDF snippets generated by LilyPond, XeTEX (https://tug.org/

xetex/) is used by default. If not available, pdfTEX (https://tug.org/applications/

pdftex/index.html) is tried instead.

Not surprisingly, both XeTEX and pdfTEX are also part of TEX Live. Most GNU/Linux and
other free software distributions already provide packages for TEX Live (https://tug.org/

texlive), see above. TEX Live can can also be installed separately; it contains stand-alone
binaries for most platforms.

To support syntax highlighting of LilyPond source code in the PDF manuals (using the
‘pygments’ Python package), typewriter shapes of the Computer Modern font family are
replaced with the extended set of shapes provided by Latin Modern. For this reason, two
more TEX Live packages are necessary in case they are not already installed: ‘fontinst’ (a
macro package for plain TEX) and ‘lmodern’ (we need some .pfb and .afm files). Addi-
tionally, the utility program pltotf must be available.

4.3 Getting the source code

Downloading the Git repository

In general, developers compile LilyPond from within a local Git repository. Setting up a local
Git repository is explained in Section “Setting up” in Contributor’s Guide.

Downloading a source tarball

Packagers are encouraged to use source tarballs for compiling.

The tarball for the latest stable release is available on the Section “Source” in General

Information page.

The latest source code snapshot (http://git.savannah.gnu.org/gitweb/?p=lilypond.

git;a=snapshot) is also available as a tarball from the GNU Savannah Git server.

All tagged releases (including legacy stable versions and the most recent development release)
are available here:

https://lilypond.org/download/source/

Download the tarball to your ~/src/ directory, or some other appropriate place.

https://github.com/trueroad/extractpdfmark
https://tug.org/xetex/
https://tug.org/xetex/
https://tug.org/applications/pdftex/index.html
https://tug.org/applications/pdftex/index.html
https://tug.org/texlive
https://tug.org/texlive
http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
http://git.savannah.gnu.org/gitweb/?p=lilypond.git;a=snapshot
https://lilypond.org/download/source/

Chapter 4: Compiling 27

☛ ✟

Note: Be careful where you unpack the tarball! Any subdirectories of
the current folder named lilypond-2.24.3/ are overwritten if there is
a name clash with the tarball.
✡ ✠

Unpack the tarball with this command:

tar -xzf lilypond-2.24.3.tar.gz

This creates a subdirectory within the current directory called lilypond-2.24.3/. Once
unpacked, the source files occupy about 66MB of disk space.

Windows users wanting to look at the source code may have to download and install the
free-software 7zip archiver (https://www.7-zip.org) to extract the tarball.

4.4 Configuring make

4.4.1 Build modes

LilyPond supports two build modes to prepare the execution of the make command.

• ‘In-tree’ compilation. This is the classical build mode of projects that use a configure

script. The main disadvantage, however, is cluttering the source directory with generated
files. We thus don’t recommend it except for special purposes1 that we don’t cover here.

• Compilation using a build directory. A common name and location is a directory called
build/ in the top-level source directory; the following instructions expect exactly that.

4.4.2 Running autogen.sh

(If you use a tarball, follow the instructions in this subsection but don’t actually run the
autogen.sh script – the tarball already comes with a configure script.)

After cloning the Git repository or downloading and unpacking a Git snapshot, the contents
of your top source directory should be similar to the current source tree listed at https://git.

sv.gnu.org/gitweb/?p=lilypond.git;a=tree.

Note that the top-level source directory is called lilypond-2.24.3/ if you use the tarball. It
is called lilypond-HEAD-ID/ if you use a Git snapshot, with ID being a hexadecimal, seven-digit
number (for example, lilypond-HEAD-80113f7/). It is simply called lilypond/ if you directly
use the Git clone, and we use this in the following instructions.

Start with changing to the source directory, creating a build directory, and changing into it.

cd lilypond/

mkdir build/

cd build/

Because there are no generated files in the repository, you have to generate the configure

script first. There are two possibilities to do that.

• Generate the configure script in the top-level source directory. This is what the instruc-
tions below do.

• Using autogen.sh’s --currdir option it is possible to generate the configure script in
the build directory. We don’t cover this slightly more complicated setup here.

(If you omit the --noconfigure option, autogen.sh not only creates the configure script
but also executes it, forwarding all given command line options. This is a convenient shorthand
for experienced users. For clarity, however, we explain the process in two separate steps.)

Execute the autogen.sh script now.

../autogen.sh --noconfigure

1 For example, translators are required to build LilyPond in-tree, otherwise the translation helper scripts won’t
work.

https://www.7-zip.org
https://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree
https://git.sv.gnu.org/gitweb/?p=lilypond.git;a=tree

Chapter 4: Compiling 28

4.4.3 Running configure

Configuration options
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠

The ../configure command (generated by ../autogen.sh) provides many options for con-
figuring make. To see them all, run

../configure --help

Checking build dependencies
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠

When ../configure is run without any arguments, it checks whether your system has ev-
erything required for compilation.

../configure

If any build dependency is missing, ../configure returns with

ERROR: Please install required programs: foo

The following message is issued if you are missing programs that are only needed for building
the documentation.

WARNING: Please consider installing optional programs: bar

If you intend to build the documentation locally, you need to install or update these programs
accordingly.

☛ ✟

Note: ../configure may fail to issue warnings for certain documenta-
tion build requirements that are not met. If you experience problems
when building the documentation, you may need to do a manual check;
see Section 4.2.3 [Requirements for building documentation], page 25.
✡ ✠

Configuring target directories
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠

If you intend to use your local build to install a local copy of the program, you probably
want to configure the installation directory. Here are the relevant lines taken from the output
of ../configure --help:

By default, make install will install all the files in /usr/local/bin, /usr/local/

lib etc. You can specify an installation prefix other than /usr/local using
--prefix, for instance --prefix=$HOME.

A typical installation prefix is $HOME/usr.

../configure --prefix=$HOME/usr

Note that if you plan to install a local build on a system where you do not have root privileges,
you need to do something like this anyway – make install only succeeds if the installation

Chapter 4: Compiling 29

prefix points to a directory where you have write permission (such as your home directory). The
installation directory is automatically created if necessary.

The location of the lilypond command installed by this process is prefix/bin/lilypond;
you may want to add prefix/bin/ to your $PATH if it is not already included.

It is also possible to specify separate installation directories for different types of program
files. See the full output of ../configure --help for more information.

See Section 4.7 [Problems], page 33, if you encounter any problems.

4.5 Compiling LilyPond

4.5.1 Using make
☛ ✟

Note: make sure that you are in the build/ subdirectory of your source
tree.
✡ ✠

LilyPond is compiled with the make command. Assuming make is configured properly, you
can simply run:

make

‘make’ is short for ‘make all’. To view a list of make targets, run:

make help

TODO: Describe what make actually does.

See also

Section 4.6.2 [Generating documentation], page 30, provides more info on the make targets
used to build the LilyPond documentation.

4.5.2 Saving time with the -j option

If your system has multiple CPUs, you can speed up compilation by adding ‘-jX’ to the make

command, where ‘X’ is one more than the number of cores you have. For example, a typical
Core2Duo machine would use:

make -j3

If you get errors using the -j option, and ‘make’ succeeds without it, try lowering the X value.

Because multiple jobs run in parallel when -j is used, it can be difficult to determine the
source of an error when one occurs. In that case, running ‘make’ without the -j is advised.

4.5.3 Useful make variables

make normally echoes each command, but LilyPond makefiles suppress this behavior by default.
The goal is to show progress without hiding warnings and errors in the noise of long commands.

To enable echoing commands, and to increase the verbosity of some of the commands, set
VERBOSE=1 on the command line or in local.make at the top of the build tree.

Similarly, to reduce the verbosity, set SILENT=1. Because of the way these options are
implemented, make -s does not serve this purpose.

4.6 Post-compilation options

Chapter 4: Compiling 30

4.6.1 Installing LilyPond from a local build

If you configured make to install your local build in a directory where you normally have write
permission (such as your home directory), and you have compiled LilyPond by running make,
you can install the program in your target directory by running:

make install

If instead, your installation directory is not one that you can normally write to (such as
the default /usr/local/, which typically is only writeable by the superuser), you will need to
temporarily become the superuser when running make install:

sudo make install

or. . .

su -c 'make install'

If you don’t have superuser privileges, then you need to configure the installation directory
to one that you can write to, and then re-install. See [Configuring target directories], page 28.

4.6.2 Generating documentation

Three levels of documentation are available for installation. The following table lists them in
order of increasing complexity, along with the command sequence to install each.

Level Images Web Command

Reduced Info no no make && make install
Full Info Yes no make && make info && make install-info
Web yes yes make && make doc && make install-doc

The web documentation includes all info files, images, and web documents. The reduced
info option omits images and info files that are either highly dependent upon images, or discuss
technical program details.

Documentation editor’s edit/compile cycle

To work on a manual, do the following

• Build lilypond itself

make [-jX]

• Then build the specific manual to work on, and inspect:

edit source files, then...

make CPU_COUNT=X -C Documentation out=www out-www/LANGUAGE/MYMANUAL.pdf

if you prefer checking HTML files

make CPU_COUNT=X -C Documentation out=www out-www/LANGUAGE/MYMANUAL/index.html

• To remove compiled documentation from your system, use ‘make doc-clean’ in the toplevel
build directory.

Building documentation

After a successful compile (using make), the documentation can be built by issuing:

make doc

or, to build only the PDF documentation and not the HTML,

make -C Documentation out=www pdf
☛ ✟

Note: The first time you run make doc, the process can easily take an
hour or more with not much output on the command line.
✡ ✠

Chapter 4: Compiling 31

After this initial build, make doc only makes changes to the documentation where needed,
so it may only take a minute or two to test changes if the documentation is already built.

If make doc succeeds, the HTML documentation tree is available in
out-www/offline-root/, and can be browsed locally. The documentation can also
be inspected in the Documentation/out-www subdirectory.

make doc sends the output from most of the compilation to logfiles. If the build fails for any
reason, it should print the name of a logfile, explaining what failed.

make doc compiles the documents for all languages. To save some compile time, the English
language documents can be compiled on their own with:

make LANGS='en' doc

Similarly, it is possible to compile a subset of the translated documentation by specifying their
language codes on the command line. For example, the French and German translations are
compiled with:

make LANGS='de fr' doc

Compilation of documentation in Info format with images can be done separately by issuing:

make info

An issue when switching branches between master and translation is the appear-
ance/disappearance of translated versions of some manuals. If you see such a warning from
make:

No rule to make target `X', needed by `Y'

Your best bet is to delete the file Y.dep and to try again.

Building a single document

It’s possible to build a single document. For example, to rebuild only contributor.pdf, do the
following:

cd build/

cd Documentation/

touch ../../Documentation/en/contributor.texi

make out=www out-www/en/contributor.pdf

If you are only working on a single document, test-building it in this way can give substantial
time savings - recreating contributor.pdf, for example, takes a matter of seconds.

Saving time with CPU_COUNT

The most time consuming task for building the documentation is running LilyPond to build
images of music, and there cannot be several simultaneously running lilypond-book instances,
so the -j make option does not significantly speed up the build process. To help speed it up, the
makefile variable CPU_COUNT may be set in local.make or on the command line to the number
of .ly files that LilyPond should process simultaneously, e.g., on a dual core machine:

make -j2 CPU_COUNT=2 doc

The recommended value of CPU_COUNT is the number of cores. If the build runs into out-of-
memory problems, use a lower number.

Installing documentation

The HTML, PDF and if available Info files can be installed into the standard documentation
path by issuing

make install-doc

This also installs Info documentation with images. The final installation of Info documentation
(integrating it into the documentation directory) is printed on standard output.

Chapter 4: Compiling 32

To install the Info documentation separately, run:

make install-info

Note that to get the images in Info documentation, install-doc target creates symbolic links
to HTML and PDF installed documentation tree in prefix/share/info, in order to save disk
space, whereas install-info copies images in prefix/share/info subdirectories.

It is possible to build a documentation tree in out-www/online-root/, with special process-
ing, so it can be used on a website with content negotiation for automatic language selection;
this can be achieved by issuing

make WEB_TARGETS=online doc

and both ‘offline’ and ‘online’ targets can be generated by issuing

make WEB_TARGETS="offline online" doc

Several targets are available to clean the documentation build and help with maintaining
documentation; an overview of these targets is available with

make help

from every directory in the build tree. Most targets for documentation maintenance are available
from Documentation/; for more information, see Section “Documentation work” in Contribu-

tor’s Guide.

The makefile variable QUIET_BUILD may be set to 1 for a less verbose build output, just like
for building the programs.

Building documentation without compiling

The documentation can be built locally without compiling LilyPond binary, if LilyPond is already
installed on your system.

From a fresh Git checkout, do

./autogen.sh # ignore any warning messages

cp GNUmakefile.in GNUmakefile

make -C scripts && make -C python

nice make LILYPOND_EXTERNAL_BINARY=/path/to/bin/lilypond doc

This may break: if a new feature is added with a test file in input/regression, even the latest
development release of LilyPond will fail to build the docs.

You may build the manual without building all the input/* stuff (i.e., mostly regression
tests): change directory, for example to Documentation/, issue make doc, which will build
documentation in a subdirectory out-www from the source files in current directory. In this case,
if you also want to browse the documentation in its post-processed form, change back to top
directory and issue

make out=www WWW-post

4.6.3 Testing LilyPond binary

LilyPond comes with an extensive suite that exercises the entire program. This suite can be
used to test that the binary has been built correctly.

The test suite can be executed with:

make test

If the test suite completes successfully, the LilyPond binary has been verified.

More information on the regression test suite is found at Section “Regression tests” in Con-

tributor’s Guide.

Chapter 4: Compiling 33

4.7 Problems

For help and questions use lilypond-user@gnu.org. Send bug reports to
bug-lilypond@gnu.org.

Bugs that are not fault of LilyPond are documented here.

Compiling on MacOS X

Here are special instructions for compiling under MacOS X. These instructions assume that de-
pendencies are installed using MacPorts. (https://www.macports.org/) The instructions have
been tested using OS X 10.5 (Leopard).

First, install the relevant dependencies using MacPorts.

Next, add the following to your relevant shell initialization files. This is ~/.profile by
default. You should create this file if it does not exist.

export PATH=/opt/local/bin:/opt/local/sbin:$PATH

export DYLD_FALLBACK_LIBRARY_PATH=/opt/local/lib:$DYLD_FALLBACK_LIBRARY_PATH

At this point, you should verify that you have the appropriate fonts installed with your
ghostscript installation. Check ls /opt/local/share/ghostscript/fonts for: ’c0590*’ files
(.pfb, .pfb and .afm). If you don’t have them, run the following commands to grab them from
the ghostscript SVN server and install them in the appropriate location:

svn export http://svn.ghostscript.com/ghostscript/tags/urw-fonts-1.0.7pre44/

sudo mv urw-fonts-1.0.7pre44/* /opt/local/share/ghostscript/fonts/

rm -rf urw-fonts-1.07pre44

Now run the ./configure script. To avoid complications with automatic font detection, add

--with-fonts-dir=/opt/local/share/ghostscript/fonts

FreeBSD

To use system fonts, dejaview must be installed. With the default port, the fonts are installed
in usr/X11R6/lib/X11/fonts/dejavu.

Open the file $LILYPONDBASE/usr/etc/fonts/local.conf and add the following line just
after the <fontconfig> line. (Adjust as necessary for your hierarchy.)

<dir>/usr/X11R6/lib/X11/fonts</dir>

International fonts

On Mac OS X, all fonts are installed by default. However, finding all system fonts requires a
bit of configuration; see this post (https://lists.gnu.org/archive/html/lilypond-user/

2007-03/msg00472.html) on the lilypond-user mailing list.

On Linux, international fonts are installed by different means on every distribution. We
cannot list the exact commands or packages that are necessary, as each distribution is different,
and the exact package names within each distribution changes. Here are some hints, though:

Red Hat Fedora

taipeifonts fonts-xorg-truetype ttfonts-ja fonts-arabic \

ttfonts-zh_CN fonts-ja fonts-hebrew

Debian GNU/Linux

apt-get install emacs-intl-fonts xfonts-intl-.* \

fonts-ipafont-gothic fonts-ipafont-mincho \

xfonts-bolkhov-75dpi xfonts-cronyx-100dpi xfonts-cronyx-75dpi

mailto:lilypond-user@gnu.org
mailto:bug-lilypond@gnu.org
https://www.macports.org/
https://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html
https://lists.gnu.org/archive/html/lilypond-user/2007-03/msg00472.html

Chapter 4: Compiling 34

Using lilypond python libraries

If you want to use lilypond’s python libraries (either running certain build scripts manually,
or using them in other programs), set PYTHONPATH to python/out in your build directory, or
.../usr/lib/lilypond/current/python in the installation directory structure.

4.8 Concurrent stable and development versions

It can be useful to have both the stable and the development versions of LilyPond available at
once. One way to do this on GNU/Linux is to install the stable version using the precompiled
binary, and run the development version from the source tree. After running make all from
the top directory of the LilyPond source files, there will be a binary called lilypond in the out

directory:

<path to>/lilypond/out/bin/lilypond

This binary can be run without actually doing the make install command. The advantage
to this is that you can have all of the latest changes available after pulling from git and running
make all, without having to uninstall the old version and reinstall the new.

So, to use the stable version, install it as usual and use the normal commands:

lilypond foobar.ly

To use the development version, create a link to the binary in the source tree by saving the
following line in a file somewhere in your $PATH:

exec <path to>/lilypond/out/bin/lilypond "$@"

Save it as Lilypond (with a capital L to distinguish it from the stable lilypond), and make
it executable:

chmod +x Lilypond

Then you can invoke the development version this way:

Lilypond foobar.ly

TODO: ADD

- other compilation tricks for developers

4.9 Build system

Version-specific texinfo macros

• made with scripts/build/create-version-itexi.py and
scripts/build/create-weblinks-itexi.py

• used extensively in the WEBSITE_ONLY_BUILD version of the website (made with
website.make, used on lilypond.org)

• not (?) used in the main docs?

• the numbers in VERSION file: MINOR VERSION should be 1 more than the last release,
VERSION DEVEL should be the last online release. Yes, VERSION DEVEL is less than
VERSION.

35

5 Documentation work

There are currently 11 manuals for LilyPond, not including the translations. Each book is
available in HTML, PDF, and info. The documentation is written in a language called texinfo

– this allows us to generate different output formats from a single set of source files.

To organize multiple authors working on the documentation, we use a Version Control System
(VCS) called Git, previously discussed in Chapter 3 [Working with source code], page 10.

5.1 Introduction to documentation work

Our documentation tries to adhere to our Section 5.5 [Documentation policy], page 45. This
policy contains a few items which may seem odd. One policy in particular is often questioned by
potential contributors: we do not repeat material in the Notation Reference, and instead provide
links to the “definitive” presentation of that information. Some people point out, with good
reason, that this makes the documentation harder to read. If we repeated certain information
in relevant places, readers would be less likely to miss that information.

That reasoning is sound, but we have two counter-arguments. First, the Notation Reference
– one of five manuals for users to read – is already over 500 pages long. If we repeated material,
we could easily exceed 1000 pages! Second, and much more importantly, LilyPond is an evolving
project. New features are added, bugs are fixed, and bugs are discovered and documented. If
features are discussed in multiple places, the documentation team must find every instance.
Since the manual is so large, it is impossible for one person to have the location of every piece
of information memorized, so any attempt to update the documentation will invariably omit a
few places. This second concern is not at all theoretical; the documentation used to be plagued
with inconsistent information.

If the documentation were targeted for a specific version – say, LilyPond 2.10.5 – and we
had unlimited resources to spend on documentation, then we could avoid this second problem.
But since LilyPond evolves (and that is a very good thing!), and since we have quite limited
resources, this policy remains in place.

A few other policies (such as not permitting the use of tweaks in the main portion of NR 1+2)
may also seem counter-intuitive, but they also stem from attempting to find the most effective
use of limited documentation help.

Before undertaking any large documentation work, contributors are encouraged to contact
the lilypond-devel mailing list.

5.2 \version in documentation files

Every documentation file which includes LilyPond code must begin with a \version statement,
since the build procedure explicitly tests for its presence and will not continue otherwise. The
\version statement should reference a version of LilyPond consistent with the syntax of the
contained code.

Since the \version statement is not valid Texinfo input it must be commented out like this:

@c \version "2.19.1"

So, if you are adding LilyPond code which is not consistent with the current version header,
you should

1. run convert-ly on the file using the latest version of LilyPond (which should, if everybody
has done proper maintenance, not change anything);

2. add the new code;

3. modify the version number to match the new code.

Chapter 5: Documentation work 36

5.3 Documentation suggestions

Small additions

For additions to the documentation,

1. Tell us where the addition should be placed. Please include both the section number and
title (i.e. "LM 2.13 Printing lyrics").

2. Please write exact changes to the text.

3. A formal patch to the source code is not required; we can take care of the technical details.

4. Send the suggestions to the bug-lilypond mailing list as discussed in Section “Contact” in
General Information.

5. Here is an example of a perfect documentation report:

To: bug-lilypond@gnu.org

From: helpful-user@example.net

Subject: doc addition

In LM 2.13 (printing lyrics), above the last line ("More options,

like..."), please add:

To add lyrics to a divided part, use blah blah blah. For example,

\score {

\notes {blah <<blah>> }

\lyrics {blah <<blah>> }

blah blah blah

}

In addition, the second sentence of the first paragraph is

confusing. Please delete that sentence (it begins "Users

often...") and replace it with this:

To align lyrics with something, do this thing.

Have a nice day,

Helpful User

Larger contributions

To replace large sections of the documentation, the guidelines are stricter. We cannot remove
parts of the current documentation unless we are certain that the new version is an improvement.

1. Ask on the lilypond-devel mailing list if such a rewrite is necessary; somebody else might
already be working on this issue!

2. Split your work into small sections; this makes it much easier to compare the new and old
documentation.

3. Please prepare a formal git patch.

Chapter 5: Documentation work 37

Contributions that contain examples using overrides

Examples that use overrides, tweaks, customer Scheme functions, etc. are (with very few excep-
tions) not included in the main text of the manuals; as there would be far too many, equally
useful, candidates.

The correct way is to submit your example, with appropriate explanatory text and tags, to
the LilyPond Snippet Repository (LSR). Snippets that have the “docs” tag can then be easily
added as a selected snippet in the documentation. It will also appear automatically in the
Snippets lists. See Section 7.1 [Introduction to LSR], page 61.

Snippets that don’t have the “docs” tag will still be searchable and viewable within the LSR,
but will be not be included in the Snippets list or be able to be included as part of the main
documentation.

Generally, any new snippets that have the “docs” tag are more carefully checked for syntax
and formatting.

Announcing your snippet

Once you have followed these guidelines, please send a message to lilypond-devel with your
documentation submissions. Unfortunately there is a strict ‘no top-posting’ check on the mailing
list; to avoid this, add:

> I'm not top posting

(you must include the >) to the top of your documentation addition.

We may edit your suggestion for spelling, grammar, or style, and we may not place the
material exactly where you suggested, but if you give us some material to work with, we can
improve the manual much faster.

Thanks for your interest!

5.4 Texinfo introduction and usage policy

5.4.1 Texinfo introduction

The language is called Texinfo; you can see its manual here:

https://www.gnu.org/software/texinfo/manual/texinfo/

However, you don’t need to read those docs. The most important thing to notice is that
text is text. If you see a mistake in the text, you can fix it. If you want to change the order of
something, you can cut-and-paste that stuff into a new location.

☛ ✟

Note: Rule of thumb: follow the examples in the existing docs. You
can learn most of what you need to know from this; if you want to do
anything fancy, discuss it on lilypond-devel first.
✡ ✠

5.4.2 Documentation files

All manuals live in Documentation/.

In particular, there are four user manuals, their respective master source files are
learning.tely (LM, Learning Manual), notation.tely (NR, Notation Reference),
music-glossary.tely (MG, Music Glossary), and lilypond-program (AU). Each chapter is
written in a separate file, ending in .itely for files containing lilypond code, and .itexi for
files without lilypond code, located in a subdirectory associated to the manual (learning/ for
learning.tely, and so on); list the subdirectory of each manual to determine the filename of
the specific chapter you wish to modify.

https://www.gnu.org/software/texinfo/manual/texinfo/

Chapter 5: Documentation work 38

Developer manuals live in Documentation/ too. Currently there is only one: the Contribu-
tor’s Guide contrib-guide.texi you are reading.

Snippet files are part of documentation, and the Snippet List (SL) lives in Documentation/

just like the manuals. For information about how to modify the snippet files and SL, see
Chapter 7 [LSR work], page 61.

5.4.3 Sectioning commands

The Notation Reference uses section headings at four, occasionally five, levels.

• Level 1: @chapter

• Level 2: @section

• Level 3: @subsection

• Level 4: @unnumberedsubsubsec

• Level 5: @subsubsubheading

The first three levels are numbered in HTML, the last two are not. Numbered sections
correspond to a single HTML page in the split HTML documents.

The first four levels always have accompanying nodes so they can be referenced and are also
included in the ToC in HTML.

Most of the manual is written at level 4 under headings created with

@node Foo

@unnumberedsubsubsec Foo

Level 3 subsections are created with

@node Foo

@subsection Foo

Level 4 headings and menus must be preceded by level 3 headings and menus, and so on for
level 3 and level 2. If this is not what is wanted, please use:

@subsubsubheading Foo

Please leave two blank lines above a @node; this makes it easier to find sections in texinfo.

Do not use any @ commands for a @node. They may be used for any @sub... sections or
headings however.

not:

@node @code{Foo} Bar

@subsection @code{Foo} Bar

but instead:

@node Foo Bar

@subsection @code{Foo} Bar

No punctuation may be used in the node names. If the heading text uses punctuation (in
particular, colons and commas) simply leave this out of the node name and menu.

@menu

* Foo Bar::

@end menu

@node Foo Bar

@subsection Foo: Bar

Backslashes must not be used in node names.

@menu

* The set command

Chapter 5: Documentation work 39

@end menu

@node The set command

@subsection The @code{\set} command

With the exception of @ commands, \ commands and punctuation, the section name should
match the node name exactly.

Sectioning commands (@node and @section) must not appear inside an @ignore. Separate
those commands with a space, ie @n ode.

Nodes must be included inside a

@menu

* foo::

* bar::

@end menu

construct. These can be constructed automatically: see [Regenerating menus], page 50.

5.4.4 LilyPond formatting

• Most LilyPond examples throughout the documentation can be produced with:

@lilypond[verbatim,quote]

If using \book{} in your example then you must also include the papersize=X variable,
where X is a defined paper size from within scm/paper.scm. This is to avoid the default
a4 paper size being used and leaving too much unnecessary whitespace and potentially
awkward page breaks in the PDFs.

The preferred papersizes are a5, a6 or a8landscape.

a8landscape works best for a single measure with a single title and/or single tagline:

@lilypond[papersize=a8landscape,verbatim]

\book {

\header {

title = "A scale in LilyPond"

}

\relative {

c d e f

}

}

@end lilypond

and can also be used to easily show features that require page breaks (i.e., page numbers)
without taking large amounts of space within the documentation. Do not use the quote

option with this paper size.

a5 or a6 paper sizes are best used for examples that have more than two measures of music
or require multiple staves (i.e., to illustrate cross-staff features, RH and LH parts etc.) and
where \book{} constructions are required or where a8landscape produces an example that
is too cramped. Depending on the example the quote option may need to be omitted.

In rare cases, other options may be used (or omitted), but ask first.

• Please avoid using extra spacing either after or within the @lilypond parameters.

not: @lilypond [verbatim, quote, fragment]

but instead: @lilypond[verbatim,quote,fragment]

• Inspirational headwords are produced with:

@lilypondfile[quote,ragged-right,line-width=16\cm,staffsize=16]

{pitches-headword.ly}

Chapter 5: Documentation work 40

• LSR snippets are linked with:

@lilypondfile[verbatim,quote,ragged-right,texidoc,doctitle]

{filename.ly}

• Use two spaces for indentation in lilypond examples (no tabs).

• Try to avoid using #' or #` when describing context or layout properties outside of an
@example or @lilypond, unless the description explicitly requires it.

i.e. “...setting the transparent property leaves the object where it is, but makes it invisi-
ble.”

• If possible, only write one bar per line.

• If you only have one bar per line, omit bar checks. If you must put more than one bar per
line (not recommended), then include bar checks.

• Tweaks should, if possible, also occur on their own line.

not: \override TextScript.padding = #3 c1^"hi"

but instead: \override TextScript.padding = #3

c1^"hi"

excepted in Templates, where ‘doctitle’ may be omitted.

• Avoid long stretches of input code. Nobody is going to read them in print. Create small
examples. However, this does not mean it has be minimal.

• Specify durations for at least the first note of every bar.

• If possible, end with a complete bar.

• Comments should go on their own line, and be placed before the line(s) to which they refer.

• For clarity, always use { } marks even if they are not technically required; i.e.

not:

\context Voice \repeat unfold 2 \relative c' {

c2 d

}

but instead:

\context Voice {

\repeat unfold 2 {

\relative c' {

c2 d

}

}

}

• Add a space around { } marks; i.e.

not: \chordmode{c e g}

but instead: \chordmode { c e g }

• Use { } marks for additional \markup format commands; i.e.

not: c^\markup \tiny\sharp

but instead: c^\markup { \tiny \sharp }

• Remove any space around < > marks; i.e.

not: < c e g > 4

but instead: <c e g>4

Chapter 5: Documentation work 41

• Beam, slur and tie marks should begin immediately after the first note with beam and
phrase marks ending immediately after the last.

a8\(ais16[b cis(d] b) cis4~ b' cis,\)

• If you want to work on an example outside of the manual (for easier/faster processing), use
this header:

\paper {

indent = 0\mm

line-width = 160\mm - 2.0 * 0.4\in

line-width = #(- line-width (* mm 3.000000))

}

\layout {

}

You may not change any of these values. If you are making an example demonstrating
special \paper{} values, contact the Documentation Editor.

5.4.5 Text formatting

• Lines should be less than 72 characters long. (We personally recommend writing with 66-
char lines, but do not bother modifying existing material). Also see the recommendations
for fixed-width fonts in the Section 5.4.6 [Syntax survey], page 41.

• Do not use tabs.

• Do not use spaces at the beginning of a line (except in @example or @verbatim environ-
ments), and do not use more than a single space between words. ‘makeinfo’ copies the input
lines verbatim without removing those spaces.

• Use two spaces after a period.

• In examples of syntax, use @var{musicexpr} for a music expression.

• Don’t use @rinternals{} in the main text. If you’re tempted to do so, you’re probably
getting too close to “talking through the code”. If you really want to refer to a context, use
@code{} in the main text and @rinternals{} in the @morerefs.

5.4.6 Syntax survey

Comments

• @c ... — single line comment. ‘@c NOTE:’ is a comment which should remain in the final
version. (gp only command ;)

• @ignore — multi-line comment:

@ignore

...

@end ignore

Cross references

Enter the exact @node name of the target reference between the brackets
(eg. ‘@ref{Syntax survey}’). Do not split a cross-reference across two lines – this
causes the cross-reference to be rendered incorrectly in HTML documents.

• @ref{...} — link within current manual.

• @rchanges{...} — link to Changes.

• @rcontrib{...} — link to Contributor’s Guide.

• @ressay{...} — link to Engraving Essay.

Chapter 5: Documentation work 42

• @rextend{...} — link to Extending LilyPond.

• @rglos{...} — link to the Music Glossary.

• @rinternals{...} — link to the Internals Reference.

• @rlearning{...} — link to Learning Manual.

• @rlsr{...} — link to a Snippet section.

• @rprogram{...} — link to Application Usage.

• @ruser{...} — link to Notation Reference.

• @rweb{...} — link to General Information.

External links

• @email{...} — create a mailto: E-mail link.

• @uref{URL[, link text]} — link to an external url. Use within an @example ... @end

example.

@example

@uref{URL [, link text]}

@end example

Fixed-width font

• @code{...}, @samp{...} —

Use the @code{...} command when referring to individual language-specific tokens (key-
words, commands, engravers, scheme symbols, etc.) in the text. Ideally, a single @code{...}

block should fit within one line in the PDF output.

Use the @samp{...} command when you have a short example of user input, unless it
constitutes an entire @item by itself, in which case @code{...} is preferable. Otherwise,
both should only be used when part of a larger sentence within a paragraph or @item. Do
not use @code{...} or @samp{...} inside an @example block, and do not use either as a
free-standing paragraph; use @example instead.

A single unindented line in the PDF has space for about 79 fixed-width characters (76
if indented). Within an @item there is space for about 75 fixed-width characters. Each
additional level of @itemize or @enumerate shortens the line by about 4 columns.

However, even short blocks of @code{...} and @samp{...} can run into the margin if the
Texinfo line-breaking algorithm gets confused. Additionally, blocks that are longer than
this may in fact print nicely; it all depends where the line breaks end up. If you compile
the docs yourself, check the PDF output to make sure the line breaks are satisfactory.

The Texinfo setting @allowcodebreaks is set to false in the manuals, so lines within
@code{...} or @samp{...} blocks will only break at spaces, not at hyphens or underscores.
If the block contains spaces, use @w{@code{...}} or @w{@samp{...}} to prevent unexpected
line breaks.

The Texinfo settings txicodequoteundirected and txicodequotebacktick are both set in
the manuals, so backticks (`) and apostrophes (') placed within blocks of @code, @example,
or @verbatim are not converted to left- and right-angled quotes (‘ ’) as they normally are
within the text, so the apostrophes in ‘@w{@code{\relative c''}}’ will display correctly.
However, these settings do not affect the PDF output for anything within a @samp block
(even if it includes a nested @code block), so entering ‘@w{@samp{\relative c''}}’ wrongly
produces ‘\relative c’’’ in PDF. Consequently, if you want to use a @samp{...} block
which contains backticks or apostrophes, you should instead use ‘@q{@code{...}}’ (or
‘@q{@w{@code{...}}}’ if the block also contains spaces).

• @command{...} — Use when referring to command-line commands within the text (eg.
‘@command{convert-ly}’). Do not use inside an @example block.

Chapter 5: Documentation work 43

• @example — Use for examples of program code. Do not add extraneous indentation (i.e.,
don’t start every line with whitespace). Use the following layout (notice the use of blank
lines). Omit the @noindent if the text following the example starts a new paragraph:

...text leading into the example...

@example

...

@end example

@noindent

continuation of the text...

Individual lines within an @example block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @example block
is part of an @item, individual lines in the @example block should not exceed 70 columns.
Each additional level of @itemize or @enumerate shortens the line by about 4 columns.

For long command line examples, if possible, use a trailing backslash to break up a single
line, indenting the next line with 2 spaces. If this isn’t feasible, use ‘@smallexample ...

@end smallexample’ instead, which uses a smaller fontsize. Use @example whenever possi-
ble, but if needed, @smallexample can fit up to 90 characters per line before running into the
PDF margin. Each additional level of @itemize or @enumerate shortens a @smallexample

line by about 5 columns.

• @file{...} — Use when referring to filenames and directories in the text. Do not use
inside an @example block.

• @option{...} — Use when referring to command-line options in the text (eg.
‘@option{--format}’). Do not use inside an @example block.

• @verbatim — Prints the block exactly as it appears in the source file (including whitespace,
etc.). For program code examples, use @example instead. @verbatim uses the same format
as @example.

Individual lines within an @verbatim block should not exceed 74 characters; otherwise they
will run into the margin in the PDF output, and may get clipped. If an @verbatim block
is part of an @item, individual lines in the @verbatim block should not exceed 70 columns.
Each additional level of @itemize or @enumerate shortens the line by about 4 columns.

Indexing

• @cindex ... — General index. Please add as many as you can. Don’t capitalize the first
word.

• @funindex ... — is for a \lilycommand.

Lists

• @enumerate — Create an ordered list (with numbers). Always put ‘@item’ on its own line.
As an exception, if all the items in the list are short enough to fit on single lines, placing
them on the ‘@item’ lines is also permissible. ‘@item’ and ‘@end enumerate’ should always
be preceded by a blank line.

@enumerate

@item

A long multi-line item like this one must begin

on a line of its own and all the other items in

the list must do so too.

Chapter 5: Documentation work 44

@item

Even short ones

@end enumerate

@enumerate

@item Short item

@item Short item

@end enumerate

• @itemize — Create an unordered list (with bullets). Use the same format as @enumerate.
Do not use ‘@itemize @bullet’.

Special characters
☛ ✟

Note: In Texinfo, the backslash is an ordinary character, and is entered
without escaping (e.g. ‘The @code{\foo} command’). However, within
double-quoted Scheme and/or LilyPond strings, backslashes (including
those ending up in Texinfo markup) need to be escaped by doubling
them:

(define (foo x)

"The @code{\\foo} command..."

...)
✡ ✠

• --, --- — Create an en dash (–) or an em dash (—) in the text. To print two or three
literal hyphens in a row, wrap one of them in a @w{...} (eg. ‘-@w{-}-’).

• @@, @{, @} — Create an at-sign (@), a left curly bracket ({), or a right curly bracket (}).

• @tie{} — Create a variable-width non-breaking space in the text (use ‘@w{ }’ for a single
fixed-width non-breaking space). Variables or numbers which consist of a single character
(probably followed by a punctuation mark) should be tied properly, either to the previous
or the next word. Example: ‘The letter@tie{}@q{I} is skipped’

Miscellany

• @notation{...} — refers to pieces of notation, e.g. ‘@notation{clef}’. Also use for
specific lyrics (‘the @notation{A - men} is centered’). Only use once per subsection per
term.

• @q{...} — Single quotes. Used for ‘vague’ terms.

• @qq{...} — Double quotes. Used for actual quotes (“he said”) or for introducing special
input modes.

• @var{...} — Use for metasyntactic variables (such as foo, bar, arg1, etc.). In most cases,
when the @var{...} command appears in the text (and not in an @example block) it should
be wrapped with an appropriate texinfo code-highlighting command (such as @code, @samp,
@file, @command, etc.). For example: ‘@code{@var{foo}}’, ‘@file{@var{myfile.ly}}’,
‘@samp{git switch @var{branch}}’, etc. This improves readability in the PDF and HTML
output.

• @version{} — Return the current LilyPond version string. Use ‘@w{@version{}}’ if it’s
at the end of a line (to prevent an ugly line break in PDF); use ‘@w{"@version{}"}’ if you
need it in quotes.

Chapter 5: Documentation work 45

• @w{...} — Do not allow any line breaks.

• @warning{...} — produces a “Note: ” box. Use for important messages.

5.4.7 Other text concerns

• References must occur at the end of a sentence, for more information see the texinfo manual
(https://www.gnu.org/software/texinfo/manual/texinfo/). Ideally this should also
be the final sentence of a paragraph, but this is not required. Any link in a doc section
must be duplicated in the @morerefs section at the bottom.

• Introducing examples must be done with

. (i.e., finish the previous sentence/paragraph)

: (i.e., `in this example:')

, (i.e., `may add foo with the blah construct,')

The old “sentence runs directly into the example” method is not allowed any more.

• Abbrevs in caps, e.g., HTML, DVI, MIDI, etc.

• Colon usage

1. To introduce lists

2. When beginning a quote: “So, he said,...”.

This usage is rarer. Americans often just use a comma.

3. When adding a defining example at the end of a sentence.

• Non-ASCII characters which are in utf-8 should be directly used; this is, don’t say
‘Ba@ss{}tuba’ but ‘Baßtuba’. This ensures that all such characters appear in all output
formats.

5.5 Documentation policy

5.5.1 Books

There are four parts to the documentation: the Learning Manual, the Notation Reference, the
Program Reference, and the Music Glossary.

• Learning Manual:

The LM is written in a tutorial style which introduces the most important concepts, struc-
ture and syntax of the elements of a LilyPond score in a carefully graded sequence of steps.
Explanations of all musical concepts used in the Manual can be found in the Music Glos-
sary, and readers are assumed to have no prior knowledge of LilyPond. The objective is to
take readers to a level where the Notation Reference can be understood and employed to
both adapt the templates in the Appendix to their needs and to begin to construct their
own scores. Commonly used tweaks are introduced and explained. Examples are provided
throughout which, while being focussed on the topic being introduced, are long enough
to seem real in order to retain the readers’ interest. Each example builds on the previous
material, and comments are used liberally. Every new aspect is thoroughly explained before
it is used.

Users are encouraged to read the complete Learning Manual from start-to-finish.

• Notation Reference: a (hopefully complete) description of LilyPond input notation. Some
material from here may be duplicated in the Learning Manual (for teaching), but consider
the NR to be the "definitive" description of each notation element, with the LM being an
"extra". The goal is not to provide a step-by-step learning environment – do not avoid
using notation that has not be introduced previously in the NR (for example, use \break if
appropriate). This section is written in formal technical writing style.

https://www.gnu.org/software/texinfo/manual/texinfo/
https://www.gnu.org/software/texinfo/manual/texinfo/

Chapter 5: Documentation work 46

Avoid duplication. Although users are not expected to read this manual from start to fin-
ish, they should be familiar with the material in the Learning Manual (particularly “Fun-
damental Concepts”), so do not repeat that material in each section of this book. Also
watch out for common constructs, like ^ - for directions – those are explained in NR 3.
In NR 1, you can write: DYNAMICS may be manually placed above or below the staff, see
@ref{Controlling direction and placement}.

Most tweaks should be added to LSR and not placed directly in the .itely file. In some
cases, tweaks may be placed in the main text, but ask about this first.

Finally, you should assume that users know what the notation means; explaining musical
concepts happens in the Music Glossary.

• Application Usage: information about using the program lilypond with other programs
(lilypond-book, operating systems, GUIs, convert-ly, etc). This section is written in formal
technical writing style.

Users are not expected to read this manual from start to finish.

• Music Glossary: information about the music notation itself. Explanations and translations
about notation terms go here.

Users are not expected to read this manual from start to finish.

• Internals Reference: not really a documentation book, since it is automagically generated
from the source, but this is its name.

5.5.2 Section organization

• The order of headings inside documentation sections should be:

main docs

@predefined

@endpredefined

@snippets

@morerefs

@endmorerefs

@knownissues

• You must include a @morerefs ... @endmorerefs section.

• The order of items inside the @morerefs section is

Music Glossary:

@rglos{foo},

@rglos{bar}.

Learning Manual:

@rlearning{baz},

@rlearning{foozle}.

Notation Reference:

@ruser{faazle},

@ruser{boo}.

Application Usage:

@rprogram{blah}.

Essay on automated music engraving:

@ressay{yadda}.

Chapter 5: Documentation work 47

Extending LilyPond:

@rextend{frob}.

Installed Files:

@file{path/to/dir/blahz}.

Snippets:

@rlsr{section}.

Internals Reference:

@rinternals{fazzle},

@rinternals{booar}.

• If there are multiple entries, separate them by commas but do not include an ‘and’.

• Always end with a period.

• Place each link on a new line as above; this makes it much easier to add or remove
links. In the output, they appear on a single line.

("Snippets" is REQUIRED; the others are optional)

• Any new concepts or links which require an explanation should go as a full sentence(s)
in the main text.

• Don’t insert an empty line between @morerefs and the first entry! Otherwise there is
excessive vertical space in the PDF output.

• To create links, use @ref{} if the link is within the same manual.

• @predefined ... @endpredefined is for commands in ly/*-init.ly

• Do not include any real info in second-level sections (i.e. 1.1 Pitches). A first-level sec-
tion may have introductory material, but other than that all material goes into third-level
sections (i.e. 1.1.1 Writing Pitches).

• The @knownissues should not discuss any issues that are in the tracker, unless the issue
is Priority-Postponed. The goal is to discuss any overall architecture or syntax decisions
which may be interpreted as bugs. Normal bugs should not be discussed here, because we
have so many bugs that it would be a huge task to keep the @knownissues current and
accurate all the time.

5.5.3 Checking cross-references

Cross-references between different manuals are heavily used in the documentation, but they are
not checked during compilation. However, if you compile the documentation, a script called
check texi refs can help you with checking and fixing these cross-references; for information on
usage, cd into a source tree where documentation has been built, cd into Documentation and
run:

make check-xrefs

make fix-xrefs

Note that you have to find yourself the source files to fix cross-references in the generated
documentation such as the Internals Reference; e.g., you can grep scm/ and lily/.

5.5.4 General writing

• Do not forget to create @cindex entries for new sections of text. Enter commands with
@funindex, i.e.

@cindex pitches, writing in different octaves

@funindex \relative

Chapter 5: Documentation work 48

Do not bother with the @code{} (they are added automatically). These items are added to
both the command index and the unified index. Both index commands should go in front
of the actual material.

• @cindex entries should not be capitalized, i.e.

@cindex time signature

is preferred instead of “Time signature”. Only use capital letters for musical terms which
demand them, e.g., “D.S. al Fine”.

• For scheme function index entries, only include the final part, i.e.

@funindex modern-voice-cautionary

and NOT

@funindex #(set-accidental-style modern-voice-cautionary)

• Use American spelling. LilyPond’s internal property names use this convention.

• Here is a list of preferred terms to be used:

• Simultaneous NOT concurrent.

• Measure: the unit of music.

• Bar line: the symbol delimiting a measure NOT barline.

• Note head NOT notehead.

• Chord construct NOT just chord (when referring to < ... >)

• Staff NOT stave.

• Staves NOT Staffs: Phrases such as ‘multiple @internalsref{Staff}s’ should be
rephrased to ‘multiple @internalsref{Staff} contexts’.

5.5.5 Technical writing style

These refer to the NR. The LM uses a more gentle, colloquial style.

• Do not refer to LilyPond in the text. The reader knows what the manual is about. If you
do, capitalization is LilyPond.

• If you explicitly refer to ‘lilypond’ the program (or any other command to be executed),
write @command{lilypond}.

• Do not explicitly refer to the reader/user. There is no one else besides the reader and the
writer.

• Avoid contractions (don’t, won’t, etc.). Spell the words out completely.

• Avoid abbreviations, except for commonly used abbreviations of foreign language terms
such as ‘etc.’ and ‘i.e.’.

• Avoid fluff (“Notice that,” “as you can see,” “Currently,”).

• The use of the word ‘illegal’ is inappropriate in most cases. Say ‘invalid’ instead.

5.6 Tips for writing docs

In the NR, I highly recommend focusing on one subsection at a time. For each subsection,

• check the mundane formatting. Are the headings (@predefined, @morerefs, etc.) in the
right order?

• add any appropriate index entries.

• check the links in the @morerefs section – links to music glossary, internal references, and
other NR sections are the main concern. Check for potential additions.

• move LSR-worthy material into LSR. Add the snippet, delete the material from the .itely

file, and add a @lilypondfile command.

Chapter 5: Documentation work 49

• check the examples and descriptions. Do they still work? Do not assume that the existing
text is accurate/complete; some of the manual is highly out of date.

• is the material in the @knownissues still accurate?

• can the examples be improved (made more explanatory), or is there any missing info? (feel
free to ask specific questions on -user; a couple of people claimed to be interesting in being
“consultants” who would help with such questions)

In general, I favor short text explanations with good examples – “an example is worth a
thousand words”. When I worked on the docs, I spent about half my time just working on those
tiny lilypond examples. Making easily-understandable examples is much harder than it looks.

Tweaks

In general, any \set or \override commands should go in the “select snippets” section, which
means that they should go in LSR and not the .itely file. For some cases, the command
obviously belongs in the “main text” (i.e., not inside @predefined or @morerefs or whatever) –
instrument names are a good example of this.

\set Staff.instrumentName = "foo"

On the other side of this,

\override Score.Hairpin.after-line-breaking = ##t

clearly belongs in LSR.

I’m quite willing to discuss specific cases if you think that a tweaks needs to be in the main
text. But items that can go into LSR are easier to maintain, so I’d like to move as much as
possible into there.

It would be “nice” if you spent a lot of time crafting nice tweaks for users. . . but my
recommendation is not to do this. There’s a lot of doc work to do without adding examples of
tweaks. Tweak examples can easily be added by normal users by adding them to the LSR.

One place where a documentation writer can profitably spend time writing or upgrading
tweaks is creating tweaks to deal with known issues. It would be ideal if every significant known
issue had a workaround to avoid the difficulty.

See also

Section 7.2 [Adding and editing snippets], page 61.

5.7 Scripts to ease doc work

5.7.1 Scripts to test the documentation

Building only one section of the documentation

In order to save build time, a script is available to build only one section of the documentation
in English with a default HTML appearance.

If you do not yet have a build/ subdirectory within the LilyPond Git tree, you should create
this first. You can then build a section of the documentation with the following command:

scripts/auxiliar/doc-section.sh MANUAL SECTION

where SECTION is the name of the file containing the section to be built, and MANUAL is replaced
by the name of the directory containing the section. So, for example, to build section 1.1 of the
Notation Reference, use the command:

scripts/auxiliar/doc-section.sh notation pitches

You can then see the generated document for the section at

build/tempdocs/pitches/out/pitches.html

Chapter 5: Documentation work 50

According to LilyPond issue 1236 (https://sourceforge.net/p/testlilyissues/issues/

1236/), the location of the LilyPond Git tree is taken from $LILYPOND_GIT if specified, otherwise
it is auto-detected.

It is assumed that compilation takes place in the build/ subdirectory, but this can be
overridden by setting the environment variable LILYPOND_BUILD_DIR.

Similarly, output defaults to build/tempdocs/ but this can be overridden by setting the
environment variable LILYPOND_TEMPDOCS.

This script will not work for building sections of the Contributors’ Guide. For building
sections of the Contributors’ Guide, use:

scripts/auxiliar/cg-section.sh SECTION

where SECTION is the name of the file containing the sections to be built. For example, to build
section 4 of the Contributors’ Guide, use:

scripts/auxiliar/cg-section.sh doc-work

cg-section.sh uses the same environment variables and corresponding default values as
doc-section.sh.

5.7.2 Scripts to create documentation

Regenerating menus

If you are using Emacs to edit Texinfo files, you can use C-c C-u C-a in order to regenerate
@menu portions automatically. Otherwise, run

scripts/auxiliar/node-menuify.sh FILENAME

The node-menuify.sh script just drives Emacs behind the scenes, so it requires Emacs to
be installed.

Updating doc with convert-ly

Don’t. This should be done by programmers when they add new features. If you notice that it
hasn’t been done, complain to lilypond-devel.

5.8 Docstrings in scheme

Material in the Internals reference is generated automatically from our source code. Any doc
work on Internals therefore requires modifying files in scm/*.scm. Texinfo is allowed in these
docstrings.

Most documentation writers never touch these, though. If you want to work on them, please
ask for help.

5.9 Translating the documentation

5.9.1 Getting started with documentation translation

First, get the sources from the Git repository, see Chapter 3 [Working with source code], page 10.

Translation requirements

Working on LilyPond documentation translations requires the following pieces of software, in
order to make use of dedicated helper tools:

• Python 3.5 or higher,

• GNU Make,

• Gettext,

https://sourceforge.net/p/testlilyissues/issues/1236/
https://sourceforge.net/p/testlilyissues/issues/1236/

Chapter 5: Documentation work 51

• Git.

It is not required to build LilyPond and the documentation to translate the documentation.
However, if you have enough time and motivation and a suitable system, it can be very useful
to build at least the documentation so that you can check the output yourself and more quickly;
if you are interested, see Chapter 4 [Compiling], page 21.

Before undertaking any large translation work, contributors are encouraged to contact the
lilypond-devel mailing list.

Which documentation can be translated

The makefiles and scripts infrastructure currently supports translation of the following docu-
mentation:

• the web site, the Learning Manual, the Notation Reference and Application Usage – Texinfo
source, PDF and HTML output; Info output might be added if there is enough demand for
it;

• the Changes document.

Support for translating the following pieces of documentation should be added soon, by
decreasing order of priority:

• automatically generated documentation: markup commands, predefined music functions;

• the Snippets List;

• the Internals Reference.

Starting translation in a new language

At top of the source directory, do

./autogen.sh

or (if you want to install your self-compiled LilyPond locally)

./autogen.sh --prefix=$HOME

If you want to compile LilyPond – which is almost required to build the documentation, but
is not required to do translation only – fix all dependencies and rerun ./configure (with the
same options as for autogen.sh).

Then cd into Documentation/ and run

make ISOLANG=MY-LANGUAGE new-lang

where MY-LANGUAGE is the ISO 639 language code.

Finally, add a language definition for your language in python/langdefs.py,
Documentation/lilypond-texi2html-lang.init and Documentation/webserver/lilypond.org.htaccess.
Add this language definition and the corresponding section in Documentation/lilypond-texi2html.init

and scripts/build/create-weblinks-itexi.py.

5.9.2 Documentation translation details

Please follow all the instructions with care to ensure quality work.

All files should be encoded in UTF-8.

Files to be translated

Translation of Documentation/en/foo/bar should be Documentation/LANG/foo/bar. Unmen-
tioned files should not be translated.

Files of priority 1 should be submitted along all files generated by starting a new language
in the same commit and thus a unique patch, and the translation of files marked with priority
2 should be committed to Git at the same time and thus sent in a single patch. Priority 1 files

Chapter 5: Documentation work 52

are required before requesting a language-specific mailing list lilypond-xyz@gnu.org. Files
marked with priority 3 or more may be submitted individually. For knowing how to commit
your work to Git, then make patches of your new translations as well as corrections and updates,
see Chapter 3 [Working with source code], page 10.

1. the website: web.texi, web/introduction.itexi, and web/download.itexi. Addition-
ally, also translate macros.itexi, po/lilypond-doc.pot, and search-box.ihtml.

2. the tutorial: web/manuals.itexi, learning.tely, learning/installing.itely,
learning/tutorial.itely, and learning/common-notation.itely

3. fundamental concepts in learning/fundamental.itely, as well as usage.tely,
usage/running.itely, usage/updating.itely, and web/community.itexi

4. learning/tweaks.itely, learning/templates.itely, and usage/suggestions.itely

5. the Notation reference: notation.tely, all of notation/*.itely, and the Snippets’ titles
and descriptions

6. usage/lilypond-book.itely and usage/external.itely

7. the appendices, whose translation is optional: essay.tely and essay/*.itely, as well as
extending.tely and extending/*.itely

Translating the Web site and other Texinfo documentation

Every piece of text should be translated in the source file, except Texinfo comments, text in
@lilypond blocks and a few cases mentioned below.

Node names are translated, but the original node name in English should be kept as the
argument of @translationof put after the section title; that is, every piece in the original file
like

@node Foo bar

@section_command Bar baz

should be translated as

@node translation of Foo bar

@section_command translation of Bar baz

@translationof Foo bar

The argument of @rglos commands and the first argument of @rglosnamed commands must
not be translated, as it is the node name of an entry in Music Glossary.

Every time you translate a node name in a cross-reference, i.e., the argument of commands
@ref, @rprogram, @rlearning, @rlsr, @ruser or the first argument of their *named variants,
you should make sure the target node is defined in the correct source file; if you do not intend
to translate the target node right now, you should at least write the node definition (that is, the
@node @section_commmand @translationof trio mentioned above) in the expected source file
and define all its parent nodes; for each node you have defined this way but have not translated,
insert a line that contains @untranslated. That is, you should end up for each untranslated
node with something like

@node translation of Foo bar

@section_command translation of Bar baz

@translationof Foo bar

@untranslated

Chapter 5: Documentation work 53

☛ ✟

Note: you do not have to translate the node name of a cross-reference
to a node that you do not have translated. If you do, you must define
an “empty” node like explained just above; this will produce a cross-
reference with the translated node name in output, although the target
node will still be in English. On the opposite, if all cross-references that
refer to an untranslated node use the node name in English, then you
do not have to define such an “empty” node, and the cross-reference
text will appear in English in the output. The choice between these two
strategies implies its particular maintenance requirements and is left to
the translators, although the opinion of the Translation meister leans
towards not translating these cross-references.
✡ ✠

Please think of the fact that it may not make sense translating everything in some Texinfo
files, and you may take distance from the original text; for instance, in the translation of the
web site section Community, you may take this into account depending on what you know the
community in your language is willing to support, which is possible only if you personally assume
this support, or there exists a public forum or mailing list listed in Community for LilyPond in
your language:

• Section “Bug reports” in General Information: this page should be translated only if you
know that every bug report sent on your language’s mailing list or forum will be handled
by someone who will translate it to English and send it on bug-lilypond or add an issue in
the tracker, then translate back the reply from developers.

• Section “Help us” in Contributor’s Guide: this page should be translated very freely, and
possibly not at all: ask help for contributing to LilyPond for tasks that LilyPond community
in your language is able and going to handle.

In any case, please mark in your work the sections which do not result from the direct translation
of a piece of English translation, using comments i.e., lines starting with ‘@c’.

Finally, press in Emacs C-c C-u C-a to update or generate menus. This process should be
made easier in the future, when the helper script texi-langutils.py and the makefile target
are updated.

Some pieces of text manipulated by build scripts that appear in the output are translated in
a .po file – just like LilyPond output messages – in Documentation/po. The Gettext domain
is named lilypond-doc, and unlike lilypond domain it is not managed through the Free
Translation Project.

Take care of using typographic rules for your language, especially in macros.itexi.

If you wonder whether a word, phrase or larger piece of text should be translated, whether
it is an argument of a Texinfo command or a small piece sandwiched between two Texinfo
commands, try to track whether and where it appears in PDF and/or HTML output as visible
text. This piece of advice is especially useful for translating macros.itexi.

Please keep verbatim copies of music snippets (in @lilypond blocks). However, some music
snippets containing text that shows in the rendered music, and sometimes translating this text
really helps the user to understand the documentation; in this case, and only in this case,
you may as an exception translate text in the music snippet, and then you must add a line
immediately before the @lilypond block, starting with

@c KEEP LY

Otherwise the music snippet would be reset to the same content as the English version at next
make snippet-update run – see [Updating documentation translation], page 55.

When you encounter

@lilypondfile[<number of fragment options>,texidoc]{filename.ly}

in the source, open Documentation/snippets/filename.ly, translate the texidoc

header field it contains, enclose it with texidocMY-LANGUAGE = " and ", and write it

Chapter 5: Documentation work 54

into Documentation/MY-LANGUAGE/texidocs/filename.texidoc. Additionally, you may
translate the snippet’s title in doctitle header field, in case doctitle is a fragment option
used in @lilypondfile; you can do this exactly the same way as texidoc. For instance,
Documentation/MY-LANGUAGE/texidocs/filename.texidoc may contain

doctitlees = "Spanish title baz"

texidoces = "

Spanish translation blah

"

@example blocks need not be verbatim copies, e.g., variable names, file names and comments
should be translated.

Finally, please carefully apply every rule exposed in Section 5.4 [Texinfo introduction and
usage policy], page 37, and Section 5.5 [Documentation policy], page 45. If one of these rules
conflicts with a rule specific to your language, please ask the Translation meister and/or the
Documentation Editors on lilypond-devel@gnu.org list.

Adding a Texinfo manual

In order to start translating a new manual, simply copy the English files within your language
directory and translate them.

For example, if you want to translate the first chapter of the Learning Manual:

cp Documentation/en/learning.tely Documentation/LANG/learning.tely

cp Documentation/en/learning/tutorial.itely Documentation/LANG/tutorial.itely

5.9.3 Documentation translation maintenance

Several tools have been developed to make translations maintenance easier. These helper scripts
make use of the power of Git, the version control system used for LilyPond development.

You should use them whenever you would like to update the translation in your language,
which you may do at the frequency that fits your and your cotranslators’ respective available
times. In the case your translation is up-to-date (which you can discover in the first subsection
below), it is enough to check its state every one or two weeks. If you feel overwhelmed by
the quantity of documentation to be updated, see [Maintaining without updating translations],
page 56.

Check state of translation
☛ ✟

Note: Translation helper scripts will work only if you’ve configured
lilypond to be built in-tree, as explained in Section 4.4.2 [Running
autogen.sh], page 27.
✡ ✠

First pull from Git – see Section 3.2 [Git cheat sheet], page 11, but DO NOT rebase unless
you are sure to master the translation state checking and updating system – then cd into
Documentation/ (or at top of the source tree, replace make with make -C Documentation) and
run

make ISOLANG=MY_LANGUAGE check-translation

This presents a diff of the original files since the most recent revision of the translation and
prints it to terminal output. Usually you’ll want to pass this output to a terminal pager like
less in order to scroll the diff up and down:

make ISOLANG=MY_LANGUAGE check-translation | less -R

To check a single file, cd into Documentation/ and run

make TRANSLATION_FILES=MY_LANGUAGE/manual/foo.itely check-translation

mailto:lilypond-devel@gnu.org

Chapter 5: Documentation work 55

In case this file has been renamed since you last updated the translation, you should specify both
old and new file names, e.g. TRANSLATION_FILES=MY_LANGUAGE/{manual,user}/foo.itely.

To see only which files need to be updated, do

make ISOLANG=MY_LANGUAGE check-translation | grep -n 'diff --git'

The -n option of grep will print the line number of each occurrence, which can be used to
have an idea of the length of each diff and the amount of work required.

To avoid printing terminal colors control characters, which is often desirable when you redirect
output to a file, run

make ISOLANG=MY_LANGUAGE NO_COLOR=1 check-translation

You can see the diffs generated by the commands above as changes that you should make in
your language to the existing translation, in order to make your translation up to date.

☛ ✟

Note: do not forget to update the committish in each file you have
completely updated, see [Updating translation committishes], page 56.
✡ ✠

See also

[Maintaining without updating translations], page 56.

Updating documentation translation

Instead of running check-translation, you may want to run update-translation, which will
run your favorite text editor to update files. First, make sure environment variable EDITOR is
set to a text editor command, then run from Documentation/

make ISOLANG=MY_LANGUAGE update-translation

or to update a single file

make TRANSLATION_FILES=MY_LANGUAGE/manual/foo.itely update-translation

For each file to be updated, update-translation will open your text editor with this file
and a diff of the file in English; if the diff cannot be generated or is bigger than the file in English
itself, the full file in English will be opened instead.

☛ ✟

Note: do not forget to update the committish in each file you have
completely updated, see [Updating translation committishes], page 56.
✡ ✠

.po message catalogs in Documentation/po/ may be updated by issuing from
Documentation/ or Documentation/po/

make po-update
☛ ✟

Note: if you run po-update and somebody else does the same and pushes
before you push or send a patch to be applied, there will be a conflict
when you pull. Therefore, it is better that only the Translation meister
runs this command. Furthermore, it has been borken since the GDP:
variable names and comments do no longer appear as translated.
✡ ✠

Updating music snippets can quickly become cumbersome, as most snippets should be iden-
tical in all languages. Fortunately, there is a script that can do this odd job for you (run from
Documentation/):

make ISOLANG=MY_LANGUAGE snippet-update

This script overwrites music snippets in MY_LANGUAGE/foo/every.itely with music snippets
from foo/every.itely. It ignores skeleton files, and keeps intact music snippets preceded with

Chapter 5: Documentation work 56

a line starting with @c KEEP LY; it reports an error for each .itely that has not the same music
snippet count in both languages. Always use this script with a lot of care, i.e., run it on a clean
Git working tree, and check the changes it made with git diff before committing; if you don’t
do so, some @lilypond snippets might be broken or make no sense in their context.

See also

[Maintaining without updating translations], page 56, Section 7.2 [Adding and editing snip-
pets], page 61.

Updating translation committishes

At the beginning of each translated file except PO files, there is a committish which represents
the revision of the sources which you have used to translate this file from the file in English.

When you have pulled and updated a translation, it is very important to update this commit-
tish in the files you have completely updated (and only these); to do this, first commit possible
changes to any documentation in English which you are sure to have done in your translation
as well, then replace in the up-to-date translated files the old committish by the committish of
latest commit, which can be obtained by doing

git rev-list HEAD |head -1

Most of the changes in the LSR snippets included in the documentation concern the syntax,
not the description inside texidoc="". This implies that quite often you will have to update
only the committish of the matching .texidoc file. This can be a tedious work if there are
many snippets to be marked as up do date. You can use the following command to update the
committishes at once:

cd Documentation/LANG/texidocs

sed -i -r 's/[0-9a-z]{40}/NEW-COMMITTISH/' *.texidoc

See also

Chapter 7 [LSR work], page 61.

Maintaining without updating translations

Keeping translations up to date under heavy changes in the documentation in English may be
almost impossible, especially when a lot of contributors brings changes.

It is possible — and even recommended — to perform some maintenance that keeps translated
documentation usable and eases future translation updating. The rationale below the tasks list
motivates this plan.

The following tasks are listed in decreasing priority order.

1. Update macros.itexi. For each obsolete macro definition, if it is possible to update macro
usage in documentation with an automatic text or regexp substitution, do it and delete
the macro definition from macros.itexi; otherwise, mark this macro definition as obsolete
with a comment, and keep it in macros.itexi until the documentation translation has been
updated and no longer uses this macro.

2. Update *.tely files completely with make check-translation – you may want to redirect
output to a file because of overwhelming output, or call check-translation.py on individual
files, see [Check state of translation], page 54.

3. In .itelys, match sections and .itely file names with those from English docs, which possi-
bly involves moving nodes contents in block between files, without updating contents itself.
In other words, the game is catching where has gone each section. In Learning manual, and
in Notation Reference sections which have been revised in GDP, there may be completely
new sections: in this case, copy @node and @section-command from English docs, and

Chapter 5: Documentation work 57

add the marker for untranslated status @untranslated on a single line. Note that it is
not possible to exactly match subsections or subsubsections of documentation in English,
when contents has been deeply revised; in this case, keep obsolete (sub)subsections in the
translation, marking them with a line @c obsolete just before the node.

Emacs with Texinfo mode makes this step easier:

• without Emacs AucTeX installed, C-c C-s shows structure of current Texinfo file in
a new buffer *Occur*; to show structure of two files simultaneously, first split Emacs
window in 4 tiles (with C-x 1 and C-x 2), press C-c C-s to show structure of one file
(e.g., the translated file), copy *Occur* contents into *Scratch*, then press C-c C-s

for the other file.

If you happen to have installed AucTeX, you can either call the macro by doing M-x

texinfo-show-structure or create a key binding in your ~/.emacs, by adding the
four following lines:

(add-hook 'Texinfo-mode-hook

'(lambda ()

(define-key Texinfo-mode-map "\C-cs"

'texinfo-show-structure)))

and then obtain the structure in the *Occur* buffer with C-c s.

• Do not bother updating @menus when all menu entries are in the same file, just do C-c

C-u C-a (“update all menus”) when you have updated all the rest of the file.

• Moving to next or previous node using incremental search: press C-s and type node

(or C-s @node if the text contains the word ‘node’) then press C-s to move to next
node or C-r to move to previous node. Similar operation can be used to move to
the next/previous section. Note that every cursor move exits incremental search, and
hitting C-s twice starts incremental search with the text entered in previous incremental
search.

• Moving a whole node (or even a sequence of nodes): jump to beginning of the node
(quit incremental search by pressing an arrow), press C-SPACE, press C-s node and
repeat C-s until you have selected enough text, cut it with C-w or C-x, jump to the
right place (moving between nodes with the previous hint is often useful) and paste
with C-y or C-v.

4. Update sections finished in the English documentation; check sections status at
https://lilypondwiki.tuxfamily.org/index.php?title=Documentation_coordination.

5. Update documentation PO. It is recommended not to update strings which come from
documentation that is currently deeply revised in English, to avoid doing the work more
than once.

6. Fix broken cross-references by running (from Documentation/)

make ISOLANG=YOUR-LANGUAGE fix-xrefs

This step requires a successful documentation build (with make doc). Some cross-references
are broken because they point to a node that exists in the documentation in English, which
has not been added to the translation; in this case, do not fix the cross-reference but keep it
"broken", so that the resulting HTML link will point to an existing page of documentation
in English.

Rationale

You may wonder if it would not be better to leave translations as-is until you can really start
updating translations. There are several reasons to do these maintenance tasks right now.

• This will have to be done sooner or later anyway, before updating translation of docu-
mentation contents, and this can already be done without needing to be redone later, as

https://lilypondwiki.tuxfamily.org/index.php?title=Documentation_coordination

Chapter 5: Documentation work 58

sections of documentation in English are mostly revised once. However, note that not all
documentation sectioning has been revised in one go, so all this maintenance plan has to
be repeated whenever a big reorganization is made.

• This just makes translated documentation take advantage of the new organization, which
is better than the old one.

• Moving and renaming sections to match sectioning of documentation in English simplify fu-
ture updating work: it allows updating the translation by side-by-side comparison, without
bothering whether cross-reference names already exist in the translation.

• Each maintenance task except ‘Updating PO files’ can be done by the same person for
all languages, which saves overall time spent by translators to achieve this task: the node
names and section titles are in English, so you can do. It is important to take advantage
of this now, as it will be more complicated (but still possible) to do step 3 in all languages
when documentation is compiled with texi2html and node names are directly translated
in source files.

5.9.4 Technical background

A number of Python scripts handle a part of the documentation translation process. All scripts
used to maintain the translations are located in scripts/auxiliar/.

• check_translation.py – show diff to update a translation,

• texi-langutils.py – quickly and dirtily parse Texinfo files to make message catalogs and
Texinfo skeleton files,

• update-snippets.py – synchronize ly snippets with those from English docs,

• tely-gettext.py – gettext node names, section titles and references in the sources; WARN-
ING only use this script once for each file, when support for "makeinfo –html" has been
dropped.

Python modules used by scripts in scripts/auxiliar/ or scripts/build/ (but not by
installed Python scripts) are located in python/auxiliar/:

• manuals_definitions.py – define manual names and name of cross-reference Texinfo
macros,

• buildlib.py – common functions (read piped output of a shell command, use Git),

• postprocess_html.py (module imported by www_post.py) – add footer and tweak links
in HTML pages.

And finally

• python/langdefs.py – language definitions module

59

6 Website work

6.1 Introduction to website work

The website is not written directly in HTML; instead it is autogenerated along with the docu-
mentation using Texinfo source files. Texinfo is the standard for documentation of GNU soft-
ware and allows generating output in HTML, PDF, and Info formats, which drastically reduces
maintenance effort and ensures that the website content is consistent with the rest of the docu-
mentation. This makes the environment for improving the website rather different from common
web development.

If you have not contributed to LilyPond before, a good starting point might be incremental
changes to the CSS file, to be found at https://lilypond.org/css/lilypond-website.css

or in the LilyPond source code at ./Documentation/css/lilypond-website.css.

Large scale structural changes tend to require familiarity with the project in general, a track
record in working on LilyPond documentation as well as a prospect of long-term commitment.

The Texinfo source file for generating HTML are to be found in

Documentation/en/web.texi

Documentation/en/web/*.texi

Unless otherwise specified, follow the instructions and policies given in Chapter 5 [Documen-
tation work], page 35. That chapter also contains a quick introduction to Texinfo; consulting
an external Texinfo manual should be not necessary.

Exceptions to the documentation policies

• Sectioning: the website only uses chapters and sections; no subsections or subsubsections.

• @ref{}s to other manuals (@ruser, @rlearning, etc): you can’t link to any pieces of auto-
matically generated documentation, like the IR or certain NR appendices.

• The bibliography in Community->Publications is generated automatically from .bib files;
formatting is done automatically by texi-web.bst.

• . . .

• For anything not listed here, just follow the same style as the existing website texinfo files.

6.2 Uploading website

Overall idea

The website is generated by converting the Documentation/*/web.texi files to HTML, and
reorganizing the resulting files into out/website-root/. This is controlled from toplevel
GNUmakefile and Documentation/GNUmakefile.

To build the website, run make website. This leaves the website in out/website-root/.

The website is deployed onto lilypond.org in the following steps:

• Run the manual job to build the website, either for the merge request you want to de-
ploy or for the latest pipeline on master at https://gitlab.com/lilypond/lilypond/-/

pipelines, by clicking the play button.

• This runs make website and stores the result in a website.zip artifact.

• On lilypond.org, the downloader https://gitlab.com/lilypond/infrastructure/-/

blob/master/website/main.go is run every 2 hours, from a systemd timed job. If a newer
website.zip is found, it is unpacked into the website directory on lilypond.org.

https://lilypond.org/css/lilypond-website.css
https://gitlab.com/lilypond/lilypond/-/pipelines
https://gitlab.com/lilypond/lilypond/-/pipelines
https://gitlab.com/lilypond/infrastructure/-/blob/master/website/main.go
https://gitlab.com/lilypond/infrastructure/-/blob/master/website/main.go

Chapter 6: Website work 60

6.3 Debugging website and docs locally

• Install Apache (you can use version 2, but keep in mind that the server hosting lilypond.org
runs version 1.3). These instructions assume that you also enable mod_userdir, and use
$HOME/public_html as DocumentRoot (i.e., the root directory of the web server).

• Build the online docs and website:

make WEB_TARGETS="offline online" doc

make website

This will make all the language variants of the website. To save a little time, just the English
version can be made with the command make WEB_LANGS='' website or the English and
(for example) the French with make WEB_LANGS='fr' website.

• Choose the web directory where to copy the built stuff. If you already have other web
projects in your DocumentRoot and don’t need to test the .htaccess file, you can copy
to ~/public_html/lilypond.org. Otherwise you’d better copy to ~/public_html. It’s
highly recommended to have your build dir and web dir on the same partition.

• Add the directory for the online documentation:

mkdir -p ~/public_html/doc/v2.19/

You may want to add also the stable documentation in ~/public_html/doc/v2.18/, ex-
tracting the contents of the html directory present in the tarball available in Section “All”
in General Information. Just in case you want to test the redirects to the stable documen-
tation.

• Copy the files with rsync:

rsync -av --delete out-website/website ~/public_html/

cp out-website/.htaccess ~/public_html

rsync -av --delete out-www/online-root/ ~/public_html/doc/v2.19/

6.4 Translating the website

As it has much more audience, the website should be translated before the documentation; see
Section 5.9 [Translating the documentation], page 50.

In addition to the normal documentation translation practices, there are a few additional
things to note:

• Build the website with:

make website

• Some of the translation infrastructure is defined in python files; you must look at the ###

translation data sections in:

scripts/build/create-weblinks-itexi.py

scripts/build/website_post.py

Do not submit a patch to add your language to this file unless make website completes
with fewer than 5 warnings.

• Links to manuals are done with macros like @manualDevelLearningSplit. To get trans-
lated links, you must change that to @manualDevelLearningSplit-es (for es/Spanish
translations, for example).

61

7 LSR work

7.1 Introduction to LSR

The LilyPond Snippet Repository (LSR) (https://lsr.di.unimi.it/) is a collection of Lily-
Pond examples. A subset of these examples are automatically imported into the documentation,
making it easy for users to contribute to the documentation without learning Git and Texinfo.

7.2 Adding and editing snippets

General guidelines

When you create (or find!) a nice snippet, and if it is supported by the LilyPond version run-
ning on the LSR, please add it to the LSR. Go to LSR (https://lsr.di.unimi.it/) and log
in – if you haven’t already, create an account. Follow the instructions on the website. These
instructions also explain how to modify existing snippets.

If you think a snippet is particularly informative and should be included in the documen-
tation, tag it with ‘docs’ and one or more other categories, or ask on the development list for
somebody who has editing permissions to do it.

Please make sure that the LilyPond code follows our formatting guidelines, see Section 5.4.4
[LilyPond formatting], page 39.

If a new snippet created for documentation purposes compiles with the LilyPond version
currently on LSR, it should be added to the LSR, and a reference to the snippet should be
added to the documentation. Please ask a documentation editor to add a reference to it in an
appropriate place in the docs. (Note – it should appear in the ‘snippets’ document automatically,
once it has been imported into git and built. See Section 7.5 [LSR to Git], page 64.)

If a new snippet uses new features that are not available in the current LSR version of
LilyPond, it should be added to directory Documentation/snippets/new/, and a reference
should be added to the manual.

Snippets created or updated in Documentation/snippets/new/ must be adjusted and copied
to directory Documentation/snippets/. This should be done by invoking the makelsr.pl script
– after you have compiled LilyPond. Assuming that your LilyPond build is in the top-level
subdirectory build/, a proper invocation is

cd /your/lilypond/git/top/dir

scripts/auxiliar/makelsr.pl --new

See Section 7.4 [The makelsr.pl script], page 63, for more details.

Be sure that ‘make doc’ runs successfully before submitting a patch, to prevent breaking
compilation (see Section 4.6.2 [Generating documentation], page 30).

Formatting snippets in Documentation/snippets/new/

When adding a file to this directory, please start the file with the following template . . .

\version "2.xx.yy"

\header {

% Use existing LSR tags other than 'docs'; the names of the

% `*.snippet-list` files in `Documentation/snippets/` give the

% tags currently used.

lsrtags = "rhythms, expressive-marks"

% The documentation string must use Texinfo syntax. In

https://lsr.di.unimi.it/
https://lsr.di.unimi.it/

Chapter 7: LSR work 62

% addition, `\` and `"` must be written as `\\` and `\"`,

% respectively.

texidoc = "

This snippet demonstrates @code{\\foo} ...

"

% The snippet title string must be formatted similar to

% `texidoc`.

doctitle = "Snippet title"

}

<LilyPond code starts here>

. . . and name the file snippet-title.ly.

It is important that the version number you use at the top of the example is the minimum
LilyPond version that the file compiles with: for example, if the LSR is currently at 2.22.2,
your example requires 2.23.4, and the current development version of LilyPond is 2.24.3, use
\version "2.23.4".

Particular attention is also necessary for the lsrtags and doctitle fields: the tags must
match tags used in the documentation, and the doctitle must match the filename (makelsr.pl

shows a helpful error message if it doesn’t).

The order of \version, \header, and the LilyPond code must be as shown above, otherwise
makelsr.pl aborts with an error. The same holds for the order of the lsrtags, texidoc, and
doctitle fields within \header.

7.3 Approving snippets

The main task of LSR editors is approving snippets. To find a list of unapproved snippets, log
into LSR (https://lsr.di.unimi.it/) and select “No” from the drop-down menu to the right
of the word “Approved” at the bottom of the interface, then click “Enable filter”.

Here is a checklist of the necessary tasks.

1. Does the snippet make sense and does it what the author claims that it does? If you think
the snippet is suited to be included into the LilyPond documentation, add the ‘docs’ tag
and at least one other tag.

2. If the snippet is tagged with ‘docs’, check whether it matches our formatting guidelines, see
Section 5.4.4 [LilyPond formatting], page 39.

Also, snippets tagged with ‘docs’ should not be explaining (or replicating) existing material
in the documentation. They should not refer to the documentation; the documentation
should rather refer to them.

3. If the snippet uses Scheme code, check that everything looks good and there are no security
risks.

☛ ✟

Note: Somebody could add code like #'(system "rm -rf /") to a
snippet, which would cause catastrophic results if executed! Take
this step VERY SERIOUSLY.
✡ ✠

4. If all is well, check the box labeled “approved” and save the snippet.

https://lsr.di.unimi.it/

Chapter 7: LSR work 63

7.4 The makelsr.pl script

As you might have guessed already, makelsr.pl is a Perl (https://perl.org) script. Obvi-
ously, you need Perl to execute it, which you should now install in case it isn’t already available
on your system.

There is a dependency on the Pandoc (https://pandoc.org) program, which the script uses
to convert LSR’s snippet documentation strings (which are formatted in HTML) to Texinfo.
This must be installed, too.

Furthermore, makelsr.pl needs a few additional modules that are not Perl core modules
(tested with Perl version 5.36):

• File::Which

• IPC::Run3

• MySQL::Dump::Parser::XS

• Pandoc

• Parallel::ForkManager

Either install missing modules with your package manager (if available) or use the cpanm com-
mand.1

A typical call might me

cpanm --sudo Parallel::ForkManager

to download, compile, and install module ‘Parallel::ForkManager’.2

Finally, it needs to find the convert-ly script from the current LilyPond development build.

By default, executing makelsr.pl performs the following actions.

• Download a current MySQL dump of the LSR database (the dump is regenerated once a
day).

• Delete all snippet and snippet list files in directory Documentation/snippets/ (but not in
Documentation/snippets/new/).

• Extract all snippets from the LSR database that have the ‘docs’ tag set, convert their
documentation parts from HTML to Texinfo with the pandoc program, run the script
convert-ly to update their LilyPond code parts to current syntax, and store them in
Documentation/snippets/.

• Create snippet list files named winds.snippet-list or connecting-notes.snippet-list

that list the snippets grouped by tags assigned in the database. These files are used to
structure LilyPond’s ‘snippets’ documentation.

• Convert all snippet files in Documentation/snippets/new/ with convert-ly and output
them to Documentation/snippets/, possibly overwriting existing files.

This flow of actions can be adjusted; say ‘scripts/auxiliar/makelsr.pl --help’ to get a
detailed description of the provided command line options and used environment variables.

1 Most Perl distributions have this command included; if not, try to install a package named ‘cpanminus’ or
having ‘cpanminus’ in its name.

2 Note that the program cpanm might be called differently; it sometimes has the Perl version appended to its
name, for example cpanm-5.34.

The --sudo option makes the modules install into a system directory, for example /usr/lib/perl5/
site_perl/... – you need the superuser password for this. If you don’t want to do that for whatever
reason, just omit --sudo and follow the instructions shown in cpanm’s error message to install Perl modules
locally (i.e., without sudo rights).

As of this writing (August 2022) there is a small buglet in a test of the ‘Pandoc’ module that makes it necessary
to add option --notest for installing this module in case you have to use cpanm.

https://perl.org
https://pandoc.org

Chapter 7: LSR work 64

7.5 LSR to Git

Introduction

Snippets used in the documentation are in $LILYPOND_GIT/Documentation/snippets/. This
directory contains a set of all snippets in the LSR that are tagged with ‘docs’. An import is
done with the makelsr.pl script, which downloads a complete database dump of the LSR to
update this directory.

Snippets that are too new to be run on the LSR (which uses a stable LilyPond version) are
put into $LILYPOND_GIT/Documentation/snippets/new/. Once the LSR gets upgraded to a
LilyPond version that can actually compile them, they are transferred to the LSR and deleted
from snippets/new/.

‘Git’ is the shorthand name for LilyPond’s Git repository, which contains all the develop-
ment code. For further information on setting this up, see Chapter 3 [Working with source
code], page 10. An alternative to setting up a Git repository for people wanting to do LSR work
is to get the source code from https://lilypond.org/website/development.html. However,
we don’t recommend this since it doesn’t allow easy submission of patches as merge requests.

Importing the LSR to Git

1. Make sure that the convert-ly script is a bleeding edge version – the latest development
release, or even better, freshly compiled from Git master, with the environment variable
LILYPOND_BUILD_DIR correctly set up (see Section 13.2 [Environment variables], page 120)
in case your build directory isn’t $LILYPOND_GIT/build/.

2. Check the other prerequisites necessary for executing the makelsr.pl script (see Section 7.4
[The makelsr.pl script], page 63).

3. If you are using a git repository, create and check out a branch, for example

git checkout -b lsr-import

4. From the top source directory, execute

scripts/auxiliar/makelsr.pl

Say ‘scripts/auxiliar/makelsr.pl --help’ to find out how to modify this call; for ex-
ample, command line option --dump file makes the script use a locally stored dump file.

5. Carefully check the output of the script for warnings and errors, then carefully check the
file differences in the git repository. ‘git diff’ is your friend.

6. Rebuild the documentation. If some snippets from Documentation/snippets/ cause the
documentation compilation to fail, try the following steps to fix it.

• Look up the snippet filename foo.ly in the error output or log file, then fix the file
Documentation/snippets/foo.ly to make the documentation build successfully.

• Determine where it comes from by looking at its first two lines, e.g., run

head -2 Documentation/snippets/foo.ly

• If the snippet comes from the LSR, also apply the fix to the snippet in the LSR and send
a notification email to an LSR editor with CC to the development list, see Section 7.2
[Adding and editing snippets], page 61.

Note that the failure may sometimes not be caused by the snippet in the LSR but by
LilyPond syntax changes that convert-ly can’t handle automatically. Such files must

be added to the new/ directory.

• If the snippet comes from Documentation/snippets/new/, apply the fix in
Documentation/snippets/new/foo.ly and run makelsr.pl as follows:

scripts/auxiliar/makelsr.pl --new

https://lilypond.org/website/development.html

Chapter 7: LSR work 65

Then, inspect Documentation/snippets/foo.ly to check that the fix has been well
propagated.

• If the build failure was caused by a translation string, you may have to fix some
Documentation/lang/texidocs/foo.texidoc files instead.

7. When you are done, commit your changes to your Git branch and create a merge request
(see Section 3.3 [Lifecycle of a merge request], page 14).

7.6 Renaming a snippet

Due to the potential duality of snippets (i.e., they may exist both in the LSR database and in
Documentation/snippets/new/), this process is a bit more involved than we might like.

1. Send an email to an LSR editor, requesting the renaming.

2. The LSR editor does the renaming (or debates the topic with you), then warns the LSR-
to-git person (wanted: better title) about the renaming.

3. LSR-to-git person does his normal job, but then also renames any copies of the snippets in
Documentation/snippets/new/, and any instances of the snippet name in the documen-
tation.

git grep is highly recommended for this task.

7.7 Updating the LSR to a new version

To update the LSR, perform the following steps:

1. Start by emailing the LSR maintainer, Sebastiano, and liaising with him to ensure that
updating the snippets is synchronised with updating the binary running the LSR.

2. Download the latest snippet tarball from https://lsr.di.unimi.it/download/ and ex-
tract it. The relevant files can be found in the all subdirectory. Make sure your shell is
using an English language version, for example LANG=en_US, then run convert-ly on all
the files. Use the command-line option --to=version to ensure the snippets are updated
to the correct stable version.

3. Make sure that you are using convert-ly from the latest available release to gain best
advantage from the latest converting-rules-updates.

For example:

• LSR-version: 2.12.2

• intended LSR-update to 2.14.2

• latest release 2.15.30

Use convert-ly from 2.15.30 and the following terminal command for all files:

convert-ly -e -t2.14.2 *.ly

4. There might be no conversion rule for some old commands. To make an initial check
for possible problems you can run the script at the end of this list on a copy of the all

subdirectory.

5. Copy relevant snippets (i.e., snippets whose version is equal to or less than the new version
of LilyPond running on the LSR) from Documentation/snippets/new/ into the set of files
to be used to make the tarball. Make sure you only choose snippets which are already
present in the LSR, since the LSR software isn’t able to create new snippets this way. If
you don’t have a Git repository for LilyPond, you’ll find these snippets in the source-tarball
on https://lilypond.org/website/development.html. Don’t rename any files at this
stage.

6. Verify that all files compile with the new version of LilyPond, ideally without any warnings
or errors. To ease the process, you may use the shell script that appears after this list.

https://lsr.di.unimi.it/download/
https://lilypond.org/website/development.html

Chapter 7: LSR work 66

Due to the workload involved, we do not require that you verify that all snippets produce
the expected output. If you happen to notice any such snippets and can fix them, great;
but as long as all snippets compile, don’t delay this step due to some weird output. If a
snippet is not compiling, update it manually. If it’s not possible, delete it for now.

7. Remove all headers and version-statements from the files. Phil Holmes has a python script
that will do this and which needs testing. Please ask him for a copy if you wish to do this.

8. Create a tarball and send it back to Sebastiano. Don’t forget to tell him about any deletions.

9. Use the LSR web interface to change any descriptions you want to. Changing the titles of
snippets is a bit fraught, since this also changes the filenames. Only do this as a last resort.

10. Use the LSR web interface to add the other snippets from Documentation/snippets/new/

which compile with the new LilyPond version of the LSR. Ensure that they are correctly
tagged, including the tag docs and that they are approved.

11. When LSR has been updated, wait a day for the tarball to update, then download another
snippet tarball. Verify that the relevant snippets from Documentation/snippets/new/ are
now included, then delete those snippets from Documentation/snippets/new/.

12. Commit all the changes. Don’t forget to add new files to the git repository with git add.
Run make, make doc and make test to ensure the changes don’t break the build. Any
snippets that have had their file name changed or have been deleted could break the build,
and these will need correcting step by step.

Below is a shell script to run LilyPond on all .ly files in a directory. If the script is run
with a -s parameter, it runs silently except for reporting failed files. If run with -c it also runs
convert-ly prior to running LilyPond.

#!/bin/bash

while getopts sc opt; do
case $opt in

s)
silent=true
;;

c)
convert=true
;;

esac
done
param=$ if [$silent]; then

param=${param:3}
fi
if [$convert]; then

param=${param:3}
fi
filter=${param:-"*.ly"}

for LILYFILE in $filter
do

STEM=$(basename "$LILYFILE" .ly)
if [$convert]; then

if [$silent]; then
$LILYPOND_BUILD_DIR/out/bin/convert-ly -e "$LILYFILE" >& "$STEM".con.txt

else
$LILYPOND_BUILD_DIR/out/bin/convert-ly -e "$LILYFILE"

fi
fi
if [! $silent]; then

echo "running $LILYFILE..."
fi
$LILYPOND_BUILD_DIR/out/bin/lilypond --format=png "$LILYFILE" >& "$STEM".txt
RetVal=$?

Chapter 7: LSR work 67

if [$RetVal -gt 0]; then
echo "$LILYFILE failed"

fi
done

Output from LilyPond is in filename.txt and convert-ly in filename.con.txt.

68

8 Issues

This chapter deals with defects, feature requests, and miscellaneous development tasks.

8.1 Introduction to issues
☛ ✟

Note: All the tasks in this chapter require no programming skills and
can be done by anyone with a web browser, an email client and the
ability to run LilyPond.
✡ ✠

The term ‘issues’ refers not just to software bugs but also includes feature requests, docu-
mentation additions and corrections as well as any other general code ‘TODOs’ that need to be
kept track of. Tasks revolving around issues include:

• Monitoring the LilyPond Bugs mailing list looking for any issues reported by other users
ensuring that they are accurate and contain enough information for the developers to work
with, preferably with Section “Tiny examples” in General Information and if applicable,
screenshots.

• Adding new issues to the issue tracker or updating existing issues with new information.

To start working on bug triage, follow these steps:

1. Read every section of the Chapter 8 [Issues], page 68, chapter in this guide.

2. Subscribe your email account to bug-lilypond. See https://lists.gnu.org/mailman/

listinfo/bug-lilypond.

3. Create your own GitLab login (required to manage issues):

• Go to https://gitlab.com/users/sign_in.

• Click on the ‘Register’ tab to create a new account.

• Fill in your details as required and click the Register button to complete the registra-
tion.

4. Go to https://gitlab.com/lilypond and ‘Request access’ to the group. Additionally
send your GitLab username (not your email address) to bug-lilypond@gnu.org, asking to
be given appropriate permissions to manage issues.

5. Configure your email client to use some kind of sorting and filtering as this will significantly
reduce and simplify your workload. Suggested email folder names are mentioned below to
work when sorted alphabetically.

Any email sent To: or CC: to bug-lilypond should be configured to go into a bug-current

folder.

8.2 Triaging bugs

Emails to you personally

Sometimes a confused user will send a bug report (or an update to a report) to you personally.
If that happens, please forward such emails to the bug-lilypond list.

Emails to bug-answers

Some of these emails will be comments on issues that you added to the tracker.

If they are asking for more information, give the additional information.

• If the email says that the issue was classified in some other manner, read the rationale given
and take that into account for the next issue you add.

https://lists.gnu.org/mailman/listinfo/bug-lilypond
https://lists.gnu.org/mailman/listinfo/bug-lilypond
https://gitlab.com/users/sign_in
https://gitlab.com/lilypond
mailto:bug-lilypond@gnu.org

Chapter 8: Issues 69

• Otherwise, move them to your bug-ignore folder.

Some of these emails will be discussions about Bug Squad work; read those.

Emails to bug-current

Dealing with these emails is your main task. Your job is to get rid of these emails in the first
method which is applicable:

1. If the email has already been handled by a Bug Squad member (i.e. check to see who else
has replied to it), delete it.

2. If the email is a question about how to use LilyPond, reply with this response:

For questions about how to use LilyPond, please read our

documentation available from:

https://lilypond.org/website/manuals.html

or ask the lilypond-user mailing list.

3. If the email mentions “the latest git”, or any version number that has not yet been officially
released, forward it to lilypond-devel.

4. If a bug report is not in the form of a Tiny example, direct the user to resubmit the report
with this response:

I'm sorry, but due to our limited resources for handling bugs, we

can only accept reports in the form of Tiny examples. Please see

step 2 in our bug reporting guidelines:

https://lilypond.org/website/bug-reports.html

5. If anything is unclear, ask the user for more information.

How does the graphical output differ from what the user expected? What version of lilypond
was used (if not given) and operating system (if this is a suspected cause of the problem)?
In short, if you cannot understand what the problem is, ask the user to explain more. It is
the user’s responsibility to explain the problem, not your responsibility to understand it.

6. If the behavior is expected, the user should be told to read the documentation:

I believe that this is the expected behavior -- please read our

documentation about this topic. If you think that it really is a

mistake, please explain in more detail. If you think that the

docs are unclear, please suggest an improvement as described by

�Simple tasks -- Documentation� on:

https://lilypond.org/website/help-us.html

7. If the issue already exists in the tracker, send an email to that effect:

This issue has already been reported; you can follow the

discussion and be notified about fixes here:

(copy+paste the GitLab issue URL)

8. Accept the report as described in Section 8.4 [Adding issues to the tracker], page 71.

All emails should be CC’d to the bug-lilypond list so that other Bug Squad members know
that you have processed the email.

☛ ✟

Note: There is no option for “ignore the bug report” – if you cannot
find a reason to reject the report, you must accept it.
✡ ✠

https://lilypond.org/website/manuals.html
https://lilypond.org/website/bug-reports.html
https://lilypond.org/website/help-us.html

Chapter 8: Issues 70

8.3 Issue classification

We have several labels:

• Critical: normally a regression against the current stable version or the previous stable
version. Alternatively, a regression against a fix developed for the current version. This
does not apply where the “regression” occurred because a feature was removed deliberately
– this is not a bug.

Currently, only Critical items will block a stable release.

• Maintainability: hinders future development.

• Crash: any input which produces a crash.

• Ugly: overlapping or other ugly notation in graphical output.

• Defect: a problem in the core program. (the lilypond binary, scm files, fonts, etc).

• Documentation: inaccurate, missing, confusing, or desired additional info. Must be fixable
by editing a texinfo, ly, or scm file.

• Build: problem or desired features in the build system. This includes the makefiles and
python scripts.

• Scripts: problem or desired feature in the non-build-system scripts. Mostly used for convert-
ly, lilypond-book, etc.

• Enhancement: a feature request for the core program. The distinction between enhancement
and defect isn’t extremely clear; when in doubt, mark it as enhancement.

• Other: anything else.

• Regression: it used to work intentionally in the current stable release or the previous stable
release. If the earlier output was accidental (i.e., we didn’t try to stop a collision, but it just
so happened that two grobs didn’t collide), then breaking it does not count as a regression.

To help decide whether the change is a regression, please adopt the following process:

1. Are you certain the change is OK? If so, do nothing.

2. Are you certain that the change is bad? Add it to the tracker as a regression.

3. If you’re not certain either way, add it to the tracker as a regression but be aware that
it may be recategorised or marked invalid.

In particular, anything that breaks a regression test is a regression.

• Frog: the fix is believed to be suitable for a new contributor (does not require a great deal
of knowledge about LilyPond). The issue should also have an estimated time in a comment.

• Bounty: somebody is willing to pay for the fix. Only add this tag if somebody has offered
an exact figure in US dollars or euros.

• Warning: graphical output is fine, but lilypond prints a false/misleading warning message.
Alternately, a warning should be printed (such as a bar line error), but was not. Also applies
to warnings when compiling the source code or generating documentation.

• Performance: performance issue.

In addition, the following labels may be used when closing an issue:

• Invalid: issue should not have been added in the current state.

• Duplicate: issue already exists in the tracker.

• Shelved: issue won’t fix and was abandoned.

Assign an issue to yourself to indicate that you are currently working on it.

Chapter 8: Issues 71

8.4 Adding issues to the tracker
☛ ✟

Note: This should only be done by the Bug Squad or experienced de-
velopers. Normal users should not do this; instead, they should follow
the guidelines for Section “Bug reports” in General Information.
✡ ✠

1. Check if the issue falls into any previous category given on the relevant checklists in
Section 8.2 [Triaging bugs], page 68. If in doubt, add a new issue for a report. We would
prefer to have some incorrectly-added issues rather than lose information that should have
been added.

2. Add the issue and classify it according to the guidelines in Section 8.3 [Issue classification],
page 70. In particular, the item should have Status and type labels.

3. Include output. Usually, the problem can be demonstrated in an image created using
lilypond -dcrop bug.ly, which generates bug.cropped.png. However, for spacing bugs,
this image may not show the problem; attach the full PDF produced by a normal lilypond

invocation in this case.

4. After adding the issue, please send a response email to the same group(s) that the initial
patch was sent to. If the initial email was sent to multiple mailing lists (such as both user

and bugs), then reply to all those mailing lists as well. The email should contain a link to
the issue you just added.

If patches are sent to the bug list, please submit them via GitLab (or help the author to do
so). Alternatively, if discussion is needed, forward the patch to lilypond-devel.

72

9 Regression tests

9.1 Introduction to regression tests

LilyPond has a complete suite of regression tests that are used to ensure that changes to the
code do not break existing behavior. These regression tests comprise small LilyPond snippets
that test the functionality of each part of LilyPond.

Regression tests are added when new functionality is added to LilyPond or when bugs are
fixed.

The regression tests are compiled using special make targets. There are three primary uses
for the regression tests. First, successful completion of the regression tests means that LilyPond
has been properly built. Second, the output of the regression tests can be manually checked to
ensure that the graphical output matches the description of the intended output. Third, the
regression test output from two different versions of LilyPond can be automatically compared
to identify any differences. These differences should then be manually checked to ensure that
the differences are intended.

Regression tests (“regtests”) are available in precompiled form as part of the documentation.
Regtests can also be compiled on any machine that has a properly configured LilyPond build
system.

9.2 Precompiled regression tests

Regression test output

As part of the release process, the regression tests are run for every LilyPond release. Full
regression test output is available for every stable version and the most recent development
version.

Regression test output is available in HTML and PDF format. Links to the regression test
output are available at the developer’s resources page for the version of interest.

The latest stable version of the regtests is found at:

https://lilypond.org/doc/stable/input/regression/collated-files.html

The latest development version of the regtests is found at:

https://lilypond.org/doc/latest/input/regression/collated-files.html

9.3 Compiling regression tests

Developers may wish to see the output of the complete regression test suite for the current
version of the source repository between releases. Current source code is available; see Chapter 3
[Working with source code], page 10.

For regression testing ../configure should be run with the --disable-optimising option.
Then you will need to build the LilyPond binary; see Section 4.5 [Compiling LilyPond], page 29.

Uninstalling the previous LilyPond version is not necessary, nor is running make install,
since the tests will automatically be compiled with the LilyPond binary you have just built in
your source directory.

From this point, the regtests are compiled with:

make test

If you have a multi-core machine you may want to use the -j option and CPU COUNT

variable, as described in [Saving time with CPU_COUNT], page 31. For a quad-core processor the
complete command would be:

make -j5 CPU_COUNT=5 test

https://lilypond.org/doc/stable/input/regression/collated-files.html
https://lilypond.org/doc/latest/input/regression/collated-files.html

Chapter 9: Regression tests 73

The regtest output will then be available in input/regression/out-test.
input/regression/out-test/collated-examples.html contains a listing of all the regression
tests that were run, but none of the images are included. Individual images are also available
in this directory.

The primary use of ‘make test’ is to verify that the regression tests all run without error. The
regression test page that is part of the documentation is created only when the documentation is
built, as described in Section 4.6.2 [Generating documentation], page 30. Note that building the
documentation requires more installed components than building the source code, as described
in Section 4.2.3 [Requirements for building documentation], page 25.

9.4 Regtest comparison

Before modified code is committed to master, a regression test comparison must be completed to
ensure that the changes have not caused problems with previously working code. The comparison
is made automatically upon compiling the regression test suite twice.

1. Before making changes to the code, establish a baseline for the comparison by checking out
the current git master, going to the $LILYPOND_GIT/build/ directory and running:

make clean # whenever any files in mf/ are modified

make test-baseline

2. Make your changes, or apply the patch(es) to consider.

3. Check for unintentional changes to the regtests:

make check

After this has finished, a regression test comparison will be available (relative to the current
build/ directory) at:

out/test-results/index.html

For each regression test that differs between the baseline and the changed code, a regression
test entry will be displayed. Ideally, the only changes would be the changes that you were
working on. If regressions are introduced, they must be fixed before committing the code.

4. If you are happy with the results, then skip to the final step.

If you want to continue programming, then make any additional code changes, and continue.

5. Finally, you should verify that make doc completes successfully.

Advanced note: Once a test baseline has been established, there is no need to run it
again unless git master changed. In other words, if you work with several branches
and want to do regtests comparison for all of them, you can make test-baseline

with git master, checkout some branch, make check it, then switch to another
branch, make test-clean and make check it without doing make test-baseline

again.

9.5 Pixel-based regtest comparison

As an alternative to the make test method for regtest checking (which relies upon .signature

files created by a LilyPond run and which describe the placing of grobs) there is a script which
compares the output of two LilyPond versions pixel-by-pixel. To use this, start by checking out
the version of LilyPond you want to use as a baseline, and run make. Then, do the following:

cd $LILYPOND_GIT/scripts/auxiliar/

./make-regtest-pngs.sh -j9 -o

The -j9 option tells the script to use 9 CPUs to create the images - change this to your own
CPU count+1. -o means this is the "old" version. This will create images of all the regtests in

$LILYPOND_BUILD_DIR/out-png-check/old-regtest-results/

Chapter 9: Regression tests 74

Now checkout the version you want to compare with the baseline. Run make again to recreate
the LilyPond binary. Then, do the following:

cd $LILYPOND_GIT/scripts/auxiliar/

./make-regtest-pngs.sh -j9 -n

The -n option tells the script to make a "new" version of the images. They are created in

$LILYPOND_BUILD_DIR/out-png-check/new-regtest-results/

Once the new images have been created, the script compares the old images with the new
ones pixel-by-pixel and prints a list of the different images to the terminal, together with a count
of how many differences were found. The results of the checks are in

$LILYPOND_BUILD_DIR/out-png-check/regtest-diffs/

To check for differences, browse that directory with an image viewer. Differences are shown
in red. Be aware that some images with complex fonts or spacing annotations always display a
few minor differences. These can safely be ignored.

9.6 Finding the cause of a regression

Git has special functionality to help tracking down the exact commit which causes a problem.
See the git manual page for git bisect. This is a job that non-programmers can do, although it
requires familiarity with git, ability to compile LilyPond, and generally a fair amount of technical
knowledge. A brief summary is given below, but you may need to consult other documentation
for in-depth explanations.

Even if you are not familiar with git or are not able to compile LilyPond you can still help
to narrow down the cause of a regression simply by downloading the binary releases of different
LilyPond versions and testing them for the regression. Knowing which version of LilyPond first
exhibited the regression is helpful to a developer as it shortens the git bisect procedure.

Once a problematic commit is identified, the programmers’ job is much easier. In fact, for
most regression bugs, the majority of the time is spent simply finding the problematic commit.

More information is in Chapter 9 [Regression tests], page 72.

git bisect setup

We need to set up the bisect for each problem we want to investigate.

Suppose we have an input file which compiled in version 2.13.32, but fails in version 2.13.38
and above.

1. Begin the process:

git bisect start

2. Give it the earliest known bad tag:

git bisect bad release/2.13.38-1

(you can see tags with: git tag)

3. Give it the latest known good tag:

git bisect good release/2.13.32-1

You should now see something like:

Bisecting: 195 revisions left to test after this (roughly 8 steps)

[b17e2f3d7a5853a30f7d5a3cdc6b5079e77a3d2a] Web: Announcement

update for the new �LilyPond Report�.

Chapter 9: Regression tests 75

git bisect actual

1. Compile the source:

make

2. Test your input file:

out/bin/lilypond test.ly

3. Test results?

• Does it crash, or is the output bad? If so:

git bisect bad

• Does your input file produce good output? If so:

git bisect good

4. Once the exact problem commit has been identified, git will inform you with a message like:

6d28aebbaaab1be9961a00bf15a1ef93acb91e30 is the first bad commit

%%% ... blah blah blah ...

If there is still a range of commits, then git will automatically select a new version for you
to test. Go to step #1.

Recommendation: use two terminal windows

• One window is open to the build/ directory, and alternates between these commands:

make

out/bin/lilypond test.ly

• One window is open to the top source directory, and alternates between these commands:

git bisect good

git bisect bad

9.7 MusicXML tests

LilyPond comes with a complete set of regtests for the MusicXML (http://www.musicxml.

org/) language. Originally developed to test ‘musicxml2ly’, these regression tests can be used
to test any MusicXML implementation.

The MusicXML regression tests are found at input/regression/musicxml/.

The output resulting from running these tests through ‘musicxml2ly’ followed by ‘lilypond’
is available in the LilyPond documentation:

https://lilypond.org/doc/latest/input/regression/musicxml/collated-files

http://www.musicxml.org/
http://www.musicxml.org/
https://lilypond.org/doc/latest/input/regression/musicxml/collated-files

76

10 Programming work

10.1 Overview of LilyPond architecture

LilyPond processes the input file into graphical and musical output in a number of stages. This
process, along with the types of routines that accomplish the various stages of the process, is
described in this section. A more complete description of the LilyPond architecture and internal
program execution is found in Erik Sandberg’s master’s thesis (https://lilypond.gitlab.io/

static-files/media/thesis-erik-sandberg.pdf).

The first stage of LilyPond processing is parsing. In the parsing process, music expressions in
LilyPond input format are converted to music expressions in Scheme format. In Scheme format,
a music expression is a list in tree form, with nodes that indicate the relationships between
various music events. The LilyPond parser is written in Bison.

The second stage of LilyPond processing is iterating. Iterating assigns each music event to a
context, which is the environment in which the music will be finally engraved. The context is
responsible for all further processing of the music. It is during the iteration stage that contexts
are created as necessary to ensure that every note has a Voice type context (e.g. Voice, TabVoice,
DrumVoice, CueVoice, MensuralVoice, VaticanaVoice, GregorianTranscriptionVoice), that the
Voice type contexts exist in appropriate Staff type contexts, and that parallel Staff type contexts
exist in StaffGroup type contexts. In addition, during the iteration stage each music event is
assigned a moment, or a time in the music when the event begins.

Each type of music event has an associated iterator. Iterators are defined in *-iterator.cc.
During iteration, an event’s iterator is called to deliver that music event to the appropriate
context(s).

The final stage of LilyPond processing is translation. During translation, music events are
prepared for graphical or midi output. The translation step is accomplished by the polymor-
phic base class Translator through its two derived classes: Engraver (for graphical output) and
Performer (for midi output).

Translators are defined in C++ files named *-engraver.cc and *-performer.cc. Much of
the work of translating is handled by Scheme functions, which is one of the keys to LilyPond’s
exceptional flexibility.

https://lilypond.gitlab.io/static-files/media/thesis-erik-sandberg.pdf
https://lilypond.gitlab.io/static-files/media/thesis-erik-sandberg.pdf

Chapter 10: Programming work 77

10.2 LilyPond programming languages

Programming in LilyPond is done in a variety of programming languages. Each language is used
for a specific purpose or purposes. This section describes the languages used and provides links
to reference manuals and tutorials for the relevant language.

Chapter 10: Programming work 78

10.2.1 C++

The core functionality of LilyPond is implemented in C++.

C++ is so ubiquitous that it is difficult to identify either a reference manual or a tutorial.
Programmers unfamiliar with C++ will need to spend some time to learn the language before
attempting to modify the C++ code.

The C++ code calls Scheme/GUILE through the GUILE interface, which is documented in
the GUILE Reference Manual (https://www.gnu.org/software/guile/manual/html_node/

index.html).

10.2.2 Flex

The LilyPond lexer is implemented in Flex, an implementation of the Unix lex lexical analyser
generator. Resources for Flex can be found here (http://flex.sourceforge.net/).

10.2.3 GNU Bison

The LilyPond parser is implemented in Bison, a GNU parser generator. The Bison homepage
is found at gnu.org (https://www.gnu.org/software/bison/). The manual (which includes
both a reference and tutorial) is available (https://www.gnu.org/software/bison/manual/

index.html) in a variety of formats.

10.2.4 GNU Make

GNU Make is used to control the compiling process and to build the documentation and the
website. GNU Make documentation is available at the GNU website (https://www.gnu.org/

software/make/manual/).

10.2.5 GUILE or Scheme

GUILE is the dialect of Scheme that is used as LilyPond’s extension language. Many extensions
to LilyPond are written entirely in GUILE. The GUILE Reference Manual (https://www.gnu.

org/software/guile/manual/html_node/index.html) is available online.

Structure and Interpretation of Computer Programs (https://mitpress.mit.edu/sicp/

full-text/book/book.html), a popular textbook used to teach programming in Scheme is
available in its entirety online.

An introduction to Guile/Scheme as used in LilyPond can be found in the Section “Scheme
tutorial” in Extending .

10.2.6 MetaFont

MetaFont is used to create the music fonts used by LilyPond. A MetaFont tutorial is available
at the METAFONT tutorial page (http://metafont.tutorial.free.fr/).

10.2.7 PostScript

PostScript is used to generate graphical output. A brief PostScript tutorial is available online
(http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/). The PostScript
Language Reference (https://www.adobe.com/products/postscript/pdfs/PLRM.pdf) is
available online in PDF format.

10.2.8 Python

Python is used for XML2ly and is used for building the documentation and the website.

Python documentation is available at python.org (https://www.python.org/doc/).

https://www.gnu.org/software/guile/manual/html_node/index.html
https://www.gnu.org/software/guile/manual/html_node/index.html
http://flex.sourceforge.net/
https://www.gnu.org/software/bison/
https://www.gnu.org/software/bison/manual/index.html
https://www.gnu.org/software/bison/manual/index.html
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/make/manual/
https://www.gnu.org/software/guile/manual/html_node/index.html
https://www.gnu.org/software/guile/manual/html_node/index.html
https://mitpress.mit.edu/sicp/full-text/book/book.html
https://mitpress.mit.edu/sicp/full-text/book/book.html
http://metafont.tutorial.free.fr/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/
http://local.wasp.uwa.edu.au/~pbourke/dataformats/postscript/
https://www.adobe.com/products/postscript/pdfs/PLRM.pdf
https://www.adobe.com/products/postscript/pdfs/PLRM.pdf
https://www.python.org/doc/

Chapter 10: Programming work 79

10.2.9 Scalable Vector Graphics (SVG)

Scalable Vector Graphics (SVG) is an XML-based markup language used to generate graphi-
cal output. A brief SVG tutorial is available online (https://www.w3schools.com/graphics/

svg_intro.asp) through W3 Schools. The World Wide Web Consortium’s SVG 1.2 Recommen-
dation (https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf) is available online in PDF
format.

10.3 Programming without compiling

Much of the development work in LilyPond takes place by changing *.ly or *.scm files. These
changes can be made without compiling LilyPond. Such changes are described in this section.

10.3.1 Modifying distribution files

Much of LilyPond is written in Scheme or LilyPond input files. These files are interpreted when
the program is run, rather than being compiled when the program is built, and are present in
all LilyPond distributions. You will find .ly files in the ly/ directory and the Scheme files in
the scm/ directory. Both Scheme files and .ly files can be modified and saved with any text
editor. It’s probably wise to make a backup copy of your files before you modify them, although
you can reinstall if the files become corrupted.

Once you’ve modified the files, you can test the changes just by running LilyPond on some
input file. It’s a good idea to create a file that demonstrates the feature you’re trying to add.
This file will eventually become a regression test and will be part of the LilyPond distribution.

10.3.2 Desired file formatting

Files that are part of the LilyPond distribution have Unix-style line endings (LF), rather than
DOS (CR+LF) or MacOS 9 and earlier (CR). Make sure you use the necessary tools to ensure
that Unix-style line endings are preserved in the patches you create.

Tab characters should not be included in files for distribution. All indentation should be
done with spaces. Most editors have settings to allow the setting of tab stops and ensuring that
no tab characters are included in the file.

Scheme files and LilyPond files should be written according to standard style guidelines.
Scheme file guidelines can be found at http://community.schemewiki.org/?scheme-style.
Following these guidelines will make your code easier to read. Both you and others that work
on your code will be glad you followed these guidelines.

For LilyPond files, you should follow the guidelines for LilyPond snippets in the documen-
tation. You can find these guidelines at Section 5.4 [Texinfo introduction and usage policy],
page 37.

10.4 Finding functions

When making changes or fixing bugs in LilyPond, one of the initial challenges is finding out
where in the code tree the functions to be modified live. With nearly 3000 files in the source
tree, trial-and-error searching is generally ineffective. This section describes a process for finding
interesting code.

10.4.1 Using the ROADMAP

The file ROADMAP is located in the main directory of the lilypond source. ROADMAP lists
all of the directories in the LilyPond source tree, along with a brief description of the kind of
files found in each directory. This can be a very helpful tool for deciding which directories to
search when looking for a function.

https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3schools.com/graphics/svg_intro.asp
https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf
https://www.w3.org/TR/SVG/REC-SVG11-20110816.pdf
http://community.schemewiki.org/?scheme-style

Chapter 10: Programming work 80

10.4.2 Using grep to search

Having identified a likely subdirectory to search, the grep utility can be used to search for a
function name. The format of the grep command is

grep -i functionName subdirectory/*

This command will search all the contents of the directory subdirectory/ and display every
line in any of the files that contains functionName. The -i option makes grep ignore case – this
can be very useful if you are not yet familiar with our capitalization conventions.

The most likely directories to grep for function names are scm/ for scheme files, ly/ for
lilypond input (*.ly) files, and lily/ for C++ files.

10.4.3 Using git grep to search

If you have used git to obtain the source, you have access to a powerful tool to search for
functions. The command:

git grep functionName

will search through all of the files that are present in the git repository looking for
functionName. It also presents the results of the search using less, so the results are displayed
one page at a time.

10.4.4 Using TAGS support

Many programs, including Emacs, ex, vi, and less, provide the ability to jump directly to the
definition of an identifier based on precomputed cross-reference data. This data is usually
contained in files named TAGS, for Emacs, or tags, for vi and other programs.

To generate these cross-reference data files the source code must be installed, but it is not
necessary to compile LilyPond. Follow the instructions found in Section “Getting the source
code” in Contributor’s Guide through ‘Checking build dependencies’. Once the configure

command has run successfully, invoke the following command in the build directory.

make TAGS

This will create both TAGS and tags files in the source directory tree. To enable and use tags
in a particular program, see the associated program documentation.

10.4.5 Searching on the git repository at GitLab and Savannah

GitLab’s web interface provides a built-in search.

• Go to https://gitlab.com/lilypond/lilypond/

• Type functionName in the search box on the top, and hit enter/return

Alternatively you can also use the equivalent of git grep on the Savannah server.

• Go to https://git.sv.gnu.org/gitweb/?p=lilypond.git

• In the pulldown box that says commit, select grep.

• Type functionName in the search box, and hit enter/return

This will initiate a search of the remote git repository.

10.5 Code style

This section describes style guidelines for LilyPond source code.

10.5.1 Languages

C++ and Python are preferred. Python code should use PEP 8.

https://gitlab.com/lilypond/lilypond/
https://git.sv.gnu.org/gitweb/?p=lilypond.git

Chapter 10: Programming work 81

10.5.2 Filenames

Definitions of classes that are only accessed via pointers (*) or references (&) shall not be
included as include files.

filenames

".hh" Include files

".cc" Implementation files

".icc" Inline definition files

".tcc" non inline Template defs

in emacs:

(setq auto-mode-alist

(append '(("\\.make$" . makefile-mode)

("\\.cc$" . c++-mode)

("\\.icc$" . c++-mode)

("\\.tcc$" . c++-mode)

("\\.hh$" . c++-mode)

("\\.pod$" . text-mode)

)

auto-mode-alist))

The class Class name is coded in ‘class-name.*’

10.5.3 Code formatting

Formatting tools

For C++ files, standard GNU coding style is used. You can reformat a file according to this style
using the clang-format tool.

clang-format -i filename

The version of clang-format currently being used is version 14.0.

Bindings for clang-format are available for many editors, including Emacs and Vim.

clang-format can also be run on all files at once, but this is normally only done infrequently,
more specifically before branching the next stable release.

clang-format -i $(git ls-files "*.cc" "*.hh" "*.icc" "*.tcc")

Similarly, we have a script that reformats Scheme files.

scripts/auxiliar/fixscm.sh filename

To run it on all files, use

scripts/auxiliar/fixscm.sh $(git ls-files "*.scm")

This script drives Emacs behind the scenes, so Emacs users will get the right behavior out-
of-the-box.

For Python code, use autopep8 with the following settings:
autopep8 -ia --ignore=E402 file.py

However, currently files under release/binaries/ are formatted with a different tool, black.

Vim-specific configuration

For C++ formatting, although using a plugin that provides a binding for clang-format allows
you to fix indentation automatically, it does not produce correct indentation as you type. You
can, however, adjust your Vim configuration to come close. These settings were adapted from the

Chapter 10: Programming work 82

GNU GCC Wiki (https://gcc.gnu.org/wiki/FormattingCodeForGCC). Save the following in
~/.vim/after/ftplugin/cpp.vim:

setlocal cindent

setlocal cinoptions=>4,n-2,{2,^-2,:2,=2,g0,h2,p5,t0,+2,(0,u0,w1,m1

setlocal shiftwidth=2

setlocal softtabstop=2

setlocal textwidth=79

setlocal fo-=ro fo+=cql

" use spaces instead of tabs

setlocal expandtab

" remove trailing whitespace on write

autocmd BufWritePre * :%s/\s\+$//e

For Scheme code, you can use these settings in ~/.vim/after/syntax/scheme.vim:

" Additional Guile-specific 'forms'

syn keyword schemeSyntax define-public define*-public

syn keyword schemeSyntax define* lambda* let-keywords*

syn keyword schemeSyntax defmacro defmacro* define-macro

syn keyword schemeSyntax defmacro-public defmacro*-public

syn keyword schemeSyntax use-modules define-module

syn keyword schemeSyntax define-method define-class

" Additional LilyPond-specific 'forms'

syn keyword schemeSyntax define-markup-command define-markup-list-command

syn keyword schemeSyntax define-music-function def-grace-function

" All of the above should influence indenting too

setlocal lw+=define-public,define*-public

setlocal lw+=define*,lambda*,let-keywords*

setlocal lw+=defmacro,defmacro*,define-macro

setlocal lw+=defmacro-public,defmacro*-public

setlocal lw+=use-modules,define-module

setlocal lw+=define-method,define-class

setlocal lw+=define-markup-command,define-markup-list-command

setlocal lw+=define-music-function,def-grace-function

" These forms should not influence indenting

setlocal lw-=if

setlocal lw-=set!

" Try to highlight all ly: procedures

syn match schemeFunc "ly:[^)]\+"

Files can be reindented automatically by highlighting the lines to be indented in visual mode
(use V to enter visual mode) and pressing =, or a single line correctly indented in normal mode
by pressing ==.

For documentation work on texinfo files, identify the file extensions used as texinfo files in
your .vim/filetype.vim:

if exists("did_load_filetypes")

finish

endif

augroup filetypedetect

https://gcc.gnu.org/wiki/FormattingCodeForGCC

Chapter 10: Programming work 83

au! BufRead,BufNewFile *.itely setfiletype texinfo

au! BufRead,BufNewFile *.itexi setfiletype texinfo

au! BufRead,BufNewFile *.tely setfiletype texinfo

augroup END

and add these settings in .vim/after/ftplugin/texinfo.vim:

setlocal expandtab

setlocal shiftwidth=2

setlocal textwidth=66

10.5.4 Naming Conventions

Naming conventions have been established for LilyPond source code.

Classes and Types

Classes begin with an uppercase letter, and words in class names are separated with _:

This_is_a_class

Members

Member variable names end with an underscore:

Type Class::member_

Macros

Macro names should be written in uppercase completely, with words separated by _:

THIS_IS_A_MACRO

Variables

Variable names should be complete words, rather than abbreviations. For example, it is preferred
to use thickness rather than th or t.

Multi-word variable names in C++ should have the words separated by the underscore char-
acter (‘ ’):

cxx_multiword_variable

Multi-word variable names in Scheme should have the words separated by a hyphen (‘-’):

scheme-multiword-variable

10.5.5 Broken code

Do not write broken code. This includes hardwired dependencies, hardwired constants, slow
algorithms and obvious limitations. If you can not avoid it, mark the place clearly, and add a
comment explaining shortcomings of the code.

Ideally, the comment marking the shortcoming would include TODO, so that it is marked
for future fixing.

We reject broken-in-advance on principle.

10.5.6 Code comments

Comments may not be needed if descriptive variable names are used in the code and the logic
is straightforward. However, if the logic is difficult to follow, and particularly if non-obvious
code has been included to resolve a bug, a comment describing the logic and/or the need for the
non-obvious code should be included.

There are instances where the current code could be commented better. If significant time is
required to understand the code as part of preparing a patch, it would be wise to add comments
reflecting your understanding to make future work easier.

Chapter 10: Programming work 84

10.5.7 Handling errors

As a general rule, you should always try to continue computations, even if there is some kind
of error. When the program stops, it is often very hard for a user to pinpoint what part of the
input causes an error. Finding the culprit is much easier if there is some viewable output.

So functions and methods do not return errorcodes, they never crash, but report a program-
ming error and try to carry on.

Error and warning messages need to be localized.

10.5.8 Localization

This document provides some guidelines to help programmers write proper user messages. To
help translations, user messages must follow uniform conventions. Follow these rules when
coding for LilyPond. Hopefully, this can be replaced by general GNU guidelines in the future.
Even better would be to have an English (en GB, en US) guide helping programmers writing
consistent messages for all GNU programs.

Non-preferred messages are marked with ‘+’. By convention, ungrammatical examples are
marked with ‘*’. However, such ungrammatical examples may still be preferred.

• Every message to the user should be localized (and thus be marked for localization). This
includes warning and error messages.

• Do not localize/gettextify:

• ‘programming error ()’s

• ‘programming warning ()’s

• debug strings

• output strings (PostScript, TeX, etc.)

• Messages to be localized must be encapsulated in ‘ (STRING)’ or ‘ f (FORMAT, ...)’. E.g.:

warning (_ ("need music in a score"));

error (_f ("cannot open file: `%s'", file_name));

In some rare cases you may need to call ‘gettext ()’ by hand. This happens when you
pre-define (a list of) string constants for later use. In that case, you’ll probably also need to
mark these string constants for translation, using ‘ i (STRING)’. The ‘ i’ macro is a no-op,
it only serves as a marker for ‘xgettext’.

char const* messages[] = {

_i ("enable debugging output"),

_i ("ignore lilypond version"),

0

};

void

foo (int i)

{

puts (gettext (messages i));

}

See also flower/getopt-long.cc and lily/main.cc.

• Do not use leading or trailing whitespace in messages. If you need whitespace to be printed,
prepend or append it to the translated message

message ("Calculating line breaks..." + " ");

• Error or warning messages displayed with a file name and line number never start with a
capital, eg,

foo.ly: 12: not a duration: 3

Chapter 10: Programming work 85

Messages containing a final verb, or a gerund (‘-ing’-form) always start with a capital. Other
(simpler) messages start with a lowercase letter

Processing foo.ly...

`foo': not declared.

Not declaring: `foo'.

• Avoid abbreviations or short forms, use ‘cannot’ and ‘do not’ rather than ‘can’t’ or ‘don’t’
To avoid having a number of different messages for the same situation, well will use quoting
like this ‘"message: ‘%s’"’ for all strings. Numbers are not quoted:

_f ("cannot open file: `%s'", name_str)

_f ("cannot find character number: %d", i)

• Think about translation issues. In a lot of cases, it is better to translate a whole message.
English grammar must not be imposed on the translator. So, instead of

stem at + moment.str () + does not fit in beam

have

_f ("stem at %s does not fit in beam", moment.str ())

• Split up multi-sentence messages, whenever possible. Instead of

warning (_f ("out of tune! Can't find: `%s'", "Key_engraver"));

warning (_f ("cannot find font `%s', loading default", font_name));

rather say:

warning (_ ("out of tune:"));

warning (_f ("cannot find: `%s', "Key_engraver"));

warning (_f ("cannot find font: `%s', font_name));

warning (_f ("Loading default font"));

• If you must have multiple-sentence messages, use full punctuation. Use two spaces after
end of sentence punctuation. No punctuation (esp. period) is used at the end of simple
messages.

_f ("Non-matching braces in text `%s', adding braces", text)

_ ("Debug output disabled. Compiled with NPRINT.")

_f ("Huh? Not a Request: `%s'. Ignoring.", request)

• Do not modularize too much; words frequently cannot be translated without context. It is
probably safe to treat most occurrences of words like stem, beam, crescendo as separately
translatable words.

• When translating, it is preferable to put interesting information at the end of the message,
rather than embedded in the middle. This especially applies to frequently used messages,
even if this would mean sacrificing a bit of eloquence. This holds for original messages too,
of course.

en: cannot open: `foo.ly'

+ nl: kan `foo.ly' niet openen (1)

kan niet openen: `foo.ly'* (2)

niet te openen: `foo.ly'* (3)

The first nl message, although grammatically and stylistically correct, is not friendly for
parsing by humans (even if they speak dutch). I guess we would prefer something like (2)
or (3).

• Do not run make po/po-update with GNU gettext < 0.10.35

10.6 Warnings, Errors, Progress and Debug Output

Chapter 10: Programming work 86

Available log levels

LilyPond has several loglevels, which specify how verbose the output on the console should be:

• NONE: No output at all, even on failure

• ERROR: Only error messages

• WARN: Only error messages and warnings

• BASIC PROGRESS: Warnings, errors and basic progress (success, etc.)

• PROGRESS: Warnings, errors and full progress messages

• INFO: Warnings, errors, progress and more detailed information (default)

• DEBUG: All messages, including full debug messages (very verbose!)

The loglevel can either be set with the environment variable LILYPOND_LOGLEVEL or on the
command line with the --loglevel=... option.

Functions for debug and log output

LilyPond has two different types of error and log functions:

• If a warning or error is caused by an identified position in the input file, e.g., by a grob or
by a music expression, the functions of the Input class provide logging functionality that
prints the position of the message in addition to the message.

• If a message can not be associated with a particular position in an input file, e.g., the output
file cannot be written, then the functions in the flower/include/warn.hh file will provide
logging functionality that only prints out the message, but no location.

There are also Scheme functions to access all of these logging functions from scheme. In
addition, the Grob class contains some convenience wrappers for even easier access to these
functions.

The message and debug functions in warn.hh also have an optional argument newline,
which specifies whether the message should always start on a new line or continue a previous
message. By default, progress_indication does NOT start on a new line, but rather continue
the previous output. They also do not have a particular input position associated, so there are
no progress functions in the Input class. All other functions by default start their output on a
new line.

The error functions come in three different flavors: fatal error messages, programming error
messages and normal error messages. Errors written by the error () function will cause Lily-
Pond to exit immediately, errors by Input::error () will continue the compilation, but return
a non-zero return value of the LilyPond call (i.e., indicate an unsuccessful program execution).
All other errors will be printed on the console, but not exit LilyPond or indicate an unsuccessful
return code. Their only differences to a warnings are the displayed text and that they will be
shown with loglevel ERROR.

If the Scheme option warning-as-error is set, any warning will be treated as if
Input::error was called.

All logging functions at a glance

C++, no location C++ from input location

ERROR error (), programming_error

(msg), non_fatal_error (msg)

Input::error (msg),
Input::programming_error

(msg)

Chapter 10: Programming work 87

WARN warning (msg) Input::warning (msg)

BASIC basic_progress (msg) -

PROGRESS progress_indication (msg) -

INFO message (msg) Input::message (msg)

DEBUG debug_output (msg) Input::debug_output (msg)

C++ from a Grob Scheme, music expression

ERROR Grob::programming_error (msg) -

WARN Grob::warning (msg) (ly:music-warning music msg)

BASIC - -

PROGRESS - -

INFO - (ly:music-message music msg)

DEBUG - -

Scheme, no location Scheme, input location

ERROR - (ly:error msg args),
(ly:programming-error msg

args)

WARN (ly:warning msg args) (ly:input-warning input msg

args)

BASIC (ly:basic-progress msg args) -

PROGRESS (ly:progress msg args) -

INFO (ly:message msg args) (ly:input-message input msg

args)

DEBUG (ly:debug msg args) -

10.7 Debugging LilyPond

The most commonly used tool for debugging LilyPond is the GNU debugger gdb. The gdb tool
is used for investigating and debugging core LilyPond code written in C++. Another tool is
available for debugging Scheme code using the Guile debugger. This section describes how to
use both gdb and the Guile Debugger.

Chapter 10: Programming work 88

10.7.1 Debugging overview

Using a debugger simplifies troubleshooting in at least two ways.

First, breakpoints can be set to pause execution at any desired point. Then, when execution
has paused, debugger commands can be issued to explore the values of various variables or to
execute functions.

Second, the debugger can display a stack trace, which shows the sequence in which functions
have been called and the arguments passed to the called functions.

10.7.2 Debugging C++ code

The GNU debugger, gdb, is the principal tool for debugging C++ code.

Compiling LilyPond for use with gdb

In order to use gdb with LilyPond, it is necessary to compile LilyPond with debugging in-
formation. This is the current default mode of compilation. Often debugging becomes more
complicated when the compiler has optimised variables and function calls away. In that case it
may be helpful to run the following command in the main LilyPond source directory:

./configure --disable-optimising

make

This will create a version of LilyPond with minimal optimization which will allow the de-
bugger to access all variables and step through the source code in-order. It may not accurately
reproduce bugs encountered with the optimized version, however.

You should not do make install if you want to use a debugger with LilyPond. The make

install command will strip debugging information from the LilyPond binary.

Typical gdb usage

Once you have compiled the LilyPond image with the necessary debugging information it will
have been written to a location in a subfolder of your current working directory:

out/bin/lilypond

This is important as you will need to let gdb know where to find the image containing the
symbol tables. You can invoke gdb from the command line using the following:

gdb out/bin/lilypond

This loads the LilyPond symbol tables into gdb. Then, to run LilyPond on test.ly under the
debugger, enter the following:

run test.ly

at the gdb prompt.

As an alternative to running gdb at the command line you may try a graphical interface to
gdb such as ddd:

ddd out/bin/lilypond

You can also use sets of standard gdb commands stored in a .gdbinit file (see next section).

Typical .gdbinit files

The behavior of gdb can be readily customized through the use of a .gdbinit file. A .gdbinit

file is a file named .gdbinit (notice the “.” at the beginning of the file name) that is placed in a
user’s home directory.

The .gdbinit file below is from Han-Wen. It sets breakpoints for all errors and defines func-
tions for displaying scheme objects (ps), grobs (pgrob), and parsed music expressions (pmusic).

file $LILYPOND_GIT/build/out/bin/lilypond

Chapter 10: Programming work 89

b programming_error

b Grob::programming_error

define ps

print ly_display_scm($arg0)

end

define pgrob

print ly_display_scm($arg0->self_scm_)

print ly_display_scm($arg0->mutable_property_alist_)

print ly_display_scm($arg0->immutable_property_alist_)

print ly_display_scm($arg0->object_alist_)

end

define pmusic

print ly_display_scm($arg0->self_scm_)

print ly_display_scm($arg0->mutable_property_alist_)

print ly_display_scm($arg0->immutable_property_alist_)

end

10.7.3 Debugging Scheme code

Scheme code can be developed using the Guile command line interpreter top-repl. You can
either investigate interactively using just Guile or you can use the debugging tools available
within Guile.

Using Guile interactively with LilyPond

In order to experiment with Scheme programming in the LilyPond environment, it is necessary
to have a Guile interpreter that has all the LilyPond modules loaded. This requires the following
steps.

First, define a Scheme symbol for the active module in the .ly file:

#(module-define! (resolve-module '(guile-user))

'lilypond-module (current-module))

Now place a Scheme function in the .ly file that gives an interactive Guile prompt:

#(top-repl)

When the .ly file is compiled, this causes the compilation to be interrupted and an interactive
guile prompt to appear. Once the guile prompt appears, the LilyPond active module must be
set as the current guile module:

guile> (set-current-module lilypond-module)

You can demonstrate these commands are operating properly by typing the name of a Lily-
Pond public scheme function to check it has been defined:

guile> fret-diagram-verbose-markup

#<procedure fret-diagram-verbose-markup (layout props marking-list)>

If the LilyPond module has not been correctly loaded, an error message will be generated:

guile> fret-diagram-verbose-markup

ERROR: Unbound variable: fret-diagram-verbose-markup

ABORT: (unbound-variable)

Once the module is properly loaded, any valid LilyPond Scheme expression can be entered
at the interactive prompt.

After the investigation is complete, the interactive guile interpreter can be exited:

guile> (quit)

The compilation of the .ly file will then continue.

Chapter 10: Programming work 90

Using the Guile debugger

To set breakpoints and/or enable tracing in Scheme functions, put

\include "guile-debugger.ly"

in your input file after any scheme procedures you have defined in that file. This will invoke
the Guile command-line after having set up the environment for the debug command-line. When
your input file is processed, a guile prompt will be displayed. You may now enter commands to
set up breakpoints and enable tracing by the Guile debugger.

Using breakpoints

At the guile prompt, you can set breakpoints with the set-break! procedure:

guile> (set-break! my-scheme-procedure)

Once you have set the desired breakpoints, you exit the guile repl frame by typing:

guile> (quit)

Then, when one of the scheme routines for which you have set breakpoints is entered, guile
will interrupt execution in a debug frame. At this point you will have access to Guile debugging
commands. For a listing of these commands, type:

debug> help

Alternatively you may code the breakpoints in your LilyPond source file using a command
such as:

#(set-break! my-scheme-procedure)

immediately after the \include statement. In this case the breakpoint will be set straight
after you enter the (quit) command at the guile prompt.

Embedding breakpoint commands like this is particularly useful if you want to look at how
the Scheme procedures in the .scm files supplied with LilyPond work. To do this, edit the file
in the relevant directory to add this line near the top:

(use-modules (scm guile-debugger))

Now you can set a breakpoint after the procedure you are interested in has been declared.
For example, if you are working on routines called by print-book-with in lily-library.scm:

(define (print-book-with book process-procedure)

(let* ((paper (ly:parser-lookup '$defaultpaper))

(layout (ly:parser-lookup '$defaultlayout))

(outfile-name (get-outfile-name book)))

(process-procedure book paper layout outfile-name)))

(define-public (print-book-with-defaults book)

(print-book-with book ly:book-process))

(define-public (print-book-with-defaults-as-systems book)

(print-book-with book ly:book-process-to-systems))

At this point in the code you could add this to set a breakpoint at print-book-with:

(set-break! print-book-with)

Tracing procedure calls and evaluator steps

Two forms of trace are available:

(set-trace-call! my-scheme-procedure)

and

(set-trace-subtree! my-scheme-procedure)

Chapter 10: Programming work 91

set-trace-call! causes Scheme to log a line to the standard output to show when the
procedure is called and when it exits.

set-trace-subtree! traces every step the Scheme evaluator performs in evaluating the
procedure.

10.7.4 Debugging scoring algorithms

Formatting of beams, slurs and ties is based on scoring. A large number of configurations is
generated and each aesthetic aspect gets demerits. The best configuration (with least demerits)
wins. By setting the following variables in a \paper or \layout block it is possible to gain
some insight about the criteria that lead LilyPond to choose a particular configuration. The
information is showed adjacent to the object in question.

debug-beam-scoring

If set to true, print demerits together with their cause, followed by the number of
configurations that have been scored before concluding. Default: unset.

Example: ’L 18.95 C 655.12 c19/625’ → demerits for stem lengths (‘L’) and
collisions (‘C’), scored 19 out of 625 initially considered configurations.

Possible demerit causes: collision (‘C’), inappropriate stem length (‘L’), beam di-
rection different from damping direction (‘Sd’), difference between beam slope and
musical slope (‘Sm’), deviation from ideal slope (‘Si’), horizontal inter-quants (‘H’),
forbidden quants (‘Fl’/‘Fs’).

Demerits are configurable, see Section “beam-interface” in Internals Reference for
a list of tunable parameters.

debug-slur-scoring

If set to true, print demerits together with their cause, followed by the sum of all
demerits and the index of the slur configuration finally chosen. Default: unset.

Example: ’slope=2.00, R edge=10.51, variance=0.03 TOTAL=12.54 idx=4’
→ demerits for slope, distance of the right edge to the attachment point,
variance of distance between note heads and slur. Total demerits: 12.54,
index of the chosen configuration: 4.

Possible demerit causes: distance of the left/right slur edge to the attachment points
(‘L edge’/‘R edge’), inappropriate slope (‘slope’), distance variations between note
heads and slur (‘variance’), distances for heads that are between the slur and an
imaginary line between the attachment points (‘encompass’), too small distance
between slur and tie extrema (‘extra’).

Demerits are configurable, see Section “slur-interface” in Internals Reference for a
list of tunable parameters.

debug-tie-scoring

If set to true, print the basic configuration of ties, followed by demerits and their
corresponding causes and the total sum of demerits. Default: unset.

Example: ’0 (0.23) u: vdist=1.08 lhdist=1.79 tie/stem dir=8.00 TO-
TAL=10.87’ → offset from the center of the staff according tie specification:
0 staff-spaces, vertical distance of the tie’s center in y-direction to the bottom
(or top) of the tie: 0.23, direction: up. Demerits for vertical and horizontal
distance to note head, same direction of stem and tie. Total demerits: 10.87.

Possible demerit causes: wrong tie direction (‘wrong dir’), vertical distance to note
heads (‘vdist’), horizontal distance to left or right note head (‘lhdist’/‘rhdist’),
same direction of stem and tie (‘tie/stem dir’), position and direction of tie not
matching, e.g., tie is in the upper half of the staff but has direction DOWN (‘tie/pos

Chapter 10: Programming work 92

dir’), tie is too short (‘minlength’), tip of tie collides with staff line (‘tipline’),
collision with dot (‘dot collision’), center of tie is too close to a staff line (‘line

center’), y-position (edge or center) of currently considered tie is less than the y-
position of the previous tie (‘monoton edge’/ ‘monoton cent’), edge or center of tie
is too close to the one considered previously (‘tietie center’/‘tietie edge’), un-
symmetrical horizontal positioning with respect to the note heads (‘length symm’),
unsymmetrical vertical positioning with respect to the note heads (‘pos symmetry’).

Demerits are configurable, see Section “tie-interface” in Internals Reference for a
list of tunable parameters.

10.7.5 Debugging skylines

To show the skylines used for spacing, use

\override SomeGrob.show-horizontal-skylines = ##t

or

\override SomeGrob.show-vertical-skylines = ##t

The option debug-skylines is equivalent to setting show-vertical-skylines on Section
“VerticalAxisGroup” in Internals Reference and Section “System” in Internals Reference.

Another particularly useful application is showing the skylines used for note spacing:

\layout {

\context {

\Score

\override PaperColumn.show-horizontal-skylines = ##t

\override NonMusicalPaperColumn.show-horizontal-skylines = ##t

}

}

This is also an occasion to test if the pure estimates used to build them are reasonably
accurate.

10.8 Tracing object relationships

Understanding the LilyPond source often boils down to figuring out what is happening to the
Grobs. Where (and why) are they being created, modified and destroyed? Tracing Lily through
a debugger in order to identify these relationships can be time-consuming and tedious.

In order to simplify this process, a facility has been added to display the grobs that are
created and the properties that are set and modified. Although it can be complex to get set
up, once set up it easily provides detailed information about the life of grobs in the form of a
network graph.

Each of the steps necessary to use the Graphviz utility is described below.

1. Install Graphviz

In order to create the graph of the object relationships, it is first necessary to install
Graphviz. Graphviz is available for a number of different platforms:

https://www.graphviz.org/download/

2. Compile LilyPond with debugging functionality

In order for the Graphviz tool to work, LilyPond needs to be compiled with the option
-DDEBUG. You can achieve this by configuring with

./configure --enable-checking

The executable code of LilyPond must then be rebuilt from scratch:

make clean && make

https://www.graphviz.org/download/

Chapter 10: Programming work 93

3. Create a Graphviz-compatible .ly file

In order to use the Graphviz utility, the .ly file must include ly/graphviz-init.ly, and
should then specify the grobs and symbols that should be tracked. An example of this is
found in input/regression/graphviz.ly.

4. Run LilyPond with output sent to a log file

The Graphviz data can be sent to an arbitrary output port, including files, standard output
or standard error. In the example given in input/regression/graphviz.ly, the graph is
sent to stderr, like normal progress messages. You can redirect it to a logfile:

lilypond graphviz.ly 2> graphviz.log

In this case, you have to delete everything from the beginning of the file up to but not
including the first occurrence of digraph. Also, delete the final LilyPond message about
success from the end of the file.

Alternatively, you can change the output port to stdout. See
input/regression/graphviz.ly for a commented example. Then you get only
the graph with the following invocation:

lilypond graphviz.ly 1> graphviz.dot

5. Process the logfile with dot

The directed graph is created from the log file with the program dot:

dot -Tpdf graphviz.dot > graphviz.pdf

The pdf file can then be viewed with any pdf viewer.

6. Interpret the created graph

Depending on the callbacks that were specified to be tracked within the Graphviz frame-
work, the graph does contain varying information. It is possible to track grob creation,
modification of grob properties and caching of grob properties. Generally, all tracked events
happening to a particular grob are presented as a directed graph, with arrows connecting
the events. All property modifications that occur within a specific file in the source code
are grouped by a blue border. Caching a grob property means to calculate the result of
a callback function once and store the result afterwards for further use. The node la-
bels can be configured freely. To understand which information is showed by default, see
ly/graphviz-init.ly.

When compiled with -DDEBUG, LilyPond may run slower than normal. The original config-
uration can be restored by rerunning ./configure with --disable-checking. Then rebuild
LilyPond with

make clean && make

10.9 Adding or modifying features

When a new feature is to be added to LilyPond, it is necessary to ensure that the feature is
properly integrated to maintain its long-term support. This section describes the steps necessary
for feature addition and modification.

10.9.1 Write the code

You should probably create a new git branch for writing the code, as that will separate it from
the master branch and allow you to continue to work on small projects related to master.

Please be sure to follow the rules for programming style discussed earlier in this chapter.

10.9.2 Write regression tests

In order to demonstrate that the code works properly, you will need to write one or more
regression tests. These tests are typically .ly files that are found in input/regression.

Chapter 10: Programming work 94

Regression tests should be as brief as possible to demonstrate the functionality of the code.

Regression tests should generally cover one issue per test. Several short, single-issue regression
tests are preferred to a single, long, multiple-issue regression test.

If the change in the output is small or easy to overlook, use bigger staff size – 40 or more (up
to 100 in extreme cases). Size 30 means "pay extra attention to details in general".

Use existing regression tests as templates to demonstrate the type of header information that
should be included in a regression test.

10.9.3 Write convert-ly rule

If the modification changes the input syntax, a convert-ly rule should be written to automatically
update input files from older versions.

convert-ly rules are found in python/convertrules.py

If possible, the convert-ly rule should allow automatic updating of the file. In some cases,
this will not be possible, so the rule will simply point out to the user that the feature needs
manual correction.

10.9.4 Automatically update documentation

convert-ly should be used to update the documentation, the snippets, and the regression tests.
This not only makes the necessary syntax changes, it also tests the convert-ly rules.

The automatic updating is performed by moving to the top-level source directory, then
running:

scripts/auxiliar/update-with-convert-ly.sh

If you did an out-of-tree build, pass in the relative path:

LILYPOND_BUILD_DIR=../build-lilypond/ scripts/auxiliar/update-with-convert-ly.sh

10.9.5 Manually update documentation

Where the convert-ly rule is not able to automatically update the inline LilyPond code in the
documentation (i.e., if a NOT SMART rule is used), the documentation must be manually
updated. The inline snippets that require changing must be changed in the English version
of the docs and all translated versions. If the inline code is not changed in the translated
documentation, the old snippets will show up in the English version of the documentation.

Where the convert-ly rule is not able to automatically update snippets in Documenta-
tion/snippets/, those snippets must be manually updated. Those snippets should be copied
to Documentation/snippets/new. The comments at the top of the snippet describing its auto-
matic generation should be removed. All translated texidoc strings should be removed. The
comment “% begin verbatim” should be removed. The syntax of the snippet should then be
manually edited.

Where snippets in Documentation/snippets are made obsolete, the snippet should be copied
to Documentation/snippets/new. The comments and texidoc strings should be removed as
described above. Then the body of the snippet should be changed to:

\markup {

This snippet is deprecated as of version X.Y.Z and

will be removed from the documentation.

}

where X.Y.Z is the version number for which the convert-ly rule was written.

Update the snippet files by running:

scripts/auxiliar/makelsr.pl --no-lsr --dump=no --no-snippet-list

Chapter 10: Programming work 95

Where the convert-ly rule is not able to automatically update regression tests, the regression
tests in input/regression should be manually edited.

Although it is not required, it is helpful if the developer can write relevant material for
inclusion in the Notation Reference. If the developer does not feel qualified to write the docu-
mentation, a documentation editor will be able to write it from the regression tests. In this case
the developer should raise a new issue with the Type=Documentation tag containing a reference
to the original issue number and/or the committish of the pushed patch so that the need for
new documention is not overlooked.

Any text that is added to or removed from the documentation should be changed only in the
English version.

10.9.6 Edit changes.tely

An entry should be added to Documentation/changes.tely to describe the feature changes to be
implemented. This is especially important for changes that change input file syntax.

Hints for changes.tely entries are given at the top of the file.

New entries in changes.tely go at the top of the file.

The changes.tely entry should be written to show how the new change improves LilyPond, if
possible.

10.9.7 Verify successful build

When the changes have been made, successful completion must be verified by doing

make all

make doc

When these commands complete without error, the patch is considered to function success-
fully.

Developers on Windows who are unable to build LilyPond should get help from a GNU/Linux
or OSX developer to do the make tests.

10.9.8 Verify regression tests

In order to avoid breaking LilyPond, it is important to verify that the regression tests succeed,
and that no unwanted changes are introduced into the output. This process is described in
Section 9.4 [Regtest comparison], page 73.

Typical developer’s edit/compile/test cycle

• Initial test:

make clean ## when needed (see below)

make [-jX CPU_COUNT=X] test-baseline

• Edit/compile/test cycle:

edit source files, then...

make clean ## when needed (see below)

make [-jX] ## when needed (see below)

make [-jX CPU_COUNT=X] check ## retest cases differing from baseline

• Reset:

make test-clean

If you have modified LilyPond source files that have to be compiled (such as .cc or .hh files
in flower/ or lily/), the regression-test targets automatically rebuild LilyPond before running
the tests.

Chapter 10: Programming work 96

If you have modified any font definitions in the mf/ directory, then you must run make clean

before running regression tests. This works around incomplete makefile dependencies. The
subsequent regression-test target rebuilds all of LilyPond and the fonts before running the tests.

Regression-test targets do not necessarily rebuild everything that a simple make builds. You
may omit make from the debugging cycle to save time, but it is still important to run make

before committing.

Running make check leaves an HTML page out/test-results/index.html. This page
shows all the important differences that your change introduced, whether in the layout, MIDI,
performance or error reporting.

You only need to use make test-clean to retest all cases. To retest mismatching cases only,
all that is needed is to repeat make check.

10.9.9 Post patch for comments

See Section 3.3.1 [Uploading a patch for review], page 14.

10.9.10 Push patch

Once all the comments have been addressed, the patch can be pushed.

If the author has push privileges, the author will push the patch. Otherwise, a developer
with push privileges will push the patch.

10.9.11 Closing the issues

Once the patch has been pushed, all the relevant issues should be closed.

If the changes were in response to a feature request on the issue tracker for LilyPond, the
author should change the label to ‘Status::Fixed’ and set the milestone to the version where the
issue was fixed.

10.10 Iterator tutorial

TODO – this is a placeholder for a tutorial on iterators

Iterators are routines written in C++ that process music expressions and sent the music events
to the appropriate engravers and/or performers.

See a short example discussing iterators and their duties in Section 10.17.4 [Articulations on
EventChord], page 112.

10.11 Engraver tutorial

Engravers are C++ classes that catch music events and create the appropriate grobs for display
on the page. Though the majority of engravers are responsible for the creation of a single grob,
in some cases (e.g. New_fingering_engraver), several different grobs may be created.

Engravers listen for events and acknowledge grobs. Events are passed to the engraver in
time-step order during the iteration phase. Grobs are made available to the engraver when they
are created by other engravers during the iteration phase.

10.11.1 Useful methods for information processing

An engraver inherits the following public methods from the Translator base class, which can be
used to process listened events and acknowledged grobs:

• virtual void initialize ()

• void start_translation_timestep ()

• void process_music ()

Chapter 10: Programming work 97

• void process_acknowledged ()

• void stop_translation_timestep ()

• virtual void finalize ()

These methods are listed in order of translation time, with initialize () and finalize ()

bookending the whole process. initialize () can be used for one-time initialization of context
properties before translation starts, whereas finalize () is often used to tie up loose ends at
the end of translation: for example, an unterminated spanner might be completed automatically
or reported with a warning message.

In addition, there is a derived_mark method that should be used to protect Scheme members
from garbage collection. See Section 10.16 [Garbage collection for dummies], page 103.

10.11.2 Translation process

At each timestep in the music, translation proceeds by calling the following methods in turn:

start_translation_timestep () is called before any user information enters the transla-
tors, i.e., no property operations (\set, \override, etc.) or events have been processed yet.

process_music () and process_acknowledged () are called after all events in the current
time step have been heard, or all grobs in the current time step have been acknowledged. The
latter tends to be used exclusively with engravers which only acknowledge grobs, whereas the
former is the default method for main processing within engravers.

stop_translation_timestep () is called after all user information has been processed prior
to beginning the translation for the next timestep.

10.11.3 Listening to music events

External interfaces to the engraver are implemented by protected macros including one or more
of the following:

• DECLARE_TRANSLATOR_LISTENER (event_name)

• IMPLEMENT_TRANSLATOR_LISTENER (Engraver_name, event_name)

where event name is the type of event required to provide the input the engraver needs and
Engraver name is the name of the engraver.

Following declaration of a listener, the method is implemented as follows:

IMPLEMENT_TRANSLATOR_LISTENER (Engraver_name, event_name)

void

Engraver_name::listen_event_name (Stream event *event)

{

...body of listener method...

}

10.11.4 Acknowledging grobs

Some engravers also need information from grobs as they are created and as they terminate.
The mechanism and methods to obtain this information are set up by the macros:

• DECLARE_ACKNOWLEDGER (grob_interface)

• DECLARE_END_ACKNOWLEDGER (grob_interface)

where grob interface is an interface supported by the grob(s) which should be acknowledged.
For example, the following code would declare acknowledgers for a NoteHead grob (via the
note-head-interface) and any grobs which support the side-position-interface:

DECLARE_ACKNOWLEDGER (note_head)

DECLARE_ACKNOWLEDGER (side_position)

Chapter 10: Programming work 98

The DECLARE_END_ACKNOWLEDGER () macro sets up a spanner-specific acknowledger which
will be called whenever a spanner ends.

Following declaration of an acknowledger, the method is coded as follows:

void

Engraver_name::acknowledge_interface_name (Grob_info info)

{

...body of acknowledger method...

}

Acknowledge functions are called in the order engravers are \consist-ed (the only exception
is if you set must-be-last to #t).

There will always be a call to process-acknowledged () whenever grobs have been created,
and reading stuff from grobs should be delayed until then since other acknowledgers might write
stuff into a grob even after your acknowledger has been called. So the basic workflow is to use
the various acknowledgers to record the grobs you are interested in and write stuff into them (or
do read/write stuff that more or less is accumulative and/or really unrelated to other engravers),
and then use the process-acknowledged () hook for processing (including reading) the grobs
you had recorded.

You can create new grobs in process-acknowledged (). That will lead to a new cycle of
acknowledger () calls followed by a new cycle of process-acknowledged () calls.

Only when all those cycles are over is stop-translator-timestep () called, and then cre-
ating grobs is no longer an option. You can still ‘process’ parts of the grob there (if that
means just reading out properties and possibly setting context properties based on them) but
stop-translation-timestep () is a cleanup hook, and other engravers might have already
cleaned up stuff you might have wanted to use. Creating grobs in there is not possible since
engravers and other code may no longer be in a state where they could process them, possibly
causing a crash.

10.11.5 Engraver declaration/documentation

An engraver must have a public macro

• TRANSLATOR_DECLARATIONS (Engraver_name)

where Engraver_name is the name of the engraver. This defines the common variables and
methods used by every engraver.

At the end of the engraver file, one or both of the following macros are generally called to
document the engraver in the Internals Reference:

• ADD_ACKNOWLEDGER (Engraver_name, grob_interface)

• ADD_TRANSLATOR (Engraver_name, Engraver_doc, Engraver_creates,

Engraver_reads, Engraver_writes)

where Engraver_name is the name of the engraver, grob_interface is the name of the interface
that will be acknowledged, Engraver_doc is a docstring for the engraver, Engraver_creates is
the set of grobs created by the engraver, Engraver_reads is the set of properties read by the
engraver, and Engraver_writes is the set of properties written by the engraver.

The ADD_ACKNOWLEDGER and ADD_TRANSLATOR macros use a non-standard indentation system.
Each interface, grob, read property, and write property is on its own line, and the closing
parenthesis and semicolon for the macro all occupy a separate line beneath the final interface or
write property. See existing engraver files for more information.

10.12 Callback tutorial

TODO – This is a placeholder for a tutorial on callback functions.

Chapter 10: Programming work 99

10.13 Understanding pure properties

Pure properties are some of the most difficult properties to understand in LilyPond but, once
understood, it is much easier to work with horizontal spacing. This document provides an
overview of what it means for something to be ‘pure’ in LilyPond, what this purity guarantees,
and where pure properties are stored and used. It finishes by discussing a few case studies for
the pure programmer to save you some time and to prevent you some major headaches.

10.13.1 Purity in LilyPond

Pure properties in LilyPond are properties that do not have any ‘side effects’. That is, looking
up a pure property should never result in calls to the following functions:

• set_property

• set_object

• suicide

This means that, if the property is calculated via a callback, this callback must not only avoid
the functions above but make sure that any functions it calls also avoid the functions above.
Also, to date in LilyPond, a pure function will always return the same value before line breaking
(or, more precisely, before any version of break_into_pieces is called). This convention makes
it possible to cache pure functions and be more flexible about the order in which functions
are called. For example; Stem.length has a pure property that will never trigger one of the
functions listed above and will always return the same value before line breaking, independent
of where it is called. Sometimes, this will be the actual length of the Stem. But sometimes it
will not. For example; stem that links up with a beam will need its end set to the Y position of
the beam at the stem’s X position. However, the beam’s Y positions can only be known after
the score is broken up in to several systems (a beam that has a shallow slope on a compressed
line of music, for example, may have a steeper one on an uncompressed line). Thus, we only call
the impure version of the properties once we are absolutely certain that all of the parameters
needed to calculate their final value have been calculated. The pure version provides a useful
estimate of what this Stem length (or any property) will be, and the art of creating good pure
properties is trying to get the estimation as close to the actual value as possible.

Of course, like Gregory Peck and Tintin, some Grobs will have properties that will always
be pure. For example, the height of a note-head in not-crazy music will never depend on line
breaking or other parameters decided late in the typesetting process. Inversely, in rare cases,
certain properties are difficult to estimate with pure values. For example, the height of a Hairpin
at a certain cross-section of its horizontal span is difficult to know without knowing the horizontal
distance that the hairpin spans, and LilyPond provides an over-estimation by reporting the pure
height as the entire height of the Hairpin.

Purity, like for those living in a convent, is more like a contract than an a priori. If you write
a pure-function, you are promising the user (and the developer who may have to clean up after
you) that your function will not be dependent on factors that change at different stages of the
compilation process (compilation of a score, not of LilyPond).

One last oddity is that purity, in LilyPond, is currently limited exclusively to things that have
to do with Y-extent and positioning. There is no concept of ‘pure X’ as, by design, X is always
the independent variable (i.e., from column X1 to column X2, what will be the Y height of a
given grob). Furthermore, there is no purity for properties like color, text, and other things for
which a meaningful notion of estimation is either not necessary or has not yet been found. For
example, even if a color were susceptible to change at different points of the compilation process,
it is not clear what a pure estimate of this color would be or how this pure color could be used.
Thus, in this document and in the source, you will see purity discussed almost interchangeably
with Y-axis positioning issues.

Chapter 10: Programming work 100

10.13.2 Writing a pure function

Pure functions take, at a minimum, three arguments: the grob, the starting column at which
the function is being evaluated (hereafter referred to as start), and the end column at which
the grob is being evaluated (hereafter referred to as end). For items, start and end must be
provided (meaning they are not optional) but will not have a meaningful impact on the result,
as items only occupy one column and will thus yield a value or not (if they are not in the range
from start to end). For spanners however, start and end are important, as we may can get a
better pure estimation of a slice of the spanner than considering it on the whole. This is useful
during line breaking, for example, when we want to estimate the Y-extent of a spanner broken
at given starting and ending columns.

10.13.3 How purity is defined and stored

Purity is defined in LilyPond with the creation of an unpure-pure container (unpure is not a
word, but hey, neither was LilyPond until the 90s). For example:

#(define (foo grob)

'(-1 . 1))

#(define (bar grob start end)

'(-2 . 2))

\override Stem.length = #(ly:make-unpure-pure-container foo bar)

Note that items can only ever have two pure heights: their actual pure height if they are
between ‘start’ and ‘end’, or an empty interval if they are not. Thus, their pure property is
cached to speed LilyPond up. Pure heights for spanners are generally not cached as they change
depending on the start and end values. They are only cached in certain particular cases. Before
writing a lot of caching code, make sure that it is a value that will be reused a lot.

10.13.4 Where purity is used

Pure Y values must be used in any functions that are called before line breaking. Exam-
ples of this can be seen in Separation_items::boxes to construct horizontal skylines and
in Note_spacing::stem_dir_correction to correct for optical illusions in spacing. Pure
properties are also used in the calculation of other pure properties. For example, the
Axis_group_interface has pure functions that look up other pure functions.

Purity is also implicitly used in any functions that should only ever return pure values. For
example, extra-spacing-height is only ever used before line-breaking and thus should never use
values that would only be available after line breaking. In this case, there is no need to create
callbacks with pure equivalents because these functions, by design, need to be pure.

To know if a property will be called before and/or after line-breaking is sometimes tricky and
can, like all things in coding, be found by using a debugger and/or adding printf statements to
see where they are called in various circumstances.

10.13.5 Case studies

In each of these case studies, we expose a problem in pure properties, a solution, and the pros
and cons of this solution.

Time signatures

A time signature needs to prevent accidentals from passing over or under it, but its extent does
not necessarily extend to the Y-position of accidentals. LilyPond’s horizontal spacing sometimes
makes a line of music compact and, when doing so, allows certain columns to pass over each
other if they will not collide. This type of passing over is not desirable with time signatures in

Chapter 10: Programming work 101

traditional engraving. But how do we know if this passing over will happen before line breaking,
as we are not sure what the X positions will be? We need a pure estimation of how much extra
spacing height the time signatures would need to prevent this form of passing over without
making this height so large as to overly-distort the Y-extent of an system, which could result in
a very ‘loose’ looking score with lots of horizontal space between columns. So, to approximate
this extra spacing height, we use the Y-extent of a time signature’s next-door-neighbor grobs
via the pure-from-neighbor interface.

• pros: By extending the extra spacing height of a time signature to that of its next-door-
neighbors, we make sure that grobs to the right of it that could pass above or below it do
not.

• cons: This over-estimation of the vertical height could prevent snug vertical spacing of
systems, as the system will be registered as being taller at the point of the time signature
than it actually is. This approach can be used for clefs and bar lines as well.

Stems

As described above, Stems need pure height approximations when they are beamed, as we do
not know the beam positions before line breaking. To estimate this pure height, we take all the
stems in a beam and find their pure heights as if they were not beamed. Then, we find the union
of all these pure heights and take the intersection between this interval (which is large) and an
interval going from the note-head of a stem to infinity in the direction of the stem so that the
interval stops at the note head.

• pros: This is guaranteed to be at least as long as the beamed stem, as a beamed stem will
never go over the ideal length of the extremal beam of a stem.

• cons: Certain stems will be estimated as being too long, which leads to the same problem
of too-much-vertical-height as described above.

10.13.6 Debugging tips

A few questions to ask yourself when working with pure properties:

• Is the property really pure? Are you sure that its value could not be changed later in the
compiling process due to other changes?

• Can the property be made to correspond even more exactly with the eventual impure
property?

• For a spanner, is the pure property changing correctly depending on the starting and ending
points of the spanner?

• For an Item, will the item’s pure height need to act in horizontal spacing but not in vertical
spacing? If so, use extra-spacing-height instead of pure height.

10.14 LilyPond scoping

The LilyPond language has a concept of scoping, i.e., you can do:

foo = 1

#(begin

(display (+ foo 2)))

with \paper, \midi and \header being nested scope inside the .ly file-level scope. foo = 1 is
translated in to a scheme variable definition.

This implemented using modules, with each scope being an anonymous module that imports
its enclosing scope’s module.

Chapter 10: Programming work 102

LilyPond’s core, loaded from .scm files, is usually placed in the lily module, outside the
.ly level. In the case of

lilypond a.ly b.ly

we want to reuse the built-in definitions, without changes effected in user-level a.ly leaking into
the processing of b.ly.

The user-accessible definition commands have to take care to avoid memory leaks that could
occur when running multiple files. All information belonging to user-defined commands and
markups is stored in a manner that allows it to be garbage-collected when the module is dis-
persed, either by being stored module-locally, or in weak hash tables.

10.15 Scheme->C interface

Most of the C functions interfacing with Guile/Scheme used in LilyPond are described in the API
Reference of the GUILE Reference Manual (https://www.gnu.org/software/guile/manual/

html_node/index.html).

The remaining functions are defined in lily/lily-guile.cc,
lily/include/lily-guile.hh and lily/include/lily-guile-macros.hh. Although their
names are meaningful there’s a few things you should know about them.

10.15.1 Comparison

This is the trickiest part of the interface.

Mixing Scheme values with C comparison operators won’t produce any crash or warning
when compiling but must be avoided:

scm_string_p (scm_value) == SCM_BOOL_T

As we can read in the reference, scm_string_p returns a Scheme value: either #t or #f which
are written SCM_BOOL_T and SCM_BOOL_F in C. This will work, but it is not following to the API
guidelines. For further information, read this discussion:

https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00646.html

There are functions in the Guile reference that returns C values instead of Scheme values.
In our example, a function called scm_is_string (described after string? and scm_string_p)
returns the C value 0 or 1.

So the best solution was simply:

scm_is_string (scm_value)

There a simple solution for almost every common comparison. Another example: we want
to know if a Scheme value is a non-empty list. Instead of:

(scm_is_true (scm_list_p (scm_value)) && scm_value != SCM_EOL)

one can usually use:

scm_is_pair (scm_value)

since a list of at least one member is a pair. This test is cheap; scm_list_p is actually quite
more complex since it makes sure that its argument is neither a ‘dotted list’ where the last pair
has a non-null cdr, nor a circular list. There are few situations where the complexity of those
tests make sense.

Unfortunately, there is not a scm_is_[something] function for everything. That’s one of
the reasons why LilyPond has its own Scheme interface. As a rule of thumb, tests that are cheap
enough to be worth inlining tend to have such a C interface. So there is scm_is_pair but not
scm_is_list, and scm_is_eq but not scm_is_equal.

General definitions

https://www.gnu.org/software/guile/manual/html_node/index.html
https://www.gnu.org/software/guile/manual/html_node/index.html
https://lists.gnu.org/archive/html/lilypond-devel/2011-08/msg00646.html

Chapter 10: Programming work 103

bool to boolean (SCM b)

Return true if b is SCM_BOOL_T, else return false.

This should be used instead of scm_is_true and scm_is_false for properties since in Lily-
Pond, unset properties are read as an empty list, and by convention unset Boolean properties
default to false. Since both scm_is_true and scm_is_false only compare with ##f in line with
what Scheme’s conditionals do, they are not really useful for checking the state of a Boolean
property.

bool ly is [something] (args)

Behave the same as scm is [something] would do if it existed.

bool is [type] (SCM s)

Test whether the type of s is [type]. [type] is a LilyPond-only set of values (direction, axis...).
More often than not, the code checks LilyPond specific C++-implemented types using

[Type *] unsmob<Type> (SCM s)

This tries converting a Scheme object to a pointer of the desired kind. If the Scheme object is
of the wrong type, a pointer value of 0 is returned, making this suitable for a Boolean test.

10.15.2 Conversion

General definitions

bool to boolean (SCM b)

Return true if b is SCM_BOOL_T, else return false.

This should be used instead of scm_is_true and scm_is_false for properties since empty
lists are sometimes used to unset them.

[C type] ly scm2[C type] (SCM s)

Behave the same as scm to [C type] would do if it existed.

[C type] robust scm2[C type] (SCM s, [C type] d)

Behave the same as scm to [C type] would do if it existed. Return d if type verification fails.

10.16 Garbage collection for dummies
☛ ✟

Note: Reading this section is strongly recommended before attempting
complex C++ programming.
✡ ✠

Within LilyPond, interaction with Guile is ubiquitous. LilyPond is written in C++ and Guile
Scheme. Even in C++, most of the code uses Guile APIs to interface with the outside Scheme
world, both with user and internal Scheme code.

Scheme is a garbage-collected language. This means that once in a while, a so-called garbage
collector scans the memory for values that are no longer being used, and reclaims them. This
process ensures that the memory is given back to the computer and made available for other uses.
The garbage collector implementation used in Guile 2 and later is the Boehm-Demers-Weiser
garbage collector (BDWGC).

C++, on the other hand, usually frees values at determined points of time (although most of
the time they remain implicit, through the use of the famous “RAII” or “scope-bound resource

Chapter 10: Programming work 104

management” technique). It has no direct support for garbage collection. This can make memory
management of Scheme values in C++ a challenge (or a headache). Whenever you are using a
value whose memory is managed by Guile, you must keep an eye on its lifetime.

To be more precise, the garbage collector works in a mark phase and a sweep phase. During
marking, the collector scans values that the program is currently using, then asks these values
for containing references to other values, and continues following references until all reachable
objects have been found. Objects that are unreachable can logically no longer be used in the
program, so they are freed in the sweep phase.

In Schemeland, the interpreter takes care of marking values for you. For instance, if you
store a list in a variable, then during garbage collection, this list is automatically marked, and
this causes all elements of the list to be marked in turn, which ensures they remain alive. In
Cppland, you need to be very careful to keep values allocated on Guile’s heap as visible to the
garbage collector if they cannot be reached from the Scheme side.

Understanding which values are under garbage-collected management

To begin with, which values are allocated on the Guile heap? The basic Guile API type is the
SCM type, which represents a value boxed for usage in Scheme. The SCM type is pointer-sized
piece of data. It is either a pointer to Scheme data structures (e.g. pair, double pair, etc.) – in
this case, the pointer is 64-bit aligned and has its lower bits set to 0 –, or it is an immediate value
(short integer, boolean, '(), etc.) – in which case the lower order bits are non-zero. Smobs,
vectors, strings and many other Scheme data structures are represented as pairs, where the car
holds a tag value (non-aligned, lower order bits set) and the cdr holds the pointer to data. From
the scheme side, the fact that these types are represented using pairs is invisible.

Thus, for immediate SCM values, all the value is contained in the SCM itself. There is no
concept of freeing these values, as they are never heap-allocated: they just keep being copied
around, and dropped by normal C++ lifetime mechanisms when done (such as dropping local
variables of a function when it returns). On the other hand, all other values point to memory
allocated on the Guile heap. It is the lifetime of this memory that you need to care about.

LilyPond adds its own object types to Guile as well. They as called “smobs”, which depending
on sources means “Scheme objects” or “small objects”. Smobs come in two flavors:

“Simple smobs” are objects that can be passed around by copy without changing the meaning.
Their classes derive from Simple_smob. Pitch and Duration are good examples. The usual
way to create them is just like a normal C++ object (e.g., Smob_type variable (constructor

parameters);). When created in this way, simple smobs are allocated on the stack like any
other C++ automatic variable, and dropped in the same way too. When you need to send a
simple smob to Schemeland, you should call the member function smobbed_copy (). This calls
the smob’s copy constructor to make a copy under garbage collection control, packed in an SCM
value.

“Complex smobs” are objects with an identity, such as Music, Context and Grob. Their
classes derive from Smob. They are always created via the C++ new operator. After allocating,
their memory is put under the control of the garbage collector. A complex smob has a field
containing its SCM identity, which points back to itself. You can access this field using the
member function self_scm ().

The function to convert a SCM value back into the C++ smob type is unsmob<Smob_type *>

(value) (which returns a null pointer if the SCM was not a value of the smob type in question).
Because of the dual nature of simple smobs, you need to be mindful that if Smob_type derives
from Simple_smob, the memory referred to by the result of unsmob<Smob_type> (if non-null)
may either be on the stack or on the Guile heap, even though most of the time it will be on the
Guile heap. On the other hand, for a complex smob, it will systematically be on the Guile heap.

Chapter 10: Programming work 105

How values are protected

When the garbage collector starts a collection, it first scans all memory being used by the
program at the current point of time. This is called the root set. For Scheme, it includes all
global variables of all modules and local variables of the function being executed. C++ adds
everything that is on the stack and in registers (FIXME: investigate global variables). The
dependencies of these values are then marked, etc.

Marking roots

The marking of the C++ function stack is very simple: scan the stack and treat every value
as a possible pointer. This principle is called “conservative garbage collection”, and has a few
consequences. One is that there may be some false positives, if random values on the stack
happen to look the same as pointers to memory in the Guile heap. These values will be held
longer than necessary, which is harmless.

Another, much more nasty consequence is that values are only kept alive while they have an
SCM presence on the stack. Here is an example of what not to do:

Complex_smob_type *

func ()

{

Complex_smob_type *object = new Complex_smob_type ();

object->unprotect ();

return object;

}

When the caller of this function receives the object pointer, there is no reason for the object’s
SCM identity (what would be returned by its self_scm () method) to be present on the stack
or in registers. Only the pointer to the C++ object is. This does not work to protect the object
from garbage collection. The object could be freed if a GC pass occurs. The fix is to unprotect
later if possible, at a point where the object’s self_scm () is placed in a long-lived reachable
Scheme data structure. Alternatively, if this is impractical, return an SCM to keep the object
protected. The unprotect () method actually returns the SCM for convenience.

SCM

func ()

{

Complex_smob_type *object = new Complex_smob_type ();

return object->unprotect ();

}

A different, even nastier trap can be illustrated with this example:

LY_DEFINE (ly_func, "ly:func",

1, 0, 0, (SCM param),

R"(

Doc

)")

{

Smob_type *object = unsmob<Smob_type> (param);

// do some stuff here, including

scm_cons (a, b)

// ...

return to_scm (object->some_field_);

}

At first glance, this looks fine. The SCM value param should remain on the stack until
the end of the function, keeping the smob protected. This is not always true, however. If

Chapter 10: Programming work 106

the compiler does a clever optimization, it might reuse the memory of the param variable for
something else. If this happens, the object is unprotected while the memory of the cons cell is
being allocated, which could cause the smob to be collected. The access object->some_field_

is then use-after-free.

The solution to this is to use scm_remember_upto_here, which allows to forcefully keep the
object alive:

LY_DEFINE (ly_func, "ly:func",

1, 0, 0, (SCM param),

R"(

Doc

)")

{

Smob_type *object = unsmob<Smob_type> (param);

// do some stuff here, including

scm_cons (a, b)

// ...

SCM field = to_scm (object->some_field_);

scm_remember_upto_here (param);

return field;

}

GC marking for smobs

Guile automatically marks the elements contained in compound values of the types it provides,
like lists and vectors. LilyPond’s smobs must do the same in order to keep elements they refer
to alive while they are themselves alive. This is done by implementing the member function SCM

mark_smob () const. This function must call scm_gc_mark on every Scheme value that needs
to be kept alive with the object. It can return an SCM value, which is marked in the same
way. (This dates back to Guile 1, which used the C++ function stack to mark objects. It was
necessary to keep the stack depth constant when marking objects such as lists, or stack overflows
would have easily ensued. It is no longer very relevant in Guile 2.)

For many smob types, mark_smob needs to add marking to the implementation of the super-
class. This is usually done using a derived_mark method. This is the case for translators, for
example. The child class should thus just implement derived_mark and not override mark_smob.

For simple smobs allocated as automatic variables, i.e., outside of Guile’s control, mark_smob

is not called during garbage collection. In this case, the only marking that the object receives
is conservative scanning of the stack. This has the strong implication that a simple smob must
contain all SCM values it refers to in its memory image on the stack. Anything that needs more
complex marking behavior should be a complex smob. For example, it’s not OK for a simple
smob to contain an std::vector<SCM>. On the other hand, that would be OK for a complex
smob as long as its mark_smob function iterates over the vector to mark each element. The
simplest solution is storing a Guile vector, of SCM type, which is OK even in simple smobs
because the memory image on the stack is an SCM vector value, which during marking causes
the marking of all vector elements, unlike an std::vector<SCM>.

Initial protection for complex smobs

When you create a complex smob, it receives an initial GC protection, which should be removed
with its unprotect () method once the complex smob enters an area where it is protected by
other means.

There is no such protection for a smobbed_copy () of a simple smob because those tend to
be more short-lived and are often just returned to Scheme after being created.

Chapter 10: Programming work 107

TODO: expand on smob constructors, especially the need for Preinit classes. See
lily/include/smobs.hh.

TODO: explain the quirks of finalization (non-)ordering. See commit 6555b3841a.

10.17 LilyPond miscellany

This is a place to dump information that may be of use to developers but doesn’t yet have a
proper home. Ideally, the length of this section would become zero as items are moved to other
homes.

10.17.1 Spacing algorithms

Here is information from an email exchange about spacing algorithms.

On Thu, 2010-02-04 at 15:33 -0500, Boris Shingarov wrote: I am experimenting with some
modifications to the line breaking code, and I am stuck trying to understand how some of it
works. So far my understanding is that Simple spacer operates on a vector of Grobs, and it
is a well-known Constrained-QP problem (rods = constraints, springs = quadratic function to
minimize). What I don’t understand is, if the spacer operates at the level of Grobs, which are
built at an earlier stage in the pipeline, how are the changes necessitated by differences in line
breaking, taken into account? in other words, if I take the last measure of a line and place it on
the next line, it is not just a matter of literally moving that graphic to where the start of the
next line is, but I also need to draw a clef, key signature, and possibly other fundamental things
– but at that stage in the rendering pipeline, is it not too late??

Joe Neeman answered:

We create lots of extra grobs (e.g., a BarNumber at every bar line) but most of them are not
drawn. See the break-visibility property in item-interface.

Here is another e-mail exchange. Janek Warchoª asked for a starting point to fixing 1301
(change clef colliding with notes). Neil Puttock replied:

The clef is on a loose column (it floats before the head), so the first place I’d look would be
lily/spacing-loose-columns.cc (and possibly lily/spacing-determine-loose-columns.cc). I’d guess
the problem is the way loose columns are spaced between other columns: in this snippet, the
columns for the quaver and tuplet minim are so close together that the clef’s column gets dumped
on top of the quaver (since it’s loose, it doesn’t influence the spacing).

10.17.2 Info from Han-Wen email

In 2004, Douglas Linhardt decided to try starting a document that would explain LilyPond ar-
chitecture and design principles. The material below is extracted from that email, which can be
found at http://thread.gmane.org/gmane.comp.gnu.lilypond.devel/2992. The headings
reflect questions from Doug or comments from Han-Wen; the body text are Han-Wen’s answers.

Figuring out how things work.

I must admit that when I want to know how a program works, I use grep and emacs and dive
into the source code. The comments and the code itself are usually more revealing than technical
documents.

What’s a grob, and how is one used?

Graphical object - they are created from within engravers, either as Spanners (derived class)
-slurs, beams- or Items (also a derived class) -notes, clefs, etc.

There are two other derived classes System (derived from Spanner, containing a "line of
music") and Paper column (derived from Item, it contains all items that happen at the same
moment). They are separate classes because they play a special role in the linebreaking process.

http://thread.gmane.org/gmane.comp.gnu.lilypond.devel/2992

Chapter 10: Programming work 108

What’s a smob, and how is one used?

A C(++) object that is encapsulated so it can be used as a Scheme object. See GUILE info,
"19.3 Defining New Types (Smobs)"

When is each C++ class constructed and used?

• Music classes

In the parser.yy see the macro calls MAKE MUSIC BY NAME().

• Contexts

Constructed during "interpreting" phase.

• Engravers

Executive branch of Contexts, plugins that create grobs, usually one engraver per grob type.
Created together with context.

• Layout Objects

= grobs

• Grob Interfaces

These are not C++ classes per se. The idea of a Grob interface hasn’t crystallized well.
ATM, an interface is a symbol, with a bunch of grob properties. They are not objects that
are created or destroyed.

• Iterators

Objects that walk through different music classes, and deliver events in a synchronized way,
so that notes that play together are processed at the same moment and (as a result) end
up on the same horizontal position.

Created during interpreting phase.

BTW, the entry point for interpreting is ly:run-translator (ly run translator on the C++

side)

Can you get to Context properties from a Music object?

You can create music object with a Scheme function that reads context properties (the \apply-
context syntax). However, that function is executed during Interpreting, so you can not really
get Context properties from Music objects, since music objects are not directly connected to
Contexts. That connection is made by the Music iterators

Can you get to Music properties from a Context object?

Yes, if you are given the music object within a Context object. Normally, the music objects
enter Contexts in synchronized fashion, and the synchronization is done by Music iterators.

What is the relationship between C++ classes and Scheme objects?

Smobs are C++ objects in Scheme. Scheme objects (lists, functions) are manipulated from C++

as well using the GUILE C function interface (prefix: scm)

How do Scheme procedures get called from C++ functions?

scm call *, where * is an integer from 0 to 4. Also scm c eval string (), scm eval ()

How do C++ functions get called from Scheme procedures?

Export a C++ function to Scheme with LY DEFINE.

What is the flow of control in the program?

Good question. Things used to be clear-cut, but we have Scheme and SMOBs now, which means
that interactions do not follow a very rigid format anymore. See below for an overview, though.

Chapter 10: Programming work 109

Does the parser make Scheme procedure calls or C++ function calls?

Both. And the Scheme calls can call C++ and vice versa. It’s nested, with the SCM datatype
as lubrication between the interactions

(I think the word "lubrication" describes the process better than the traditional word "glue")

How do the front-end and back-end get started?

Front-end: a file is parsed, the rest follows from that. Specifically,

Parsing leads to a Music + Music output def object (see parser.yy, definition of
toplevel expression)

A Music + Music output def object leads to a Global context object (see ly run translator
())

During interpreting, Global context + Music leads to a bunch of Contexts (see
Global translator::run iterator on me ()).

After interpreting, Global context contains a Score context (which contains staves, lyrics
etc.) as a child. Score context::get output () spews a Music output object (either a Paper score
object for notation or Performance object for MIDI).

The Music output object is the entry point for the backend (see ly render output ()).

The main steps of the backend itself are in

• paper-score.cc , Paper score::process

• system.cc , System::get lines()

• The step, where things go from grobs to output, is in System::get line(): each grob delivers
a Stencil (a Device independent output description), which is interpreted by our outputting
backends (scm/output-tex.scm and scm/output-ps.scm) to produce TeX and PS.

Interactions between grobs and putting things into .tex and .ps files have gotten a little
more complex lately. Jan has implemented page-breaking, so now the backend also involves
Paper book, Paper lines and other things. This area is still heavily in flux, and perhaps not
something you should want to look at.

How do the front-end and back-end communicate?

There is no communication from backend to front-end. From front-end to backend is simply the
program flow: music + definitions gives contexts, contexts yield output, after processing, output
is written to disk.

Where is the functionality associated with KEYWORDs?

See my-lily-lexer.cc (keywords, there aren’t that many) and ly/*.ly (most of the other
backslashed /\words are identifiers)

What Contexts/Properties/Music/etc. are available when they are
processed?

What do you mean exactly with this question?

See ly/engraver-init.ly for contexts, see scm/define-*.scm for other objects.

How do you decide if something is a Music, Context, or Grob
property?

Why is part-combine-status a Music property when it seems (IMO) to be related to the Staff
context?

The Music iterators and Context communicate through two channels

Chapter 10: Programming work 110

Music iterators can set and read context properties, idem for Engravers and Contexts

Music iterators can send "synthetic" music events (which aren’t in the input) to a context.
These are caught by Engravers. This is mostly a one way communication channel.

part-combine-status is part of such a synthetic event, used by Part combine iterator to com-
municate with Part combine engraver.

Deciding between context and music properties

I’m adding a property to affect how \autoChange works. It seems to me that it should be a
context property, but the Scheme autoChange procedure has a Music argument. Does this mean
I should use a Music property?

\autoChange is one of these extra strange beasts: it requires look-ahead to decide
when to change staves. This is achieved by running the interpreting step twice (see
scm/part-combiner.scm , at the bottom), and storing the result of the first step (where to
switch staves) in a Music property. Since you want to influence that where-to-switch list,
your must affect the code in make-autochange-music (scm/part-combiner.scm). That code is
called directly from the parser and there are no official "parsing properties" yet, so there is no
generic way to tune \autoChange. We would have to invent something new for this, or add a
separate argument,

\autoChange #around-central-C ..music..

where around-central-C is some function that is called from make-autochange-music.

More on context and music properties

From Neil Puttock, in response to a question about transposition:

Context properties (using \set & \unset) are tied to engravers: they provide information
relevant to the generation of graphical objects.

Since transposition occurs at the music interpretation stage, it has no direct connection with
engravers: the pitch of a note is fixed before a notehead is created. Consider the following
minimal snippet:

{ c' }

This generates (simplified) a NoteEvent, with its pitch and duration as event properties,

(make-music

'NoteEvent

'duration

(ly:make-duration 2 0 1 1)

'pitch

(ly:make-pitch 0 0 0)

which the Note heads engraver hears. It passes this information on to the NoteHead grob it
creates from the event, so the head’s correct position and duration-log can be determined once
it’s ready for printing.

If we transpose the snippet,

\transpose c d { c' }

the pitch is changed before it reaches the engraver (in fact, it happens just after the parsing
stage with the creation of a TransposedMusic music object):

(make-music

'NoteEvent

'duration

(ly:make-duration 2 0 1 1)

'pitch

Chapter 10: Programming work 111

(ly:make-pitch 0 1 0)

You can see an example of a music property relevant to transposition: untransposable.

\transpose c d { c'2 \withMusicProperty #'untransposable ##t c' }

-> the second c’ remains untransposed.

Take a look at lily/music.cc to see where the transposition takes place.

How do I tell about the execution environment?

I get lost figuring out what environment the code I’m looking at is in when it executes. I found
both the C++ and Scheme autoChange code. Then I was trying to figure out where the code got
called from. I finally figured out that the Scheme procedure was called before the C++ iterator
code, but it took me a while to figure that out, and I still didn’t know who did the calling in
the first place. I only know a little bit about Flex and Bison, so reading those files helped only
a little bit.

Han-Wen: GDB can be of help here. Set a breakpoint in C++, and run. When you hit the
breakpoint, do a backtrace. You can inspect Scheme objects along the way by doing

p ly_display_scm(obj)

this will display OBJ through GUILE.

10.17.3 Music functions and GUILE debugging

Ian Hulin was trying to do some debugging in music functions, and came up with the following
question (edited and adapted to current versions):

HI all, I’m working on the Guile Debugger Stuff, and would like to try debugging a music
function definition such as:

conditionalMark =

#(define-music-function () ()

#{ \tag instrumental-part {\mark \default} #})

It appears conditionalMark does not get set up as an equivalent of a Scheme

(define conditionalMark = define-music-function () () ...

although something gets defined because Scheme apparently recognizes

#(set-break! conditionalMark)

later on in the file without signalling any Guile errors.

However the breakpoint trap is never encountered as define-music-function passed things
on to ly:make-music-function, which is really C++ code ly_make_music_function, so Guile
never finds out about the breakpoint.

The answer in the mailing list archive at that time was less than helpful. The question
already misidentifies the purpose of ly:make-music-function which is only called once at the
time of defining conditionalMark but is not involved in its later execution.

Here is the real deal:

A music function is not the same as a GUILE function. It boxes both a proper Scheme
function (with argument list and body from the define-music-function definition) along with
a call signature representing the types of both function and arguments.

Those components can be reextracted using ly:music-function-extract and
ly:music-function-signature, respectively.

When LilyPond’s parser encounters a music function call in its input, it reads, interprets,
and verifies the arguments individually according to the call signature and then calls the proper
Scheme function.

Chapter 10: Programming work 112

While it is actually possible these days to call a music function as if it were a Scheme function
itself, this pseudo-call uses its own wrapping code matching the argument list as a whole to the
call signature, substituting omitted optional arguments with defaults and verifying the result
type.

So putting a breakpoint on the music function itself will still not help with debugging uses
of the function using LilyPond syntax.

However, either calling mechanism ultimately calls the proper Scheme function stored as part
of the music function, and that is where the breakpoint belongs:

#(set-break! (ly:music-function-extract conditionalMark))

will work for either calling mechanism.

10.17.4 Articulations on EventChord

From David Kastrup’s email https://lists.gnu.org/archive/html/lilypond-devel/

2012-02/msg00189.html:

LilyPond’s typesetting does not act on music expressions and music events. It acts exclusively
on stream events. It is the act of iterators to convert a music expression into a sequence of stream
events played in time order.

The EventChord iterator is pretty simple: it just takes its "elements" field when its time
comes up, turns every member into a StreamEvent and plays that through the typesetting pro-
cess. The parser currently appends all postevents belonging to a chord at the end of "elements",
and thus they get played at the same point of time as the elements of the chord. Due to this
design, you can add per-chord articulations or postevents or even assemble chords with a com-
mon stem by using parallel music providing additional notes/events: the typesetter does not see
a chord structure or postevents belonging to a chord, it just sees a number of events occuring
at the same point of time in a Voice context.

So all one needs to do is let the EventChord iterator play articulations after elements, and
then adding to articulations in EventChord is equivalent to adding them to elements (except in
cases where the order of events matters).

https://lists.gnu.org/archive/html/lilypond-devel/2012-02/msg00189.html
https://lists.gnu.org/archive/html/lilypond-devel/2012-02/msg00189.html

113

11 Release work

11.1 Development phases

There are 2 states of development on master:

1. Normal development: Any commits are fine.

2. Build-frozen: Do not require any additional or updated libraries or make non-trivial changes
to the build process. Any such patch (or branch) may not be merged with master during
this period.

This should occur approximately 1 month before any alpha version of the next stable release,
and ends when the next unstable branch begins.

After announcing a beta release, branch stable/2.x. There are 2 states of development for
this branch:

1. Normal maintenance: The following patches MAY NOT be merged with this branch:

• Any change to the input syntax. If a file compiled with a previous 2.x (beta) version,
then it must compile in the new version.

Exception: any bugfix to a Critical issue.

• New features with new syntax may be committed, although once committed that syntax
cannot change during the remainder of the stable phase.

• Any change to the build dependencies (including programming libraries, documentation
process programs, or python modules used in the buildscripts). If a contributor could
compile a previous lilypond 2.x, then he must be able to compile the new version.

2. Release prep: Only translation updates and important bugfixes are allowed.

11.2 Release checklist

A “minor release” means an update of y in 2.x.y.

Preparing the release

1. Prepare the release branch (release/unstable for unstable releases or stable/2.x for
stable releases). It is recommended to use a separate repository for this, or at least a
worktree. The checked out repository must have no changes to tracked files.

• Pull the latest changes in the remote repository, then switch to and update the branch:

git fetch origin

git rebase origin/master release/unstable

(adapt as necessary for stable/2.x)

• Remove untracked files from the repository, especially the configure script:

git clean -dfx --exclude release/

(Keep untracked files in the release/ directory, such as
release/binaries/downloads/ and local test builds.)

2. Generate the configure script and run it:

./autogen.sh

3. Update the translation template po/lilypond.pot:

make po-replace

4. Edit the news files:

• Copy the previous announcement from Documentation/en/web/news-new.itexi to
Documentation/en/web/news-old.itexi.

Chapter 11: Release work 114

• Create a new announcement in Documentation/en/web/news-new.itexi by adjusting
the version number and the date.

• Adjust the headlines in Documentation/en/web/news-headlines.itexi accordingly.

5. Adjust the version numbers:

• Bump the \version statements in ly/Wel*.ly to the current version that is about to
be released.

• Adjust version numbers in VERSION. In most cases, this means setting VERSION_DEVEL

to the current version. Only change VERSION_STABLE if releasing a stable version.

6. Commit the changes:

git commit -m "po: Update template" -- po/lilypond.pot

git commit -m "web: Update news" -- Documentation/en/web/

git commit -m "ly: Bump Welcome versions" -- ly/Wel*.ly

git commit -m "Bump VERSION_DEVEL" -- VERSION

Creating the source release

1. Remove untracked files from the repository (see above):

git clean -dfx --exclude release/

2. Generate the configure script and run it:

./autogen.sh

3. Create the source tarball:

make dist

The last step creates out/lilypond-2.x.y.tar.gz, which will be the “single source of truth”
for the following steps. Put it into a directory for the final upload step.

Building the binaries and documentation

These steps can be run in any order, or in parallel.

• Build binaries on “native” platforms (Linux and macOS) with the scripts in
release/binaries/ from the tarball :

./build-dependencies && ./build-lilypond /path/to/lilypond-2.x.y.tar.gz

• Build binaries for Windows (needs a run of the previous step on Linux):

./build-dependencies --mingw && ./build-lilypond --mingw /path/to/lilypond-2.x.y.tar.gz

• Build the documentation using release/doc/build-doc.sh:

./build-doc.sh /path/to/lilypond-2.x.y.tar.gz

Collect all created binaries (.tar.gz and .zip) and documentation archives (.tar.xz) in
the directory next to the source tarball. If possible, give them some short testing to make sure
everything works as expected.

Uploading the release

During this step, the artifacts from the previous steps are uploaded to lilypond.org and GitLab
for the world to see. Make sure everything is ready before proceeding.

1. Create a personal access token at https://gitlab.com/-/profile/

personal_access_tokens. This can be limited to auto-expire the next day.

2. Upload the source tarball to lilypond.org:

scp lilypond-2.x.y.tar.gz graham@gcp.lilypond.org:/var/www/lilypond/downloads/sources/v2.

3. In the directory where you collected the binaries, run the script to upload the files to GitLab:

/path/to/lilypond/release/upload.py --token TOKEN 2.x.y

https://gitlab.com/-/profile/personal_access_tokens
https://gitlab.com/-/profile/personal_access_tokens

Chapter 11: Release work 115

4. Extract the web documentation from lilypond-2.x.y-webdoc.tar.xz and adjust the
group permissions:

chmod -R g+w lilypond-2.x.y-webdoc

5. Synchronize the documentation to lilypond.org:

rsync --delay-updates --delete --delete-after --progress -prtvuz lilypond-2.x.y-webdoc/

Tagging and announcing the release

1. In the repository that was used to create the release (check that git log has the expected
commits; “Bump VERSION DEVEL” should be the last one), tag the release:

git tag -am "LilyPond 2.x.y" v2.x.y

2. Push the changes and the tag:

git push origin HEAD:release/unstable v2.x.y

(adapt as necessary for stable/2.x)

3. Create a file description.md with a copy of the release announcement (may be formatted
as Markdown for links).

4. Create the release on GitLab:

/path/to/lilypond/release/create-release.py --token TOKEN --description description.md

Creating a release on GitLab will automatically send an email to everbody who subscribed
to release notifications.

Post unstable release

In this case, the release branch is release/unstable.

1. Update the master branch with the latest changes:

git fetch origin

git rebase origin/master master

2. Merge the release branch:

git merge --no-ff release/unstable

3. Bump PATCH_LEVEL in the VERSION file and commit:

git commit -m "Bump VERSION" -- VERSION

4. Push the branch to GitLab:

git push origin HEAD:release/unstable

5. Create a merge request from release/unstable to merge the changes into master.

6. Update the website as described in Section 6.2 [Uploading website], page 59.

7. Update the milestones at GitLab:

1. Make sure all merge requests and issues are added to the milestone of the released
version. Fill in the due date and close it.

2. Create a new milestone for the next release (unless no more bugfix release is planned)
and set the start date.

8. Check open merge requests and remind people to update the \version statement in con-
version rules and regression tests.

After the website update appears on lilypond.org, send a release notice to lilypond-devel

and lilypond-user with the same announcement text and possibly further instructions.

Chapter 11: Release work 116

11.3 Major release checklist

A “major release” means an update of x in 2.x.0.

Main requirements

These are the current official guidelines.

• 0 Critical issues for two weeks (14 days) after the latest release candidate.

Potential requirements

These might become official guidelines in the future.

• Check reg test

• Check all 2ly scripts

• Check for emergencies the docs:

grep FIXME --exclude "misc/*" --exclude "*GNUmakefile" \

--exclude "snippets/*" ????*/*

• Check for altered regtests, and document as necessary:

git diff -u -r release/2.FIRST-CURRENT-STABLE \

-r release/2.LAST-CURRENT-DEVELOPMENT input/regression/

Housekeeping requirements

Before the release:

• write release notes. note: stringent size requirements for various websites, so be brief.

• Run convert-ly on all files, bump parser minimum version.

• Update lilypond.pot:

make -C $LILYPOND_BUILD_DIR po-replace

mv $LILYPOND_BUILD_DIR/po/lilypond.pot po/

• Make directories on lilypond.org:

~/download/sources/v2.NEW-STABLE

~/download/sources/v2.NEW-DEVELOPMENT

Shortly after the release:

• Move all current contributors to previous contributors in Documentation/en/included/authors.itexi.

• Delete old material in Documentation/en/changes.tely, but don’t forget to check it still
compiles! Also update the version numbers:

@node Top

@top New features in 2.NEW-STABLE since 2.OLD-STABLE

• Update the version of the search boxes in the Table of Contents sidebar to 2.NEW-

DEVELOPMENT (in Documentation/lilypond-texi2html.init).

• Prevent crawlers from indexing the old documentation by adding lines to
Documentation/webserver/robots.txt until:

Disallow: /doc/v2.OLD-STABLE/

Do not yet add a line for 2.OLD-DEVELOPMENT because the search for the documenta-
tion of 2.NEW-STABLE relies on it!

• Update the htaccess redirections (/latest/, /stable/, etc.) in
Documentation/webserver/lilypond.org.htaccess.

• Add a link to the previous stable version’s announcement, list of changes and contributors
acknowledgements to the ‘Attic’ page, in Documentation/en/web/community.itexi.

• Add a link to the previous stable version’s documentation to
Documentation/en/web/manuals.itexi.

Chapter 11: Release work 117

Unsorted

• submit po template for translation: send url of tarball to
coordinator@translationproject.org, mentioning lilypond-VERSION.pot

• Send announcements to...

News:

comp.music.research

comp.os.linux.announce

comp.text.tex

rec.music.compose

Mail:

info-lilypond@gnu.org

info-gnu@gnu.org

planet@gnu.org

linux-audio-announce@lists.linuxaudio.org

linux-audio-user@lists.linuxaudio.org

linux-audio-dev@lists.linuxaudio.org

consortium@lists.linuxaudio.org

planetccrma@ccrma.stanford.edu

tex-music@tug.org

rosegarden-user@lists.sourceforge.net

denemo-devel@gnu.org

Web (forums):

imslpforums.org

abcusers (Yahoo group)

canorus (Github? Freenode IRC?)

musescore.org/forum

reddit.com/lilypond

linuxquestions.org

Slashdot

Web (websites and aggregators):

lilypond.org

https://savannah.gnu.org/news/submit.php?group_id=1673

freshmeat.sourceforge.net

linuxtoday.com

lxer.com

fossmint.com

fsdaily.com

freesoftwaremagazine.com

lwn.net

hitsquad.com/smm

in French: linuxfr.org; framalibre.org

mailto:coordinator@translationproject.org

118

12 Modifying the Emmentaler font

12.1 Overview of the Emmentaler font

Emmentaler was created specifically for use in LilyPond. The font consists of two sub-sets of
glyphs. “Feta”, used for clasical notation and “Parmesan”, used for Ancient notation. The
sources of which are all found in mf/*.mf.

The font is merged from a number of subfonts. Each subfont can contain at most 224 glyphs.
This is because each subfont is limited to a one-byte address space (256 glyphs maximum) and
we avoid the first 32 points in that address space, since they are non-printing control characters
in ASCII.

In LilyPond, glyphs are accessed by a ‘glyph name’, rather than by code point. Therefore,
the name of a glyph is significant.

Information about correctly creating glyphs is found in mf/README. Please make sure you
read and understand this file.

TODO – we should get mf/README automatically generated from texinfo source and in-
clude it here.

12.2 Font creation tools

The sources for Emmentaler are written in metafont. The definitive reference for metafont is
"The METAFONT book" – the source of which is available at CTAN.

mf2pt1 is used to create type 1 fonts from the metafont sources.

FontForge is used to postprocess the output of mf2pt1 and clean up details of the font. It
can also be used by a developer to display the resulting glyph shapes.

12.3 Adding a new font section

The font is divided into sections, each of which contains less than 224 glyphs. If more than 224
glyphs are included in a section, an error will be generated.

Each of the sections is contained in a separate .mf file. The files are named according to the
type of glyphs in that section.

When adding a new section, it will be necessary to add the following:

• The code for the glyphs, in a file <section-name>.mf

• Driver files used to create the font in different sizes

• An entry in the generic file used to create the font, or a new generic file

• If necessary, new entries in the GNUmakefile

• An entry in scripts/build/gen-emmentaler-scripts.py

See the examples in mf/ for more information.

12.4 Adding a new glyph

Adding a new glyph is done by modifying the .mf file to which the glyph will be added.

Necessary functions to draw the glyph can be added anywhere in the file, but it is standard
to put them immediately before the glyph definition.

The glyph definition begins with:

fet_beginchar ("glyph description", "glyphname");

with glyph description replaced with a short description of the glyph, and glyphname replaced
with the glyphname, which is chosen to comply with the naming rules in mf/README.

Chapter 12: Modifying the Emmentaler font 119

The metafont code used to draw the glyph follows the fet_beginchar entry. The glyph is
finished with:

fet_endchar;

12.5 Building the changed font

In order to rebuild the font after making the changes, the existing font files must be deleted.
The simplest and quickest way to do this is to do:

rm mf/out/*

make

12.6 METAFONT formatting rules

There are special formatting rules for METAFONT files.

Please do not use tabs for the indentation of commands.

When a path contains more than two points, put each point on a separate line, with the
operator at the beginning of the line. The operators are indented to the same depth as the
initial point on the path using spaces. The indentation mechanism is illustrated below.

def draw_something (expr test) =

set_char_box (staff_space#, 1.6 linethickness# / 2,

0.5 staff_space#, 0.5 staff_space#);

if test:

fill z1

-- z2

-- z3

.. cycle;

fi;

enddef;

120

13 Administrative policies

This chapter discusses miscellaneous administrative issues which don’t fit anywhere else.

13.1 LilyPond is GNU Software

LilyPond is a GNU software package. As such, it falls under the requirements found in the GNU
Coding Standards (https://www.gnu.org/prep/standards/). All suggested changes should
move toward increased compliance with these Standards.

13.2 Environment variables

Some maintenance scripts and instructions in this guide rely on the following environment vari-
ables. They should be predefined in LilyDev distribution (see Section 2.1 [LilyDev], page 5); if
you set up your own development environment, you can set them by appending these settings
to your ~/.bashrc (or whatever defines your default environment variables for the user account
for LilyPond development), then logging out and in (adapt directories to your setup):

LILYPOND_GIT=~/lilypond-git

export LILYPOND_GIT

LILYPOND_BUILD_DIR=~/lilypond-git/build

export LILYPOND_BUILD_DIR

The standard build and install procedure (with autogen.sh, configure, make, make

install, make doc . . .) does not rely on them.

13.3 Performing yearly copyright update (“grand-replace”)

At the start of each year, copyright notices for all source files should be refreshed by running
the following command from the top of the source tree:

make grand-replace

Internally, this invokes the script scripts/build/grand-replace.py, which performs a reg-
ular expression substitution for old-year -> new-year wherever it finds a valid copyright notice.

Note that snapshots of third party files such as texinfo.tex should not be included in
the automatic update; grand-replace.py ignores these files if they are listed in the variable
copied_files.

https://www.gnu.org/prep/standards/
https://www.gnu.org/prep/standards/

121

Appendix A GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright c⃝ 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.
https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document free in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public License,
which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or whether it is published
as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice
placed by the copyright holder saying it can be distributed under the terms of this License.
Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that
work under the conditions stated herein. The “Document”, below, refers to any such manual
or work. Any member of the public is a licensee, and is addressed as “you”. You accept
the license if you copy, modify or distribute the work in a way requiring permission under
copyright law.

A “Modified Version” of the Document means any work containing the Document or a
portion of it, either copied verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that could
fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship
could be a matter of historical connection with the subject or with related matters, or of
legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is not
allowed to be designated as Invariant. The Document may contain zero Invariant Sections.
If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License.
A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25
words.

https://fsf.org/

Appendix A: GNU Free Documentation License 122

A “Transparent” copy of the Document means a machine-readable copy, represented in a
format whose specification is available to the general public, that is suitable for revising
the document straightforwardly with generic text editors or (for images composed of pixels)
generic paint programs or (for drawings) some widely available drawing editor, and that is
suitable for input to text formatters or for automatic translation to a variety of formats
suitable for input to text formatters. A copy made in an otherwise Transparent file format
whose markup, or absence of markup, has been arranged to thwart or discourage subsequent
modification by readers is not Transparent. An image format is not Transparent if used for
any substantial amount of text. A copy that is not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup,
Texinfo input format, LaTEX input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML, PostScript or PDF designed for human modifi-
cation. Examples of transparent image formats include PNG, XCF and JPG. Opaque
formats include proprietary formats that can be read and edited only by proprietary word
processors, SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the
text near the most prominent appearance of the work’s title, preceding the beginning of the
body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the
public.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve the
Title” of such a section when you modify the Document means that it remains a section
“Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to be
included by reference in this License, but only as regards disclaiming warranties: any other
implication that these Warranty Disclaimers may have is void and has no effect on the
meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying
this License applies to the Document are reproduced in all copies, and that you add no
other conditions whatsoever to those of this License. You may not use technical measures
to obstruct or control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you distribute a large
enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover
Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both

Appendix A: GNU Free Documentation License 123

covers must also clearly and legibly identify you as the publisher of these copies. The front
cover must present the full title with all words of the title equally prominent and visible.
You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions,
can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the
first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy,
or state in or with each Opaque copy a computer-network location from which the general
network-using public has access to download using public-standard network protocols a
complete Transparent copy of the Document, free of added material. If you use the latter
option, you must take reasonably prudent steps, when you begin distribution of Opaque
copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of it. In
addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any, be
listed in the History section of the Document). You may use the same title as a previous
version if the original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five of
the principal authors of the Document (all of its principal authors, if it has fewer than
five), unless they release you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the
publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copy-
right notices.

F. Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating
at least the title, year, new authors, and publisher of the Modified Version as given
on the Title Page. If there is no section Entitled “History” in the Document, create
one stating the title, year, authors, and publisher of the Document as given on its

Appendix A: GNU Free Documentation License 124

Title Page, then add an item describing the Modified Version as stated in the previous
sentence.

J. Preserve the network location, if any, given in the Document for public access to a
Transparent copy of the Document, and likewise the network locations given in the
Document for previous versions it was based on. These may be placed in the “History”
section. You may omit a network location for a work that was published at least four
years before the Document itself, or if the original publisher of the version it refers to
gives permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in
the Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as
Secondary Sections and contain no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To do this, add their titles to
the list of Invariant Sections in the Modified Version’s license notice. These titles must be
distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties—for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added
by (or through arrangements made by) any one entity. If the Document already includes
a cover text for the same cover, previously added by you or by arrangement made by the
same entity you are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to
use their names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to
the section titles in the list of Invariant Sections in the license notice of the combined work.

Appendix A: GNU Free Documentation License 125

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with
a single copy that is included in the collection, provided that you follow the rules of this
License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually
under this License, provided you insert a copy of this License into the extracted document,
and follow this License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called an
“aggregate” if the copyright resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in
the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they must
appear on printed covers that bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but you may include translations
of some or all Invariant Sections in addition to the original versions of these Invariant
Sections. You may include a translation of this License, and all the license notices in
the Document, and any Warranty Disclaimers, provided that you also include the original
English version of this License and the original versions of those notices and disclaimers. In
case of a disagreement between the translation and the original version of this License or a
notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided under this License. Any attempt otherwise to copy, modify, sublicense, or distribute
it is void, and will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copy-
right holder is reinstated (a) provisionally, unless and until the copyright holder explicitly
and finally terminates your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first
time you have received notice of violation of this License (for any work) from that copyright
holder, and you cure the violation prior to 30 days after your receipt of the notice.

Appendix A: GNU Free Documentation License 126

Termination of your rights under this section does not terminate the licenses of parties
who have received copies or rights from you under this License. If your rights have been
terminated and not permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Doc-
umentation License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns. See https://

www.gnu.org/licenses/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version” applies
to it, you have the option of following the terms and conditions either of that specified
version or of any later version that has been published (not as a draft) by the Free Software
Foundation. If the Document does not specify a version number of this License, you may
choose any version ever published (not as a draft) by the Free Software Foundation. If the
Document specifies that a proxy can decide which future versions of this License can be
used, that proxy’s public statement of acceptance of a version permanently authorizes you
to choose that version for the Document.

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web
server that publishes copyrightable works and also provides prominent facilities for anybody
to edit those works. A public wiki that anybody can edit is an example of such a server. A
“Massive Multiauthor Collaboration” (or “MMC”) contained in the site means any set of
copyrightable works thus published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published
by Creative Commons Corporation, a not-for-profit corporation with a principal place of
business in San Francisco, California, as well as future copyleft versions of that license
published by that same organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of
another Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that
were first published under this License somewhere other than this MMC, and subsequently
incorporated in whole or in part into the MMC, (1) had no cover texts or invariant sections,
and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-
SA on the same site at any time before August 1, 2009, provided the MMC is eligible for
relicensing.

https://www.gnu.org/licenses/
https://www.gnu.org/licenses/

Appendix A: GNU Free Documentation License 127

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled ``GNU
Free Documentation License''.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with. . .Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

	1 Introduction to contributing
	Help us
	Overview of work flow
	Summary for experienced developers
	Mentors

	2 Quick start
	LilyDev
	Installing LilyDev in VirtualBox
	Configuring LilyDev in VirtualBox

	Compiling with LilyDev
	Now start work!

	3 Working with source code
	Setting up
	Installing Git
	Creating a GitLab account and setting up SSH
	Cloning and forking the repository
	Configuring Git

	Git cheat sheet
	Pulling recent changes
	Viewing the history
	Switching branches
	Listing branches
	Staging and committing files
	Amending and reverting changes
	Uploading your branch for review
	Deleting branches

	Lifecycle of a merge request
	Uploading a patch for review
	Automated testing
	Patch countdown
	Merging to master
	Abandoned patches

	Writing good commit messages
	Commit access
	Further Git documentation resources
	Repository directory structure

	4 Compiling
	Overview of compiling
	Requirements
	Requirements for running LilyPond
	Requirements for compiling LilyPond
	Fedora
	Linux Mint
	OpenSUSE
	Ubuntu
	Other

	Requirements for building documentation

	Getting the source code
	Configuring make
	Build modes
	Running autogen.sh
	Running configure
	Configuration options
	Checking build dependencies
	Configuring target directories

	Compiling LilyPond
	Using make
	Saving time with the -j option
	Useful make variables

	Post-compilation options
	Installing LilyPond from a local build
	Generating documentation
	Documentation editor's edit/compile cycle
	Building documentation
	Building a single document
	Saving time with CPU_COUNT
	Installing documentation
	Building documentation without compiling

	Testing LilyPond binary

	Problems
	Compiling on MacOSX
	FreeBSD
	International fonts
	Using lilypond python libraries

	Concurrent stable and development versions
	Build system

	5 Documentation work
	Introduction to documentation work
	version in documentation files
	Documentation suggestions
	Texinfo introduction and usage policy
	Texinfo introduction
	Documentation files
	Sectioning commands
	LilyPond formatting
	Text formatting
	Syntax survey
	Comments
	Cross references
	External links
	Fixed-width font
	Indexing
	Lists
	Special characters
	Miscellany

	Other text concerns

	Documentation policy
	Books
	Section organization
	Checking cross-references
	General writing
	Technical writing style

	Tips for writing docs
	Scripts to ease doc work
	Scripts to test the documentation
	Building only one section of the documentation

	Scripts to create documentation
	Regenerating menus
	Updating doc with convert-ly

	Docstrings in scheme
	Translating the documentation
	Getting started with documentation translation
	Translation requirements
	Which documentation can be translated
	Starting translation in a new language

	Documentation translation details
	Files to be translated
	Translating the Web site and other Texinfo documentation
	Adding a Texinfo manual

	Documentation translation maintenance
	Check state of translation
	Updating documentation translation
	Updating translation committishes
	Maintaining without updating translations

	Technical background

	6 Website work
	Introduction to website work
	Uploading website
	Debugging website and docs locally
	Translating the website

	7 LSR work
	Introduction to LSR
	Adding and editing snippets
	Approving snippets
	The makelsr.pl script
	LSR to Git
	Renaming a snippet
	Updating the LSR to a new version

	8 Issues
	Introduction to issues
	Triaging bugs
	Issue classification
	Adding issues to the tracker

	9 Regression tests
	Introduction to regression tests
	Precompiled regression tests
	Compiling regression tests
	Regtest comparison
	Pixel-based regtest comparison
	Finding the cause of a regression
	MusicXML tests

	10 Programming work
	Overview of LilyPond architecture
	LilyPond programming languages
	C++
	Flex
	GNU Bison
	GNU Make
	GUILE or Scheme
	MetaFont
	PostScript
	Python
	Scalable Vector Graphics (SVG)

	Programming without compiling
	Modifying distribution files
	Desired file formatting

	Finding functions
	Using the ROADMAP
	Using grep to search
	Using git grep to search
	Using TAGS support
	Searching on the git repository at GitLab and Savannah

	Code style
	Languages
	Filenames
	Code formatting
	Naming Conventions
	Broken code
	Code comments
	Handling errors
	Localization

	Warnings, Errors, Progress and Debug Output
	Available log levels
	Functions for debug and log output
	All logging functions at a glance

	Debugging LilyPond
	Debugging overview
	Debugging C++ code
	Debugging Scheme code
	Debugging scoring algorithms
	Debugging skylines

	Tracing object relationships
	Adding or modifying features
	Write the code
	Write regression tests
	Write convert-ly rule
	Automatically update documentation
	Manually update documentation
	Edit changes.tely
	Verify successful build
	Verify regression tests
	Post patch for comments
	Push patch
	Closing the issues

	Iterator tutorial
	Engraver tutorial
	Useful methods for information processing
	Translation process
	Listening to music events
	Acknowledging grobs
	Engraver declaration/documentation

	Callback tutorial
	Understanding pure properties
	Purity in LilyPond
	Writing a pure function
	How purity is defined and stored
	Where purity is used
	Case studies
	Debugging tips

	LilyPond scoping
	Scheme->C interface
	Comparison
	Conversion

	Garbage collection for dummies
	LilyPond miscellany
	Spacing algorithms
	Info from Han-Wen email
	Music functions and GUILE debugging
	Articulations on EventChord

	11 Release work
	Development phases
	Release checklist
	Major release checklist

	12 Modifying the Emmentaler font
	Overview of the Emmentaler font
	Font creation tools
	Adding a new font section
	Adding a new glyph
	Building the changed font
	METAFONT formatting rules

	13 Administrative policies
	LilyPond is GNU Software
	Environment variables
	Performing yearly copyright update (grand-replace)

	A GNU Free Documentation License

